



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Details                    |                                                                                 |
|----------------------------|---------------------------------------------------------------------------------|
| Product Status             | Obsolete                                                                        |
| Core Processor             | RL78                                                                            |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 24MHz                                                                           |
| Connectivity               | CSI, I <sup>2</sup> C, UART/USART                                               |
| Peripherals                | DMA, LVD, POR, PWM, WDT                                                         |
| Number of I/O              | 14                                                                              |
| Program Memory Size        | 2KB (2K x 8)                                                                    |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | 2K x 8                                                                          |
| RAM Size                   | 256 x 8                                                                         |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 5.5V                                                                     |
| Data Converters            | A/D 11x8/10b                                                                    |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 20-LSSOP (0.173", 4.40mm Width)                                                 |
| Supplier Device Package    | 20-LSSOP                                                                        |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10266asp-x5 |

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| Code flash | Data flash | RAM    | 20 pins         | 24 pins                    | 30 pins  |
|------------|------------|--------|-----------------|----------------------------|----------|
| 16 KB      | 2 KB       | 2 KB   | _               | —                          | R5F102AA |
|            | _          |        | _               | —                          | R5F103AA |
|            | 2 KB       | 1.5 KB | R5F1026A Note 1 | R5F1027A <sup>Note 1</sup> |          |
|            | _          |        | R5F1036A Note 1 | R5F1037A Note 1            |          |
| 12 KB      | 2KB        | 1 KB   | R5F10269 Note 1 | R5F10279 Note 1            | R5F102A9 |
|            | _          |        | R5F10369 Note 1 | R5F10379 Note 1            | R5F103A9 |
| 8 KB       | 2 KB       | 768 B  | R5F10268 Note 1 | R5F10278 Note 1            | R5F102A8 |
|            | —          |        | R5F10368 Note 1 | R5F10378 Note 1            | R5F103A8 |
| 4 KB       | 2KB        | 512 B  | R5F10267        | R5F10277                   | R5F102A7 |
|            | _          |        | R5F10367        | R5F10377                   | R5F103A7 |
| 2 KB       | 2 KB       | 256 B  | R5F10266 Note 2 |                            |          |
|            | —          |        | R5F10366 Note 2 | —                          |          |

O ROM, RAM capacities

Notes 1. This is 640 bytes when the self-programming function or data flash function is used. (For details, see CHAPTER 3 CPU ARCHITECTURE.)

2. The self-programming function cannot be used for R5F10266 and R5F10366.

**Caution** When the flash memory is rewritten via a user program, the code flash area and RAM area are used because each library is used. When using the library, refer to RL78 Family Flash Self Programming Library Type01 User's Manual and RL78 Family Data Flash Library Type04 User's Manual.



#### 1.5 Pin Identification

| ANI0 to ANI3,       |                                   | REGC:                   | Regulator Capacitance                     |
|---------------------|-----------------------------------|-------------------------|-------------------------------------------|
| ANI16 to ANI22:     | Analog input                      | RESET:                  | Reset                                     |
| AVREFM:             | Analog Reference Voltage Minus    | RxD0 to RxD2:           | Receive Data                              |
| AVREFP:             | Analog reference voltage plus     | SCK00, SCK01, SCK11,    |                                           |
| EXCLK:              | External Clock Input              | SCK20:                  | Serial Clock Input/Output                 |
|                     | (Main System Clock)               | SCL00, SCL01,           |                                           |
| INTP0 to INTP5      | Interrupt Request From Peripheral | SCL11, SCL20, SCLA0:    | Serial Clock Input/Output                 |
| KR0 to KR9:         | Key Return                        | SDA00, SDA01, SDA11,    |                                           |
| P00 to P03:         | Port 0                            | SDA20, SDAA0:           | Serial Data Input/Output                  |
| P10 to P17:         | Port 1                            | SI00, SI01, SI11, SI20: | Serial Data Input                         |
| P20 to P23:         | Port 2                            | SO00, SO01, SO11,       |                                           |
| P30 to P31:         | Port 3                            | SO20:                   | Serial Data Output                        |
| P40 to P42:         | Port 4                            | TI00 to TI07:           | Timer Input                               |
| P50, P51:           | Port 5                            | TO00 to TO07:           | Timer Output                              |
| P60, P61:           | Port 6                            | TOOL0:                  | Data Input/Output for Tool                |
| P120 to P122, P125: | Port 12                           | TOOLRxD, TOOLTxD:       | Data Input/Output for External            |
| P137:               | Port 13                           |                         | Device                                    |
| P147:               | Port 14                           | TxD0 to TxD2:           | Transmit Data                             |
| PCLBUZ0, PCLBUZ1:   | Programmable Clock Output/        | VDD:                    | Power supply                              |
|                     | Buzzer Output                     | Vss:                    | Ground                                    |
|                     |                                   | X1, X2:                 | Crystal Oscillator (Main System<br>Clock) |
|                     |                                   |                         | Olocky                                    |



### 1.7 Outline of Functions

This outline describes the function at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

|                                    | Item                                   | 20-                                                                                                                                                                                                            | -pin                               | 24                                                                         | -pin                                       | 30-      | pin                                                  |  |
|------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------|--------------------------------------------|----------|------------------------------------------------------|--|
|                                    |                                        | R5F1026x                                                                                                                                                                                                       | R5F1036x                           | R5F1027x                                                                   | R5F1037x                                   | R5F102Ax | R5F103Ax                                             |  |
| Code flas                          | h memory                               | 2 to 16                                                                                                                                                                                                        | KB <sup>Note 1</sup>               |                                                                            | 4 to 1                                     | 16 KB    | •                                                    |  |
| Data flash memory                  |                                        | 2 KB                                                                                                                                                                                                           | -                                  | 2 KB                                                                       | -                                          | 2 KB     | -                                                    |  |
| RAM                                |                                        | 256 B to                                                                                                                                                                                                       | o 1.5 KB                           | 512 B to                                                                   | o 1.5 KB                                   | 512 B    | to 2KB                                               |  |
| Address s                          | space                                  |                                                                                                                                                                                                                |                                    | 11                                                                         | MB                                         |          |                                                      |  |
| Main<br>system<br>clock            | High-speed system clock                | HS (High-spee<br>HS (High-spee                                                                                                                                                                                 | ed main) mode :<br>ed main) mode : | n, external main s<br>1 to 20 MHz (Vc<br>1 to 16 MHz (Vc<br>1 to 8 MHz (Vc | D = 2.7  to  5.5  V<br>D = 2.4  to  5.5  V | ,        |                                                      |  |
|                                    | High-speed on-chip<br>oscillator clock | HS (High-speed main) mode : 1 to 24 MHz ( $V_{DD} = 2.7$ to 5.5 V),<br>HS (High-speed main) mode : 1 to 16 MHz ( $V_{DD} = 2.4$ to 5.5 V),<br>LS (Low-speed main) mode : 1 to 8 MHz ( $V_{DD} = 1.8$ to 5.5 V) |                                    |                                                                            |                                            |          |                                                      |  |
| Low-spee                           | d on-chip oscillator clock             | 15 kHz (TYP)                                                                                                                                                                                                   |                                    |                                                                            |                                            |          |                                                      |  |
| General-purpose register           |                                        | (8-bit register × 8) × 4 banks                                                                                                                                                                                 |                                    |                                                                            |                                            |          |                                                      |  |
| Minimum instruction execution time |                                        | 0.04167 $\mu$ s (High-speed on-chip oscillator clock: f <sub>IH</sub> = 24 MHz operation)                                                                                                                      |                                    |                                                                            |                                            |          |                                                      |  |
|                                    |                                        | 0.05 $\mu$ s (High-speed system clock: f <sub>MX</sub> = 20 MHz operation)                                                                                                                                     |                                    |                                                                            |                                            |          |                                                      |  |
| Instruction                        | n set                                  | Data transfer (8/16 bits)                                                                                                                                                                                      |                                    |                                                                            |                                            |          |                                                      |  |
|                                    |                                        | Adder and subtractor/logical operation (8/16 bits)                                                                                                                                                             |                                    |                                                                            |                                            |          |                                                      |  |
|                                    |                                        | Multiplication (8 bits × 8 bits)                                                                                                                                                                               |                                    |                                                                            |                                            |          |                                                      |  |
|                                    | 1                                      | Rotate, barrel shift, and bit manipulation (set, reset, test, and Boolean operation), etc.                                                                                                                     |                                    |                                                                            |                                            |          |                                                      |  |
| I/O port                           | Total                                  | 1                                                                                                                                                                                                              | 8                                  | 2                                                                          | 2                                          | 2        | 6                                                    |  |
|                                    | CMOS I/O                               | (N-ch C                                                                                                                                                                                                        | 2<br>D.D. I/O<br>nd voltage]: 4)   | (N-ch C                                                                    | 6<br>D.D. I/O<br>id voltage]: 5)           |          | 1<br>D.D. I/O<br>d voltage]: 9)                      |  |
|                                    | CMOS input                             |                                                                                                                                                                                                                | 4                                  |                                                                            | 4                                          | ;        | 3                                                    |  |
|                                    | N-ch open-drain I/O<br>(6 V tolerance) | 2                                                                                                                                                                                                              |                                    |                                                                            |                                            |          |                                                      |  |
| Timer                              | 16-bit timer                           |                                                                                                                                                                                                                | 4 channels                         |                                                                            |                                            |          | nnels                                                |  |
|                                    | Watchdog timer                         |                                                                                                                                                                                                                |                                    | 1 cha                                                                      | annel                                      |          |                                                      |  |
|                                    | 12-bit Interval timer                  |                                                                                                                                                                                                                |                                    | 1 cha                                                                      | annel                                      |          |                                                      |  |
| Timer output                       |                                        | 4 channels 8 cha                                                                                                                                                                                               |                                    |                                                                            |                                            |          | nnels<br>ts: 7 <sup>Note 3</sup> ) <sup>Note 2</sup> |  |

