

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	14
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10266gsp-x5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.6 Block Diagram

<R> 2. ELECTRICAL SPECIFICATIONS ($T_A = -40$ to +85°C)

<r></r>	This chapter de	scribes the following electrical specifications.
	Target products	A: Consumer applications $T_A = -40$ to $+85^{\circ}C$
<r></r>		R5F102xxAxx, R5F103xxAxx
_		D: Industrial applications $T_A = -40$ to $+85^{\circ}C$
<r></r>		R5F102xxDxx, R5F103xxDxx
		G: Industrial applications when $T_A = -40$ to $+105^{\circ}C$ products is used in the range of $T_A = -40$ to $+85^{\circ}C$
<h></h>		R5F102xxGxx
	Cautions 1.	he RL78 microcontrollers have an on-chip debug function, which is provided for development and

Fautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.

2. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product.

2.3 DC Characteristics

2.3.1 Pin characteristics

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V}) $ (1/4								
Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit	
Output current, high ^{№№ 1}	Іон1	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42 30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147				-10.0 Note 2	mA	
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-30.0	mA	
		Total of P40 to P42	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-6.0	mA	
	30-pin products: Total of P00, P01, P40, P120 (When $duty \le 70\%$ ^{Note 3})	$1.8~V \leq V_{\text{DD}} < 2.7~V$			-4.5	mA		
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-80.0	mA	
		Total of P00 to P03 ^{Note 4} , P10 to P14	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-18.0	mA	
30-pin products: 2.7×10^{-10} Total of P10 to P17, P30, P31, 1.8×10^{-10} P50, P51, P147(When duty $\leq 70\%^{\text{Note 3}}$)Total of all pins (When duty $\leq 70\%^{\text{Note 3}}$)	$1.8~V \leq V_{\text{DD}} < 2.7~V$			-10.0	mA			
		Total of all pins (When duty $\leq 70\%^{Note 3}$)				-100	mA	
	Іон2	Per pin for P20 to P23				-0.1	mA	
		Total of all pins				-0.4	mA	

Notes 1. value of current at which the device operation is guaranteed even if the current flows from the VDD pin to an output pin.

- 2. However, do not exceed the total current value.
- **3.** The output current value under conditions where the duty factor \leq 70%. If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).
 - Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$ <Example> Where n = 80% and IOH = -10.0 mA
 - Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

- 4. 24-pin products only.
- Caution P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24-pin products, and P00, P10 to P15, P17, and P50 for 30-pin products do not output high level in N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(2) 30-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

(T _A = -40 to	+85°C, 1.8	$\mathbf{S} \mathbf{V} \leq \mathbf{V} \mathbf{D} \mathbf{D}$	≤ 5.5 V, Vss = 0	V)					(2/2)
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	DD2 Note 2	HALT	HS (High-speed	$f_{IH} = 24 \text{ MHz}^{Note 4}$	Vdd = 5.0 V		440	1280	μA
current Note 1		mode	main) mode ^{Note 6}		V _{DD} = 3.0 V		440	1280	
				$f_{IH} = 16 \text{ MHz}^{Note 4}$	$V_{DD} = 5.0 V$		400	1000	μA
					$V_{DD} = 3.0 V$		400	1000	
			LS (Low-speed	$f_{IH} = 8 \text{ MHz}^{Note 4}$	$V_{DD} = 3.0 V$		260	530	μA
			main) mode ^{Note 6}		V _{DD} = 2.0 V		260	530	
			HS (High-speed	$f_{MX} = 20 \text{ MHz}^{Note 3},$	Square wave input		280	1000	μA
			main) mode ^{№066}	$V_{DD} = 5.0 V$	Resonator connection		450	1170	
				$f_{MX} = 20 \text{ MHz}^{Note 3},$	Square wave input		280	1000	μA
				$V_{DD} = 3.0 V$	Resonator connection		450	1170	
				$f_{MX} = 10 \text{ MHz}^{Note 3}$,	Square wave input		190	600	μA
			$V_{DD} = 5.0 V$	Resonator connection		260	670		
				$f_{MX} = 10 \text{ MHz}^{Note 3},$ V_DD = 3.0 V	Square wave input		190	600	μA
					Resonator connection		260	670	
			LS (Low-speed	$f_{MX} = 8 \text{ MHz}^{Note 3}$,	Square wave input		95	330	μA
			main) mode ^{Note 6}	$V_{DD} = 3.0 V$	Resonator connection		145	380	
				$f_{MX} = 8 MHz^{Note 3}$	Square wave input		95	330	μA
				$V_{DD} = 2.0 V$	Resonator connection		145	380	
		STOP	$T_A = -40^{\circ}C$				0.18	0.50	μA
		mode	T _A = +25°C				0.23	0.50	
			T _A = +50°C				0.30	1.10	
			T _A = +70°C	T _A = +70°C			0.46	1.90	
			T _A = +85°C				0.75	3.30	

Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. During HALT instruction execution by flash memory.
- 3. When high-speed on-chip oscillator clock is stopped.
- 4. When high-speed system clock is stopped.
- 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.
- 6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS (High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz

VDD = 2.4 V to 5.5 V @1 MHz to 16 MHz

LS (Low speed main) mode: VDD = 1.8 V to 5.5 V @1 MHz to 8 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except STOP mode, temperature condition of the TYP. value is TA = 25°C.