**Notes 1.** The self-programming function cannot be used in the R5F10266 and R5F10366.

2. The maximum number of channels when PIOR0 is set to 1.

**3.** The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves). (See **6.9.3 Operation as multiple PWM output function**.)

**Caution** When the flash memory is rewritten via a user program, the code flash area and RAM area are used because each library is used. When using the library, refer to RL78 Family Flash Self Programming Library Type01 User's Manual and RL78 Family Data Flash Library Type04 User's Manual.



| TA = -40 10 + 00 C,                   | 1.0 V \(\sigma\)                                                                                                                                                                                                                        | /DD ≤ 5.5 V, Vss = 0 V)                                                                                                                             |                                       |      |                |                |      |  |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------|----------------|----------------|------|--|
| Parameter                             | Symbol                                                                                                                                                                                                                                  | Conditions                                                                                                                                          |                                       | MIN. | TYP.           | MAX.           | Unit |  |
| Output current, low <sup>Note 1</sup> | <ul> <li>loL1</li> <li>20-, 24-pin products:<br/>Per pin for P00 to P03<sup>Note 4</sup>,<br/>P10 to P14, P40 to P42</li> <li>30-pin products:<br/>Per pin for P00, P01, P10 to P17, P30,<br/>P31, P40, P50, P51, P120, P147</li> </ul> |                                                                                                                                                     |                                       |      | 20.0<br>Note 2 | mA             |      |  |
|                                       |                                                                                                                                                                                                                                         | Per pin for P60, P61                                                                                                                                |                                       |      |                | 15.0<br>Note 2 | mA   |  |
|                                       |                                                                                                                                                                                                                                         | 20-, 24-pin products:                                                                                                                               | $4.0~V \leq V_{\text{DD}} \leq 5.5~V$ |      |                | 60.0           | mA   |  |
|                                       |                                                                                                                                                                                                                                         | Total of P40 to P42                                                                                                                                 | $2.7~V \leq V_{\text{DD}} < 4.0~V$    |      |                | 9.0            | mA   |  |
|                                       |                                                                                                                                                                                                                                         | 30-pin products:<br>Total of P00, P01, P40, P120<br>(When duty $\leq 70\%^{\text{Note 3}}$ )                                                        | $1.8~V \leq V_{\text{DD}} < 2.7~V$    |      |                | 1.8            | mA   |  |
|                                       |                                                                                                                                                                                                                                         | 20-, 24-pin products:                                                                                                                               | $4.0~V \leq V_{\text{DD}} \leq 5.5~V$ |      |                | 80.0           | mA   |  |
|                                       |                                                                                                                                                                                                                                         | Total of P00 to P03 <sup>Note 4</sup> ,                                                                                                             | $2.7~V \leq V_{\text{DD}} < 4.0~V$    |      |                | 27.0           | mA   |  |
|                                       |                                                                                                                                                                                                                                         | P10 to P14, P60, P61<br>30-pin products:<br>Total of P10 to P17, P30, P31, P50,<br>P51, P60, P61, P147<br>(When duty $\leq$ 70% <sup>Note 3</sup> ) | $1.8~V \leq V_{\text{DD}} < 2.7~V$    |      |                | 5.4            | mA   |  |
|                                       |                                                                                                                                                                                                                                         | Total of all pins (When duty $\leq 70\%^{Note 3}$ )                                                                                                 |                                       |      |                | 140            | mA   |  |
|                                       | IOL2                                                                                                                                                                                                                                    | Per pin for P20 to P23                                                                                                                              |                                       |      |                | 0.4            | mA   |  |
|                                       |                                                                                                                                                                                                                                         | Total of all pins                                                                                                                                   |                                       |      |                | 1.6            | mA   |  |

## 

(0)

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.

2. However, do not exceed the total current value.

**3.** The output current value under conditions where the duty factor  $\leq$  70%.

If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).

• Total output current of pins =  $(I_{OL} \times 0.7)/(n \times 0.01)$ 

<Example> Where n = 80% and  $I_{OL} = 10.0$  mA

Total output current of pins =  $(10.0 \times 0.7)/(80 \times 0.01) \cong 8.7$  mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

- 4. 24-pin products only.
- Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.



#### $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

(3/4)

| Parameter            | Symbol           | Condition                                                           | MIN.                                                                                                                                     | TYP.                 | MAX.   | Unit   |   |
|----------------------|------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------|--------|---|
| Input voltage, high  | VIH1             | Normal input buffer                                                 | 0.8Vpp                                                                                                                                   |                      | VDD    | V      |   |
|                      |                  | 20-, 24-pin products: P00 to P0<br>P40 to P42                       | )3 <sup>№te 2</sup> , P10 to P14,                                                                                                        |                      |        |        |   |
|                      |                  | 30-pin products: P00, P01, P1<br>P40, P50, P51, P120, P147          | 30-pin products: P00, P01, P10 to P17, P30, P31,<br>P40, P50, P51, P120, P147                                                            |                      |        |        |   |
|                      | VIH2             | TTL input buffer                                                    | $4.0~V \leq V_{\text{DD}} \leq 5.5~V$                                                                                                    | 2.2                  |        | Vdd    | V |
|                      |                  | 20-, 24-pin products: P10, P11                                      | $3.3~V \leq V_{\text{DD}} < 4.0~V$                                                                                                       | 2.0                  |        | VDD    | V |
|                      |                  | 30-pin products: P01, P10,<br>P11, P13 to P17                       | $1.8~V \leq V_{\text{DD}} < 3.3~V$                                                                                                       | 1.5                  |        | VDD    | V |
|                      | VIH3             | P20 to P23                                                          |                                                                                                                                          | 0.7Vdd               |        | VDD    | V |
|                      | VIH4             | P60, P61                                                            |                                                                                                                                          | 0.7Vdd               |        | 6.0    | V |
|                      | VIH5             | P121, P122, P125 <sup>Note 1</sup> , P137, I                        | 0.8VDD                                                                                                                                   |                      | VDD    | V      |   |
| Input voltage, low   | VIL1             | Normal input buffer                                                 | 0                                                                                                                                        |                      | 0.2VDD | V      |   |
|                      |                  | 20-, 24-pin products: P00 to P0<br>P40 to P42                       |                                                                                                                                          |                      |        |        |   |
|                      |                  | 30-pin products: P00, P01, P10<br>P40, P50, P51, P120, P147         |                                                                                                                                          |                      |        |        |   |
|                      | VIL2             | TTL input buffer                                                    | $4.0~V \leq V_{\text{DD}} \leq 5.5~V$                                                                                                    | 0                    |        | 0.8    | V |
|                      |                  | 20-, 24-pin products: P10, P11                                      | $3.3~V \leq V_{\text{DD}} < 4.0~V$                                                                                                       | 0                    |        | 0.5    | V |
|                      |                  | 30-pin products: P01, P10,<br>P11, P13 to P17                       | $1.8~V \leq V_{\text{DD}} < 3.3~V$                                                                                                       | 0                    |        | 0.32   | V |
|                      | VIL3             | P20 to P23                                                          | P20 to P23                                                                                                                               |                      |        | 0.3VDD | V |
|                      | VIL4             | P60, P61                                                            |                                                                                                                                          | 0                    |        | 0.3VDD | V |
|                      | VIL5             | P121, P122, P125 <sup>Note 1</sup> , P137, I                        | EXCLK, RESET                                                                                                                             | 0                    |        | 0.2VDD | V |
| Output voltage, high | V <sub>OH1</sub> | 20-, 24-pin products:<br>P00 to P03 <sup>№ete 2</sup> , P10 to P14, | $\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -10.0 \ \text{mA} \end{array}$                            | VDD-1.5              |        |        | V |
|                      |                  | P40 to P42<br>30-pin products:                                      | $4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$<br>IOH1 = -3.0 mA                                                            | VDD-0.7              |        |        | V |
|                      |                  | P00, P01, P10 to P17, P30,<br>P31, P40, P50, P51, P120,             | $\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \text{I}_{\text{OH1}} = -2.0 \ \text{mA} \end{array}$ | Vdd-0.6              |        |        | V |
|                      |                  | P147                                                                | $\begin{array}{l} 1.8 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -1.5 \ mA \end{array}$                                    | V <sub>DD</sub> -0.5 |        |        | V |
|                      | V <sub>OH2</sub> | P20 to P23                                                          | Іон2 = -100 <i>µ</i> А                                                                                                                   | VDD-0.5              |        |        | V |