(3) Peripheral functions (Common to all products)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed onchip oscillator operating current	IFIL Note 1				0.20		μA
12-bit interval timer operating current	ITMKA Notes 1, 2, 3				0.02		μA
Watchdog timer operating current	IWDT Notes 1, 2, 4	fı∟ = 15 kHz			0.22		μA
A/D converter	ADC Notes 1, 5	When conversion at	Normal mode, $AV_{REFP} = V_{DD} = 5.0 V$		1.30	1.70	mA
operating current		maximum speed	Low voltage mode, $AV_{REFP} = V_{DD} = 3.0 V$		0.50	0.70	mA
A/D converter reference voltage operating current	ADREF ^{Note 1}				75.0		μA
Temperature sensor operating current	TMPS Note 1				75.0		μA
LVD operating current	LVD Notes 1, 6				0.08		μA
Self- programming operating current	FSP Notes 1, 8				2.00	12.20	mA
BGO operating current	BGO Notes 1, 7				2.00	12.20	mA
SNOOZE	ISNOZ Note 1	ADC operation	The mode is performed Note 9		0.50	0.60	mA
operating current			The A/D conversion operations are performed, Low voltage mode, $AV_{REFP} = V_{DD} = 3.0 V$		1.20	1.44	mA
		CSI/UART operation			0.70	0.84	mA

Notes 1. Current flowing to the VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and IFIL and ITMKA when the 12-bit interval timer operates.
- 4. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.
- 5. Current flowing only to the A/D converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 6. Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit operates.
- 7. Current flowing only during data flash rewrite.
- 8. Current flowing only during self programming.
- 9. For shift time to the SNOOZE mode, see 17.3.3 SNOOZE mode.

Remarks 1. fil: Low-speed on-chip oscillator clock frequency

2. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(2) During communication at same potential (CSI mode) (master mode, SCK00... internal clock output, corresponding CSI00 only)

Parameter	Symbol	Conditions	HS (high-spo Mod	beed main) LS (low-sp de Mo		eed main) de	Unit
			MIN.	MAX.	MIN.	MAX.	
SCK00 cycle time	tkCY1	tĸcyı ≥ 2/fclĸ	83.3		250		ns
SCK00 high-/low-	tкнı,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	tксү1/2–7		tксү1/2–50		ns
level width	tĸ∟1	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	tксү1/2–10		tксү1/2–50		ns
SI00 setup time	tsikı	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	23		110		ns
(to SCK00↑) ^{Note 1}		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	33		110		ns
SI00 hold time (from SCK00↑) ^{Note2}	tksii		10		10		ns
Delay time from SCK00↓ to SO00 output ^{Note 3}	tkso1	$C = 20 \text{ pF}^{Note 4}$		10		10	ns

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- **Notes 1.** When DAP00 = 0 and CKP00 = 0, or DAP00 = 1 and CKP00 = 1. The SI00 setup time becomes "to $SCK00\downarrow$ " when DAP00 = 0 and CKP00 = 1, or DAP00 = 1 and CKP00 = 0.
 - 2. When DAP00 = 0 and CKP00 = 0, or DAP00 = 1 and CKP00 = 1. The SI00 hold time becomes "from SCK00↓" when DAP00 = 0 and CKP00 = 1, or DAP00 = 1 and CKP00 = 0.
 - **3.** When DAP00 = 0 and CKP00 = 0, or DAP00 = 1 and CKP00 = 1. The delay time to SO00 output becomes "from SCK00∱" when DAP00 = 0 and CKP00 = 1, or DAP00 = 1 and CKP00 = 0.
 - 4. C is the load capacitance of the SCK00 and SO00 output lines.
- **Caution** Select the normal input buffer for the SI00 pin and the normal output mode for the SO00 and SCK00 pins by using port input mode register 1 (PIM1) and port output mode register 1 (POM1).
- Remarks 1. This specification is valid only when CSI00's peripheral I/O redirect function is not used.
 - 2. fMCK: Serial array unit operation clock frequency
 - (Operation clock to be set by the serial clock select register 0 (SPS0) and the CKS00 bit of serial mode register 00 (SMR00).)