**Notes 1.** 20, 24-pin products only.

2. 24-pin products only.

- Caution The maximum value of V<sub>H</sub> of pins P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24pin products, and P00, P10 to P15, P17, and P50 for 30-pin products is V<sub>DD</sub> even in N-ch open-drain mode. High level is not output in the N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.



| Parameter                     | Symbol |                                                                                                                            | Conditio                       | ons                                                                                                                                   | MIN. | TYP. | MAX. | Unit |
|-------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|
| Output voltage, low           | Vol1   | 20-, 24-pin products<br>P00 to P03 <sup>Note</sup> , P10                                                                   |                                | $\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 20.0 \ mA \end{array} \label{eq:DD}$                   |      |      | 1.3  | V    |
|                               |        | P40 to P42<br>30-pin products: P0                                                                                          |                                | $\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.5 \ mA \end{array} \label{eq:DD}$                    |      |      | 0.7  | V    |
|                               |        | P10 to P17, P30, F<br>P50, P51, P120, P                                                                                    |                                | $\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 3.0 \ mA \end{array} \label{eq:DD}$                    |      |      | 0.6  | V    |
|                               |        |                                                                                                                            |                                | $\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 1.5 \ mA \end{array} \label{eq:DD}$                    |      |      | 0.4  | V    |
|                               |        |                                                                                                                            |                                | $\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq V_{\mbox{DD}} \leq 5.5 \mbox{ V}, \\ I_{\mbox{DL1}} = 0.6 \mbox{ mA} \end{array}$ |      |      | 0.4  | V    |
|                               | Vol2   | P20 to P23                                                                                                                 |                                | lol2 = 400 μA                                                                                                                         |      |      | 0.4  | v    |
|                               | Vol3   | P60, P61                                                                                                                   | P60, P61                       |                                                                                                                                       |      |      | 2.0  | V    |
|                               |        |                                                                                                                            |                                | $\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 5.0 \ mA \end{array} \label{eq:DD}$                    |      |      | 0.4  | V    |
|                               |        | -                                                                                                                          |                                | $\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 3.0 \ mA \end{array} \label{eq:DD}$                    |      |      | 0.4  | V    |
|                               |        |                                                                                                                            |                                | $\label{eq:VDD} \begin{array}{l} 1.8 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 2.0 \ mA \end{array}$                   |      |      | 0.4  | V    |
| nput leakage current,<br>nigh | Ішні   | Other than P121,<br>P122                                                                                                   |                                |                                                                                                                                       |      |      | 1    | μA   |
|                               | Ішна   | P121, P122<br>(X1, X2/EXCLK)                                                                                               | $V_{\text{I}} = V_{\text{DD}}$ | Input port or external<br>clock input                                                                                                 |      |      | 1    | μA   |
|                               |        |                                                                                                                            |                                | When resonator connected                                                                                                              |      |      | 10   | μA   |
| nput leakage current,<br>ow   | ILIL1  | Other than P121,<br>P122                                                                                                   | VI = Vss                       |                                                                                                                                       |      |      | -1   | μA   |
|                               | ILIL2  | P121, P122<br>(X1, X2/EXCLK)                                                                                               | $V_I = V_{SS}$                 | Input port or external<br>clock input                                                                                                 |      |      | -1   | μA   |
|                               |        |                                                                                                                            |                                | When resonator connected                                                                                                              |      |      | -10  | μA   |
| resistance P<br>P<br>30       |        | 20-, 24-pin product:<br>P00 to P03 <sup>Note</sup> , P10<br>P40 to P42, P125,<br>30-pin products: P0<br>P10 to P17, P30, F | 0 to P14,<br>RESET<br>00, P01, | VI = Vss, input port                                                                                                                  | 10   | 20   | 100  | kΩ   |
|                               |        | P10 to P17, P30, F<br>P50, P51, P120, P                                                                                    |                                |                                                                                                                                       |      |      |      |      |

#### $40 \text{ to } 185^{\circ}$ 18V < Vpp < 55 V Vcc -0 1/1

Note 24-pin products only.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.



(1/2)

### 2.3.2 Supply current characteristics

#### (1) 20-, 24-pin products

| Parameter                 | Symbol                                             |                                              |                            | Conditions                                                                                                                                           |                         |                      | MIN.             | TYP.                    | MAX.        | Unit        |                         |                         |                         |  |                   |                   |     |                      |     |     |     |  |
|---------------------------|----------------------------------------------------|----------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------|------------------|-------------------------|-------------|-------------|-------------------------|-------------------------|-------------------------|--|-------------------|-------------------|-----|----------------------|-----|-----|-----|--|
| Supply                    | IDD1                                               | Operating                                    | HS(High-speed              | $f_{IH}=24~MHz^{\text{Note 3}}$                                                                                                                      | Basic                   | $V_{DD} = 5.0 V$     |                  | 1.5                     |             | mA          |                         |                         |                         |  |                   |                   |     |                      |     |     |     |  |
| current <sup>Note 1</sup> |                                                    | mode                                         | main) mode <sup>№te4</sup> |                                                                                                                                                      |                         |                      | operation V      | V <sub>DD</sub> = 3.0 V |             | 1.5         |                         |                         |                         |  |                   |                   |     |                      |     |     |     |  |
|                           |                                                    |                                              |                            |                                                                                                                                                      | Normal                  | $V_{DD} = 5.0 V$     |                  | 3.3                     | 5.0         | mA          |                         |                         |                         |  |                   |                   |     |                      |     |     |     |  |
|                           |                                                    |                                              |                            |                                                                                                                                                      | operation               | $V_{DD} = 3.0 V$     |                  | 3.3                     | 5.0         |             |                         |                         |                         |  |                   |                   |     |                      |     |     |     |  |
|                           |                                                    |                                              |                            |                                                                                                                                                      |                         | $V_{DD} = 5.0 V$     |                  | 2.5                     | 3.7         | mA          |                         |                         |                         |  |                   |                   |     |                      |     |     |     |  |
|                           |                                                    |                                              |                            |                                                                                                                                                      |                         | $V_{DD} = 3.0 V$     |                  | 2.5                     | 3.7         |             |                         |                         |                         |  |                   |                   |     |                      |     |     |     |  |
|                           |                                                    |                                              | LS(Low-speed               |                                                                                                                                                      | $f_{IH}=8\ MHz^{Note3}$ |                      | $V_{DD} = 3.0 V$ |                         | 1.2         | 1.8         | mA                      |                         |                         |  |                   |                   |     |                      |     |     |     |  |
|                           |                                                    |                                              | main) mode <sup>™e₄</sup>  |                                                                                                                                                      |                         | $V_{DD} = 2.0 V$     |                  | 1.2                     | 1.8         |             |                         |                         |                         |  |                   |                   |     |                      |     |     |     |  |
|                           | HS(High-speed $f_{MX} = 20 \text{ MHz}^{Note 2}$ , |                                              | Square wave input          |                                                                                                                                                      | 2.8                     | 4.4                  | mA               |                         |             |             |                         |                         |                         |  |                   |                   |     |                      |     |     |     |  |
|                           |                                                    | main) mode <sup>Note4</sup> $V_{DD} = 5.0 V$ | $V_{DD} = 5.0 \text{ V}$   |                                                                                                                                                      | Resonator connection    |                      | 3.0              | 4.6                     |             |             |                         |                         |                         |  |                   |                   |     |                      |     |     |     |  |
|                           |                                                    |                                              |                            | $\label{eq:main_state} \begin{split} f_{MX} &= 20 \ MHz^{\text{Note 2}}, \\ V_{DD} &= 3.0 \ V \\ \\ f_{MX} &= 10 \ MHz^{\text{Note 2}}, \end{split}$ | V <sub>DD</sub> = 3.0 V | VDD = 3.0 V          | VDD = 3.0 V      | VDD = 3.0 V             | VDD = 3.0 V | VDD = 3.0 V | V <sub>DD</sub> = 3.0 V | V <sub>DD</sub> = 3.0 V | V <sub>DD</sub> = 3.0 V |  | Square wave input |                   | 2.8 | 4.4                  | mA  |     |     |  |
|                           |                                                    |                                              |                            |                                                                                                                                                      |                         |                      |                  |                         |             |             |                         |                         |                         |  | $V_{DD} = 3.0 V$  | VDD = 3.0 V       |     | Resonator connection |     | 3.0 | 4.6 |  |
|                           |                                                    |                                              | fмx                        |                                                                                                                                                      |                         |                      |                  |                         |             |             |                         |                         |                         |  |                   | Square wave input |     | 1.8                  | 2.6 | mA  |     |  |
|                           |                                                    |                                              |                            | $V_{DD} = 5.0 V$                                                                                                                                     |                         | Resonator connection |                  | 1.8                     | 2.6         |             |                         |                         |                         |  |                   |                   |     |                      |     |     |     |  |
|                           |                                                    |                                              |                            | $f_{MX} = 10 \text{ MHz}^{Note 2},$                                                                                                                  |                         | Square wave input    |                  | 1.8                     | 2.6         | mA          |                         |                         |                         |  |                   |                   |     |                      |     |     |     |  |
|                           |                                                    |                                              |                            | $V_{DD} = 3.0 V$                                                                                                                                     |                         | Resonator connection |                  | 1.8                     | 2.6         |             |                         |                         |                         |  |                   |                   |     |                      |     |     |     |  |
|                           |                                                    |                                              | LS(Low-speed               | $f_{MX} = 8 MHz^{Note2}$ ,                                                                                                                           |                         | Square wave input    |                  | 1.1                     | 1.7         | mA          |                         |                         |                         |  |                   |                   |     |                      |     |     |     |  |
|                           | main) mode Note4 VDD                               | $V_{DD} = 3.0 V$                             |                            | Resonator connection                                                                                                                                 |                         | 1.1                  | 1.7              |                         |             |             |                         |                         |                         |  |                   |                   |     |                      |     |     |     |  |
|                           |                                                    |                                              |                            | $f_{MX} = 8 MHz^{Note 2},$                                                                                                                           |                         | Square wave input    |                  | 1.1                     | 1.7         | mA          |                         |                         |                         |  |                   |                   |     |                      |     |     |     |  |
|                           |                                                    |                                              |                            | VDD = 2.0 V                                                                                                                                          |                         | Resonator connection |                  | 1.1                     | 1.7         |             |                         |                         |                         |  |                   |                   |     |                      |     |     |     |  |

**Notes 1.** Total current flowing into V<sub>DD</sub>, including the input leakage current flowing when the level of the input pin is fixed to V<sub>DD</sub> or V<sub>SS</sub>. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. When high-speed on-chip oscillator clock is stopped.
- **3.** When high-speed system clock is stopped
- **4.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode:  $V_{DD} = 2.7 \text{ V}$  to 5.5 V @1 MHz to 24 MHz  $V_{DD} = 2.4 \text{ V}$  to 5.5 V @1 MHz to 16 MHz

- LS(Low speed main) mode:  $V_{DD} = 1.8 V$  to 5.5 V @1 MHz to 8 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
  - 2. fil: high-speed on-chip oscillator clock frequency
  - **3.** Temperature condition of the TYP. value is  $T_A = 25^{\circ}C$ .



(2) During communication at same potential (CSI mode) (master mode, SCK00... internal clock output, corresponding CSI00 only)

| Parameter                                                     | Symbol | Conditions                            | HS (high-spe<br>Mod | ,    | LS (low-spe<br>Mod | ,    | Unit |
|---------------------------------------------------------------|--------|---------------------------------------|---------------------|------|--------------------|------|------|
|                                                               |        |                                       | MIN.                | MAX. | MIN.               | MAX. |      |
| SCK00 cycle time                                              | tксү1  | tκcγ1 ≥ 2/fc∟κ                        | 83.3                |      | 250                |      | ns   |
| SCK00 high-/low-                                              | tкнı,  | $4.0~V \leq V_{\text{DD}} \leq 5.5~V$ | tксү1/ <b>2</b> –7  |      | tксү1/2–50         |      | ns   |
| level width                                                   | tĸ∟1   | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$ | tксү1/2–10          |      | tксү1/2–50         |      | ns   |
| SI00 setup time                                               | tsik1  | $4.0~V \leq V_{\text{DD}} \leq 5.5~V$ | 23                  |      | 110                |      | ns   |
| (to SCK00↑) <sup>Note 1</sup>                                 |        | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$ | 33                  |      | 110                |      | ns   |
| SI00 hold time<br>(from SCK00↑) <sup>Note2</sup>              | tksi1  |                                       | 10                  |      | 10                 |      | ns   |
| Delay time from<br>SCK00↓ to SO00<br>output <sup>Note 3</sup> | tkso1  | C = 20 pF <sup>Note 4</sup>           |                     | 10   |                    | 10   | ns   |

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$ 

- **Notes 1.** When DAP00 = 0 and CKP00 = 0, or DAP00 = 1 and CKP00 = 1. The SI00 setup time becomes "to  $SCK00\downarrow$ " when DAP00 = 0 and CKP00 = 1, or DAP00 = 1 and CKP00 = 0.
  - 2. When DAP00 = 0 and CKP00 = 0, or DAP00 = 1 and CKP00 = 1. The SI00 hold time becomes "from SCK00↓" when DAP00 = 0 and CKP00 = 1, or DAP00 = 1 and CKP00 = 0.
  - **3.** When DAP00 = 0 and CKP00 = 0, or DAP00 = 1 and CKP00 = 1. The delay time to SO00 output becomes "from SCK00∱" when DAP00 = 0 and CKP00 = 1, or DAP00 = 1 and CKP00 = 0.
  - 4. C is the load capacitance of the SCK00 and SO00 output lines.
- **Caution** Select the normal input buffer for the SI00 pin and the normal output mode for the SO00 and SCK00 pins by using port input mode register 1 (PIM1) and port output mode register 1 (POM1).
- Remarks 1. This specification is valid only when CSI00's peripheral I/O redirect function is not used.
  - 2. fMCK: Serial array unit operation clock frequency
    - (Operation clock to be set by the serial clock select register 0 (SPS0) and the CKS00 bit of serial mode register 00 (SMR00).)



| Parameter                                               | Symbol | Conditions                      |                                                                                                             | HS (high-<br>main) M |      | LS (low-spe<br>Mod | -    | Unit |
|---------------------------------------------------------|--------|---------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------|------|--------------------|------|------|
|                                                         |        |                                 |                                                                                                             |                      | MAX. | MIN.               | MAX. |      |
| SCKp cycle time                                         | tKCY1  | tксү1 ≥ 4/fc∟к                  | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$                                                                       | 167                  |      | 500                |      | ns   |
|                                                         |        |                                 | $2.4~V \leq V_{\text{DD}} \leq 5.5~V$                                                                       | 250                  |      | 500                |      | ns   |
|                                                         |        |                                 | $1.8~V \leq V_{\text{DD}} \leq 5.5~V$                                                                       | -                    |      | 500                |      | ns   |
| SCKp high-/low-level width                              | tкнı,  | $4.0~V \leq V_{\text{DD}} \leq$ | 5.5 V                                                                                                       | tксү1/2–12           |      | tксү1/2-50         |      | ns   |
|                                                         | tĸ∟1   | $2.7~V \leq V_{\text{DD}} \leq$ | $2.7 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$ $2.4 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$ |                      |      | tксү1/2-50         |      | ns   |
|                                                         |        | $2.4~V \leq V_{\text{DD}} \leq$ |                                                                                                             |                      |      | tксү1/2–50         |      | ns   |
|                                                         |        | $1.8~V \leq V_{\text{DD}} \leq$ | 5.5 V                                                                                                       | -                    |      | tксү1/2-50         |      | ns   |
| SIp setup time (to SCKp↑)                               | tsik1  | $4.0~V \leq V_{\text{DD}} \leq$ | 5.5 V                                                                                                       | 44                   |      | 110                |      | ns   |
| Note 1                                                  |        | $2.7~V \leq V_{\text{DD}} \leq$ | 5.5 V                                                                                                       | 44                   |      | 110                |      | ns   |
|                                                         |        | $2.4~V \leq V_{\text{DD}} \leq$ | 5.5 V                                                                                                       | 75                   |      | 110                |      | ns   |
|                                                         |        | $1.8~V \leq V_{\text{DD}} \leq$ | 5.5 V                                                                                                       | -                    |      | 110                |      | ns   |
| SIp hold time<br>(from SCKp↑) <sup>№te 2</sup>          | tksi1  |                                 |                                                                                                             | 19                   |      | 19                 |      | ns   |
| Delay time from SCKp↓ to<br>SOp output <sup>№te 3</sup> | tkso1  | $C = 30 \text{ pF}^{Note4}$     |                                                                                                             |                      | 25   |                    | 25   | ns   |

# (3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (T<sub>A</sub> = -40 to +85°C, 1.8 V $\leq$ V<sub>DD</sub> $\leq$ 5.5 V, V<sub>SS</sub> = 0 V)

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to  $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp<sup>↑</sup>" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - 4. C is the load capacitance of the SCKp and SOp output lines.
- **Caution** Select the normal input buffer for the SIp pin and the normal output mode for the SOp and SCKp pins by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).
- **Remarks 1.** p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products)
  - 2. fMCK: Serial array unit operation clock frequency
    - (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products.))



- **Remarks 1.** p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products.)
  - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products.))

| (5)         | During communication at same potential (simplified I <sup>2</sup> C mode) |
|-------------|---------------------------------------------------------------------------|
| <b>(T</b> ₄ | x = -40 to +85°C. 1.8 V < Vpp < 5.5 V. Vss = 0 V)                         |

| Parameter                     | Symbol  | Conditions                                                   | HS (high-speed      | HS (high-speed main) Mode |     |  |
|-------------------------------|---------|--------------------------------------------------------------|---------------------|---------------------------|-----|--|
|                               |         |                                                              | LS (low-speed       |                           |     |  |
|                               |         |                                                              | MIN.                | MAX.                      |     |  |
| SCLr clock frequency          | fsc∟    | $1.8~V \leq V_{\text{DD}} \leq 5.5~V,$                       |                     | 400 Note 1                | kHz |  |
|                               |         | $C_{b} = 100 \text{ pF},  \text{R}_{b} = 3  \text{k} \Omega$ |                     |                           |     |  |
|                               |         | $1.8~V \leq V_{\text{DD}} < 2.7~V,$                          |                     | 300 Note 1                | kHz |  |
|                               |         | $C_b$ = 100 pF, $R_b$ = 5 k $\Omega$                         |                     |                           |     |  |
| Hold time when SCLr = "L"     | t∟ow    | $1.8~V \leq V_{\text{DD}} \leq 5.5~V,$                       | 1150                |                           | ns  |  |
|                               |         | $C_{b}=100 \text{ pF},  \text{R}_{b}=3  \text{k}\Omega$      |                     |                           |     |  |
|                               |         | $1.8~V \leq V_{\text{DD}} < 2.7~V,$                          | 1550                |                           | ns  |  |
|                               |         | $C_b$ = 100 pF, $R_b$ = 5 k $\Omega$                         |                     |                           |     |  |
| Hold time when SCLr = "H"     | tніgн   | $1.8~V \leq V_{\text{DD}} \leq 5.5~V,$                       | 1150                |                           | ns  |  |
|                               |         | $C_{b}=100 \text{ pF},  \text{R}_{b}=3  \text{k}\Omega$      |                     |                           |     |  |
|                               |         | $1.8~V \leq V_{\text{DD}} < 2.7~V,$                          | 1550                |                           | ns  |  |
|                               |         | $C_b$ = 100 pF, $R_b$ = 5 k $\Omega$                         |                     |                           |     |  |
| Data setup time (reception)   | tsu:dat | $1.8~V \leq V_{\text{DD}} \leq 5.5~V,$                       | 1/fмск + 145 Note 2 |                           | ns  |  |
|                               |         | $C_{b}=100 \text{ pF},  \text{R}_{b}=3  \text{k}\Omega$      |                     |                           |     |  |
|                               |         | $1.8~V \leq V_{\text{DD}} < 2.7~V,$                          | 1/fмск + 230 Note 2 |                           | ns  |  |
|                               |         | $C_b$ = 100 pF, $R_b$ = 5 k $\Omega$                         |                     |                           |     |  |
| Data hold time (transmission) | thd:dat | $1.8~V \leq V_{\text{DD}} \leq 5.5~V,$                       | 0                   | 355                       | ns  |  |
|                               |         | $C_{b}=100 \text{ pF},  \text{R}_{b}=3  \text{k}\Omega$      |                     |                           |     |  |
|                               |         | $1.8~V \leq V_{\text{DD}} < 2.7~V,$                          | 0                   | 405                       | ns  |  |
|                               |         | $C_b = 100 \text{ pF}, \text{R}_b = 5 \text{ k}\Omega$       |                     |                           |     |  |

Notes 1. The value must also be equal to or less than  $f_{MCK}/4$ .

2. Set tsu:DAT so that it will not exceed the hold time when SCLr = "L" or SCLr = "H".

Caution Select the N-ch open drain output (VDD tolerance) mode for SDAr by using port output mode register h (POMh).

(Remarks are listed on the next page.)



| Parameter Symbol                  |                 | Conditions                                                                                                                                   |                                                                                                                               | ```                                                                                                   | igh-speed<br>n) Mode | LS (low-speed<br>main) Mode |                     | Unit            |      |
|-----------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------|-----------------------------|---------------------|-----------------|------|
|                                   |                 |                                                                                                                                              |                                                                                                                               |                                                                                                       | MIN.                 | MAX.                        | MIN.                | MAX.            |      |
| Transfer<br>rate <sup>№0te4</sup> |                 | Reception                                                                                                                                    | $4.0 V \le V_{DD} \le 5.5 V$ ,<br>$2.7 V \le V_b \le 4.0 V$                                                                   |                                                                                                       |                      | fмск/6<br>Note1             |                     | fмск/6<br>Note1 | bps  |
|                                   |                 |                                                                                                                                              | Theor                                                                                                                         | retical value of the maximum<br>ier rate<br>f <sub>CLK</sub>                                          |                      | 4.0                         |                     | 1.3             | Mbps |
|                                   |                 |                                                                                                                                              | $\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \\ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V \end{array}$                |                                                                                                       |                      | fмск/6<br>Note1             |                     | fмск/6<br>Note1 | bps  |
|                                   |                 | transf                                                                                                                                       | retical value of the maximum<br>er rate<br>f <sub>CLK</sub> <sup>Note3</sup>                                                  |                                                                                                       | 4.0                  |                             | 1.3                 | Mbps            |      |
|                                   |                 | $\label{eq:VDD} \begin{array}{l} 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \\ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V \end{array}$                |                                                                                                                               |                                                                                                       | fмск/6<br>Notes1, 2  |                             | fмск/6<br>Notes1, 2 | bps             |      |
|                                   |                 |                                                                                                                                              | transf                                                                                                                        | retical value of the maximum<br>er rate<br>f <sub>CLK</sub> <sup>Note3</sup>                          |                      | 4.0                         |                     | 1.3             | Mbps |
|                                   |                 | Transmission                                                                                                                                 | $4.0 V \le V_{DD} \le 5.5 V$ ,<br>$2.7 V \le V_b \le 4.0 V$                                                                   |                                                                                                       |                      | Note4                       |                     | Note4           | bps  |
|                                   |                 |                                                                                                                                              | Theor<br>transf                                                                                                               | retical value of the maximum<br>er rate<br>50 pF, $R_b = 1.4 \text{ k}\Omega$ , $V_b = 2.7 \text{ V}$ |                      | 2.8<br>Note5                |                     | 2.8<br>Note5    | Mbps |
|                                   |                 |                                                                                                                                              | $\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \\ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \end{array}$               |                                                                                                       |                      | Note6                       |                     | Note6           | bps  |
|                                   | Theor<br>transf | retical value of the maximum<br>er rate<br>$50 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega, \text{ V}_{\text{b}} = 2.3 \text{ V}$ |                                                                                                                               | 1.2<br>Note7                                                                                          |                      | 1.2<br>Note7                | Mbps                |                 |      |
|                                   |                 |                                                                                                                                              | $\label{eq:VDD} \begin{array}{l} 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \\ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V \end{array}$ |                                                                                                       |                      | Notes<br>2, 8               |                     | Notes<br>2, 8   | bps  |
|                                   | transf          | retical value of the maximum<br>er rate<br>50 pF, $R_b = 5.5 \text{ k}\Omega$ , $V_b = 1.6 \text{ V}$                                        |                                                                                                                               | 0.43<br>Note9                                                                                         |                      | 0.43<br>Note9               | Mbps                |                 |      |

## (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) ( $T_A = -40$ to $+85^{\circ}$ C, 1.8 V $\leq$ V<sub>DD</sub> $\leq$ 5.5 V, V<sub>SS</sub> = 0 V)

**Notes 1.** Transfer rate in the SNOOZE mode is 4800 bps only.

- $\textbf{2.} \quad \textbf{Use it with } V_{\text{DD}} \geq V_{\text{b}}.$
- 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are: HS (high-speed main) mode: 24 MHz (2.7 V  $\leq$  V<sub>DD</sub>  $\leq$  5.5 V)

16 MHz (2.4 V 
$$\leq$$
 V<sub>DD</sub>  $\leq$  5.5 V)

LS (low-speed main) mode: 8 MHz (1.8 V  $\leq$  V\_DD  $\leq$  5.5 V)

**4.** The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate.

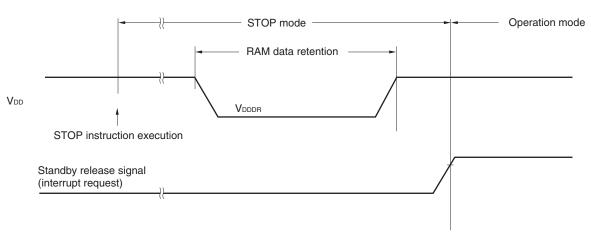
Expression for calculating the transfer rate when 4.0 V  $\leq$  V\_DD  $\leq$  5.5 V and 2.7 V  $\leq$  V\_b  $\leq$  4.0 V

Maximum transfer rate =

$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =

 $\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}$   $(\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits} \times 100 [\%]$ 


\* This value is the theoretical value of the relative difference between the transmission and reception sides.



#### <R> 2.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

| $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$ |        |            |                      |      |      |      |
|--------------------------------------------------------------------------|--------|------------|----------------------|------|------|------|
| Parameter                                                                | Symbol | Conditions | MIN.                 | TYP. | MAX. | Unit |
| Data retention supply voltage                                            | Vdddr  |            | 1.46 <sup>Note</sup> |      | 5.5  | V    |

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.



#### 2.8 Flash Memory Programming Characteristics

| <r></r> | Parameter                          | Symbol | Conditions            | MIN.    | TYP.      | MAX. | Unit  |
|---------|------------------------------------|--------|-----------------------|---------|-----------|------|-------|
|         | System clock frequency             | fclĸ   |                       | 1       |           | 24   | MHz   |
|         | Code flash memory rewritable times |        | Retained for 20 years | 1,000   |           |      | Times |
|         | Notes 1, 2, 3                      |        | $T_A = 85^{\circ}C$   |         |           |      |       |
|         | Data flash memory rewritable times |        | Retained for 1 year   |         | 1,000,000 |      |       |
|         | Notes 1, 2, 3                      |        | $T_A = 25^{\circ}C$   |         |           |      |       |
|         |                                    |        | Retained for 5 years  | 100,000 |           |      |       |
|         |                                    |        | $T_A = 85^{\circ}C$   |         |           |      |       |
|         |                                    |        | Retained for 20 years | 10,000  |           |      |       |
|         |                                    |        | $T_A = 85^{\circ}C$   |         |           |      |       |

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.



### 3.1 Absolute Maximum Ratings

#### Absolute Maximum Ratings (T<sub>A</sub> = 25°C)

| Parameter                                       | Symbols                 |                    | Conditions                                                                                                                                         | Ratings                                                                | Unit |
|-------------------------------------------------|-------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------|
| Supply Voltage                                  | VDD                     |                    |                                                                                                                                                    | -0.5 to + 6.5                                                          | V    |
| REGC terminal input<br>voltage <sup>Note1</sup> | VIREGC                  | REGC               |                                                                                                                                                    | -0.3 to +2.8<br>and -0.3 to V <sub>DD</sub> + 0.3<br><sub>Note 2</sub> | V    |
| Input Voltage                                   | VI1                     | Other than P60, F  | 261                                                                                                                                                | -0.3 to V <sub>DD</sub> + 0.3 <sup>Note 3</sup>                        | V    |
|                                                 | VI2                     | P60, P61 (N-ch o   | pen drain)                                                                                                                                         | -0.3 to 6.5                                                            | V    |
| Output Voltage                                  | Vo                      |                    |                                                                                                                                                    | -0.3 to V <sub>DD</sub> + 0.3 <sup>Note 3</sup>                        | V    |
| Analog input voltage                            | VAI                     | 20, 24-pin produc  | ts: ANI0 to ANI3, ANI16 to ANI22                                                                                                                   | -0.3 to V <sub>DD</sub> + 0.3                                          | V    |
|                                                 |                         | 30-pin products: A | ANIO to ANI3, ANI16 to ANI19                                                                                                                       | and -0.3 to<br>AVREF(+)+0.3 <sup>Notes 3, 4</sup>                      |      |
| Output current, high                            | Іон1                    | Per pin            | Other than P20 to P23                                                                                                                              | -40                                                                    | mA   |
|                                                 |                         | Total of all pins  | All the terminals other than P20 to P23                                                                                                            | -170                                                                   | mA   |
|                                                 |                         |                    | 20-, 24-pin products: P40 to P42                                                                                                                   | -70                                                                    | mA   |
|                                                 |                         |                    | 30-pin products: P00, P01, P40, P120                                                                                                               |                                                                        |      |
|                                                 |                         |                    | 20-, 24-pin products: P00 to P03 <sup>Note 5</sup> ,<br>P10 to P14<br>30-pin products: P10 to P17, P30, P31,<br>P50, P51, P147                     | -100                                                                   | mA   |
|                                                 | Іон2                    | Per pin            | P20 to P23                                                                                                                                         | -0.5                                                                   | mA   |
|                                                 |                         | Total of all pins  |                                                                                                                                                    | -2                                                                     | mA   |
| Output current, low                             | IOL1                    | Per pin            | Other than P20 to P23                                                                                                                              | 40                                                                     | mA   |
|                                                 |                         | Total of all pins  | All the terminals other than P20 to P23                                                                                                            | 170                                                                    | mA   |
|                                                 |                         |                    | 20-, 24-pin products: P40 to P42<br>30-pin products: P00, P01, P40, P120                                                                           | 70                                                                     | mA   |
|                                                 |                         |                    | 20-, 24-pin products: P00 to P03 <sup>Note 5</sup> ,<br>P10 to P14, P60, P61<br>30-pin products: P10 to P17, P30, P31,<br>P50, P51, P60, P61, P147 | 100                                                                    | mA   |
|                                                 | IoL2 Per pin P20 to P23 |                    | P20 to P23                                                                                                                                         | 1                                                                      | mA   |
|                                                 |                         | Total of all pins  |                                                                                                                                                    | 5                                                                      | mA   |
| Operating ambient<br>temperature                | TA                      |                    |                                                                                                                                                    | -40 to +105                                                            | °C   |
| Storage temperature                             | Tstg                    |                    |                                                                                                                                                    | -65 to +150                                                            | °C   |

Notes 1. 30-pin product only.

- 2. Connect the REGC pin to Vss via a capacitor (0.47 to 1  $\mu$ F). This value determines the absolute maximum rating of the REGC pin. Do not use it with voltage applied.
- 3. Must be 6.5 V or lower.
- 4. Do not exceed  $AV_{REF}(+) + 0.3 V$  in case of A/D conversion target pin.
- 5. 24-pin products only.

**Caution** Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
  - **2.** AVREF(+) : + side reference voltage of the A/D converter.
  - 3. Vss : Reference voltage



#### 3.3.2 Supply current characteristics

#### (1) 20-, 24-pin products

| <u>(1A = 10 to</u>        | 1100 0, |           | <u> </u>                     | •••)                                             |           |                      |      |      |      | ("-/ |
|---------------------------|---------|-----------|------------------------------|--------------------------------------------------|-----------|----------------------|------|------|------|------|
| Parameter                 | Symbol  |           |                              | Conditions                                       |           |                      | MIN. | TYP. | MAX. | Unit |
| Supply                    | DD1     | Operating | HS (High-speed               | $f_{\text{IH}} = 24 \text{ MHz}^{\text{Note 3}}$ | Basic     | $V_{DD} = 5.0 V$     |      | 1.5  |      | mA   |
| current <sup>Note 1</sup> |         | mode      | main) mode <sup>Note 4</sup> |                                                  | operation | VDD = 3.0 V          |      | 1.5  |      |      |
|                           |         |           |                              |                                                  | Normal    | $V_{DD} = 5.0 V$     |      | 3.3  | 5.3  | mA   |
|                           |         |           |                              |                                                  | operation | $V_{DD} = 3.0 V$     |      | 3.3  | 5.3  |      |
|                           |         |           |                              | $f_{\text{IH}} = 16 \text{ MHz}^{\text{Note 3}}$ |           | $V_{DD} = 5.0 V$     |      | 2.5  | 3.9  | mA   |
|                           |         |           |                              |                                                  |           | $V_{DD} = 3.0 V$     |      | 2.5  | 3.9  |      |
|                           |         |           |                              | $f_{MX} = 20 \text{ MHz}^{Note 2},$              |           | Square wave input    |      | 2.8  | 4.7  | mA   |
|                           |         |           |                              | $V_{DD} = 5.0 V$                                 |           | Resonator connection |      | 3.0  | 4.8  |      |
|                           |         |           |                              | $f_{MX} = 20 \text{ MHz}^{Note 2},$              |           | Square wave input    |      | 2.8  | 4.7  | mA   |
|                           |         |           |                              | VDD = 3.0 V                                      |           | Resonator connection |      | 3.0  | 4.8  |      |
|                           |         |           |                              | $f_{MX} = 10 \text{ MHz}^{Note 2},$              |           | Square wave input    |      | 1.8  | 2.8  | mA   |
|                           |         |           |                              | $V_{DD} = 5.0 V$                                 |           | Resonator connection |      | 1.8  | 2.8  |      |
|                           |         |           |                              | $f_{MX} = 10 \text{ MHz}^{Note 2}$ ,             |           | Square wave input    |      | 1.8  | 2.8  | mA   |
|                           |         |           |                              | $V_{DD} = 3.0 V$                                 |           | Resonator connection |      | 1.8  | 2.8  |      |

**Notes 1.** Total current flowing into V<sub>DD</sub>, including the input leakage current flowing when the level of the input pin is fixed to V<sub>DD</sub> or V<sub>SS</sub>. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. When high-speed on-chip oscillator clock is stopped.
- **3.** When high-speed system clock is stopped
- 4. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode:  $V_{DD} = 2.7$  V to 5.5 V @1 MHz to 24 MHz V<sub>DD</sub> = 2.4 V to 5.5 V @1 MHz to 16 MHz

- **Remarks 1.** f<sub>MX</sub>: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
  - 2. fin: high-speed on-chip oscillator clock frequency
  - **3.** Temperature condition of the TYP. value is  $T_A = 25^{\circ}C$ .



(1/2)

#### (2) 30-pin products

| <u>(Ta = -40 to</u> | +105°C,                      | 2.4 V ≤ V                  | DD $\leq$ 5.5 V, Vss =             | = 0 V)                                        |                      | _    | -    |       | (2/2) |
|---------------------|------------------------------|----------------------------|------------------------------------|-----------------------------------------------|----------------------|------|------|-------|-------|
| Parameter           | Symbol                       |                            |                                    | Conditions                                    |                      | MIN. | TYP. | MAX.  | Unit  |
| Supply              | DD2 Note 2                   | ( <del>3</del> 1           | $f_{IH} = 24 \text{ MHz}^{Note 4}$ | $V_{DD} = 5.0 V$                              |                      | 440  | 2300 | μA    |       |
| current Note 1      | mode main) mode <sup>™</sup> | main) mode <sup>№066</sup> |                                    | $V_{DD} = 3.0 V$                              |                      | 440  | 2300 |       |       |
|                     |                              |                            |                                    | $f_{IH} = 16 \text{ MHz}^{Note 4}$            | $V_{DD} = 5.0 V$     |      | 400  | 1700  | μA    |
|                     |                              |                            |                                    |                                               | $V_{DD} = 3.0 V$     |      | 400  | 1700  |       |
|                     |                              |                            |                                    | $f_{MX} = 20 \text{ MHz}^{Note 3}$ ,          | Square wave input    |      | 280  | 1900  | μA    |
|                     |                              |                            |                                    | $V_{DD} = 5.0 V$                              | Resonator connection |      | 450  | 2000  |       |
|                     |                              |                            |                                    | $f_{MX} = 20 \text{ MHz}^{Note 3},$           | Square wave input    |      | 280  | 1900  | μA    |
|                     |                              |                            |                                    | $V_{DD} = 3.0 V$                              | Resonator connection |      | 450  | 2000  |       |
|                     |                              |                            |                                    | $f_{MX} = 10 \text{ MHz}^{Note 3},$           | Square wave input    |      | 190  | 1020  | μA    |
|                     |                              |                            |                                    | $V_{DD} = 5.0 V$                              | Resonator connection |      | 260  | 1100  |       |
|                     |                              |                            |                                    | $f_{MX} = 10 \text{ MHz}^{Note 3}$ ,          | Square wave input    |      | 190  | 1020  | μA    |
|                     |                              |                            |                                    | $V_{DD} = 3.0 V$                              | Resonator connection |      | 260  | 1100  |       |
|                     | DD3 Note 5                   | STOP                       | $T_A = -40^{\circ}C$               |                                               |                      |      | 0.18 | 0.50  | μA    |
|                     |                              | mode                       | T <sub>A</sub> = +25°C             | $T_{A} = +25^{\circ}C$ $T_{A} = +50^{\circ}C$ |                      |      | 0.23 | 0.50  |       |
|                     | Т                            |                            | T <sub>A</sub> = +50°C             |                                               |                      |      | 0.30 | 1.10  |       |
|                     |                              | $T_A = +70^{\circ}C$       |                                    |                                               |                      | 0.46 | 1.90 |       |       |
|                     |                              | T <sub>A</sub> = +85°C     |                                    |                                               |                      | 0.75 | 3.30 |       |       |
|                     |                              |                            | T <sub>A</sub> = +105°C            |                                               |                      |      | 2.94 | 15.30 |       |

Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. During HALT instruction execution by flash memory.
- 3. When high-speed on-chip oscillator clock is stopped.
- 4. When high-speed system clock is stopped.
- Not including the current flowing into the 12-bit interval timer and watchdog timer. 5.
- 6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

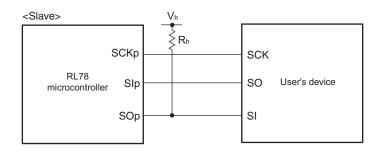
HS (High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz VDD = 2.4 V to 5.5 V @1 MHz to 16 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
  - 2. fin: high-speed on-chip oscillator clock frequency
  - 3. Except STOP mode, temperature condition of the TYP. value is TA = 25°C.

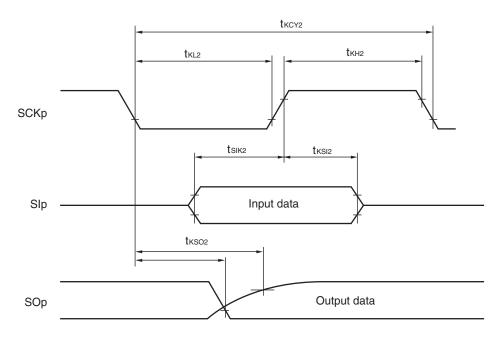


### 3.4 AC Characteristics

#### $(T_A = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$


| Items                                                      | Symbol          |                                     | Condition                           | IS                                    | MIN.           | TYP. | MAX. | Unit |
|------------------------------------------------------------|-----------------|-------------------------------------|-------------------------------------|---------------------------------------|----------------|------|------|------|
| Instruction cycle (minimum                                 | Тсч             | Main system                         | HS (High-                           | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$ | 0.04167        |      | 1    | μs   |
| nstruction execution time)                                 |                 |                                     | speed main)<br>mode                 | $2.4~V \leq V_{\text{DD}} < 2.7~V$    | 0.0625         |      | 1    | μs   |
|                                                            |                 | During self                         | HS (High-                           | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$ | 0.04167        |      | 1    | μs   |
|                                                            |                 | programming                         | speed main)<br>mode                 | $2.4~V \leq V_{\text{DD}} < 2.7~V$    | 0.0625         |      | 1    | μS   |
| External main system clock                                 | fex             | $2.7~V \leq V_{\text{DD}} \leq 5.4$ | $2.7~V \le V_{\text{DD}} \le 5.5~V$ |                                       |                |      | 20.0 | MHz  |
| frequency                                                  |                 | $2.4~V \leq V_{\text{DD}} < 2$      | .7 V                                |                                       | 1.0            |      | 16.0 | MHz  |
| External main system clock                                 | texh, texl      | $2.7~V \leq V_{\text{DD}} \leq 5$   | .5 V                                |                                       | 24             |      |      | ns   |
| input high-level width, low-<br>level width                |                 | $2.4~V \leq V_{\text{DD}} < 2.4$    | $2.4~V \leq V_{DD} < 2.7~V$         |                                       |                |      |      | ns   |
| TI00 to TI07 input high-level width, low-level width       | t⊓н, tт⊾        |                                     |                                     |                                       | 1/fмск +<br>10 |      |      | ns   |
| TO00 to TO07 output                                        | f <sub>то</sub> | $4.0~V \leq V_{\text{DD}} \leq 5$   | .5 V                                |                                       |                |      | 12   | MHz  |
| frequency                                                  |                 | $2.7~V \leq V_{\text{DD}} < 4.0~V$  |                                     |                                       |                |      | 8    | MHz  |
|                                                            |                 | $2.4~V \leq V_{\text{DD}} < 2$      | .7 V                                |                                       |                |      | 4    | MHz  |
| PCLBUZ0, or PCLBUZ1                                        | <b>f</b> PCL    | $4.0~V \leq V_{\text{DD}} \leq 5$   | .5 V                                |                                       |                |      | 16   | MHz  |
| output frequency                                           |                 | $2.7~V \leq V_{\text{DD}} < 4.0~V$  |                                     |                                       |                |      | 8    | MHz  |
|                                                            |                 | $2.4~V \leq V_{\text{DD}} < 2$      | .7 V                                |                                       |                |      | 4    | MHz  |
| INTP0 to INTP5 input high-<br>level width, low-level width | tinth, tintl    |                                     |                                     |                                       | 1              |      |      | μs   |
| KR0 to KR9 input available width                           | tкя             |                                     |                                     |                                       | 250            |      |      | ns   |
| RESET low-level width                                      | tRSL            |                                     |                                     |                                       | 10             |      |      | μs   |

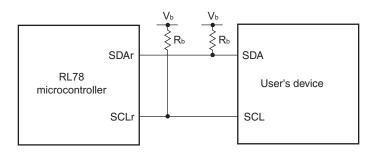
Remark fmck: Timer array unit operation clock frequency


(Operation clock to be set by the timer clock select register 0 (TPS0) and the CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7))

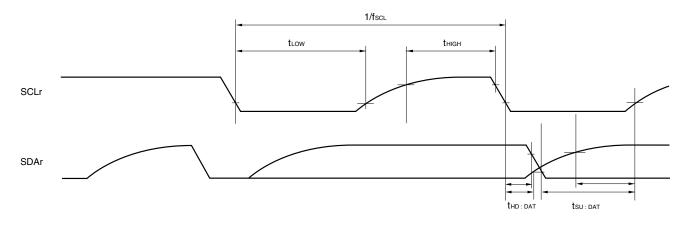


#### CSI mode connection diagram (during communication at different potential)




CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)




- Remarks 1.Rb [Ω]: Communication line (SOp) pull-up resistance, Cb [F]: Communication line (SOp) load capacitance,<br/>Vb [V]: Communication line voltage
  - **2.** p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)
  - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn))



#### Simplified I<sup>2</sup>C mode connection diagram (during communication at different potential)



#### Simplified I<sup>2</sup>C mode serial transfer timing (during communication at different potential)



- Remarks 1. Rb [Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb [F]: Communication line (SDAr, SCLr) load capacitance, Vb [V]: Communication line voltage
  - **2.** r: IIC Number (r = 00, 20)
  - 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number (m = 0,1), n: Channel number (n = 0))



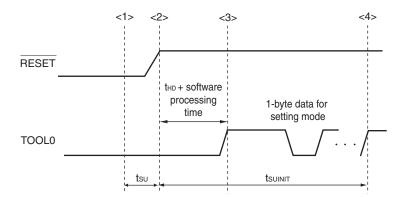
#### 3.6.4 LVD circuit characteristics

# LVD Detection Voltage of Reset Mode and Interrupt Mode (T<sub>A</sub> = -40 to +105°C, V<sub>PDR</sub> $\leq$ V<sub>DD</sub> $\leq$ 5.5 V, V<sub>SS</sub> = 0 V)

| Parameter                | Symbol            | Conditions             | MIN. | TYP. | MAX. | Unit |
|--------------------------|-------------------|------------------------|------|------|------|------|
| Detection supply voltage | VLVDO             | Power supply rise time | 3.90 | 4.06 | 4.22 | V    |
|                          |                   | Power supply fall time | 3.83 | 3.98 | 4.13 | V    |
|                          | VLVD1             | Power supply rise time | 3.60 | 3.75 | 3.90 | V    |
|                          |                   | Power supply fall time | 3.53 | 3.67 | 3.81 | V    |
|                          | VLVD2             | Power supply rise time | 3.01 | 3.13 | 3.25 | V    |
|                          |                   | Power supply fall time | 2.94 | 3.06 | 3.18 | V    |
|                          | V <sub>LVD3</sub> | Power supply rise time | 2.90 | 3.02 | 3.14 | V    |
|                          |                   | Power supply fall time | 2.85 | 2.96 | 3.07 | V    |
|                          | VLVD4             | Power supply rise time | 2.81 | 2.92 | 3.03 | V    |
|                          |                   | Power supply fall time | 2.75 | 2.86 | 2.97 | V    |
|                          | VLVD5             | Power supply rise time | 2.70 | 2.81 | 2.92 | V    |
|                          |                   | Power supply fall time | 2.64 | 2.75 | 2.86 | V    |
|                          | VLVD6             | Power supply rise time | 2.61 | 2.71 | 2.81 | V    |
|                          |                   | Power supply fall time | 2.55 | 2.65 | 2.75 | V    |
|                          | VLVD7             | Power supply rise time | 2.51 | 2.61 | 2.71 | V    |
|                          |                   | Power supply fall time | 2.45 | 2.55 | 2.65 | V    |
| Minimum pulse width      | tıw               |                        | 300  |      |      | μs   |
| Detection delay time     |                   |                        |      |      | 300  | μs   |



#### 3.9 Dedicated Flash Memory Programmer Communication (UART)


| Parameter     | Symbol | Conditions                | MIN.    | TYP. | MAX.      | Unit |  |  |  |  |  |
|---------------|--------|---------------------------|---------|------|-----------|------|--|--|--|--|--|
| Transfer rate |        | During serial programming | 115,200 |      | 1,000,000 | bps  |  |  |  |  |  |

#### $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

#### 3.10 Timing of Entry to Flash Memory Programming Modes

#### $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

| Parameter                                                                                       | Symbol  | Conditions                                             | MIN. | TYP. | MAX. | Unit |
|-------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------|------|------|------|------|
| Time to complete the communication for the initial setting after the external reset is released | tsuinit | POR and LVD reset are released before external release |      |      | 100  | ms   |
| Time to release the external reset after the TOOL0 pin is set to the low level                  | tsu     | POR and LVD reset are released before external release | 10   |      |      | μS   |
| Time to hold the TOOL0 pin at the low level after the external reset is released                | tно     | POR and LVD reset are released before external release | 1    |      |      | ms   |
| (excluding the processing time of the firmware to control the flash memory)                     |         |                                                        |      |      |      |      |



- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
  - $t_{\text{su:}}$  Time to release the external reset after the TOOL0 pin is set to the low level
  - the: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