Parameter	Symbol	Cond	litions	HS (higł main)	n-speed Mode	LS (low-sp Mo	beed main) bde	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note4	t ксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	20 MHz < fмск	8/f мск		-		ns
			fмск ≤ 20 MHz	6/fмск		6/fмск		ns
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	16 MHz < fмск	8/fмск		-		ns
			fмск \leq 16 MHz	6/fмск		6/fмск		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		6/fмск		6/fмск		ns
				and 500		and 500		
		$1.8~V \leq V_{\text{DD}} \leq 5.5~V$		-		6/fмск		ns
						and 750		
SCKp high-/low-level	tкн2,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2-7		tксү2/2-7		ns
width	tĸ∟2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2-8		tксү2/2-8		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2–18		tксү2/2-18		ns
		$1.8~V \leq V_{\text{DD}} \leq 5.5~V$		-		tксү2/2-18		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsik2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск + 20		1/fмск + 30		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск + 30		1/fмск + 30		ns
		$1.8~V \leq V_{\text{DD}} \leq 5.5~V$		_		1/fмск + 30		ns
SIp hold time (from SCKp↑) ^{№te 2}	tksi2			1/f _{мск} + 31		1/fмск + 31		ns
Delay time from SCKp↓ to	tkso2	C = 30 pF ^{Note4}	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		2/fмск + 44		2/fмск + 110	ns
SOp output Note 3			$2.4~V \le V_{\text{DD}} \le 5.5~V$		2/fмск + 75		2/fмск + 110	ns
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		_		2/fмск + 110	ns

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) ($T_A = -40$ to $+85^{\circ}$ C, 1.8 V $\leq V_{DD} \leq 5.5$ V, Vss = 0 V)

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- **Caution** Select the normal input buffer for the SIp and SCKp pins and the normal output mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).

CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

(Remarks are listed on the next page.)

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- **Remarks 1.** R_b[Ω]: Communication line (TxDq) pull-up resistance, C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)
 - fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 - m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))
 - **4.** UART0 of the 20- and 24-pin products supports communication at different potential only when the peripheral I/O redirection function is not used.

(7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCK00... internal clock output, corresponding CSI00 only)

Parameter	Symbol		Conditions	HS (hig main)	HS (high-speed main) Mode		LS (low-speed main) Mode	
				MIN.	MAX.	MIN.	MAX.	
SCK00 cycle time	t ксү1	tĸcv1 ≥ 2/fclĸ	$\begin{array}{l} \mbox{4.0 V} \leq V_{DD} \leq 5.5 \ V, \\ \mbox{2.7 V} \leq V_b \leq 4.0 \ V, \\ \mbox{C}_b = 20 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$	200		1150		ns
			$\label{eq:linear} \begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	300		1150		ns
SCK00 high-level width	tкнı	$4.0~V \leq V_{\text{DD}} \leq 5.$	5 V, 2.7 V \leq Vb \leq 4.0 V,	tксү1/2 –		tксү1/2-		ns
		$C_b = 20 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$		50		50		
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} =$	$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ \\ C_{\text{b}} = 20 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$			tксү1/2 – 120		ns
SCK00 low-level width	tĸ∟ı	4.0 V \leq V _{DD} \leq 5. C _b = 20 pF. R _b =	5 V, 2.7 V \leq V _b \leq 4.0 V, = 1.4 k Ω	tксү1/2 – 7		tксү1/2 – 50		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$		tксү1/2 –		tксү1/2 –		ns
		$C_b = 20 \text{ pF}, \text{ R}_b =$	= 2.7 kΩ	10		50		
SI00 setup time	tsik1	$4.0~V \leq V_{\text{DD}} \leq 5.$	5 V, 2.7 V \leq V _b \leq 4.0 V,	58		479		ns
(to SCK00↑) ^{Note 1}		$C_b = 20 \text{ pF}, \text{ R}_b =$	= 1.4 kΩ					
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.$	0 V, 2.3 V \leq V _b \leq 2.7 V,	121		479		ns
		$C_b = 20 \text{ pF}, \text{ R}_b =$	= 2.7 kΩ					
SI00 hold time (from SCK00 [↑]) ^{Note 1}	tksii	$4.0~V \leq V_{\text{DD}} \leq 5.$	5 V, 2.7 V \leq V _b \leq 4.0 V,	10		10		ns
		$C_b = 20 \text{ pF}, \text{ R}_b =$	= 1.4 kΩ					
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$		10		10		ns
		$C_b = 20 \text{ pF}, R_b =$	= 2.7 kΩ					
Delay time from SCK00↓	tkso1	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V,$			60		60	ns
		$C_b = 20 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$						
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.$	$0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$		130		130	ns
		C _b = 20 pF, R _b =	= 2.7 kΩ					
SI00 setup time (to SCK00↓) ^{Note 2}	tsik1	$4.0 V \leq V DD \leq 5.$	$5 V, 2.7 V \le V_b \le 4.0 V,$	23		110		ns
($C_b = 20 \text{ pr}, \text{ Rb} = 0.7 \text{ V} < V_{\text{Rb}} < 4$	$= 1.4 \text{ K}_2$	22		110		-
		$2.7 V \le V D C = 20 \text{ pE } B_{\text{b}} = -20 \text$	$0 \ 0, 2.3 \ 0 \ge 0 \ 0 \ge 2.7 \ 0,$			110		115
SIO0 hold time	trout	$40V \le V_{PP} \le 5$	5 V 2 7 V < V < 1 0 V	10		10		ne
(from SCK00↓) Note 2	LKSII	$4.0 V \le V D U \le 0.$	$5 \text{V}, 2.7 \text{V} \ge \text{V}_0 \ge 4.0 \text{V},$	10		10		115
		$C_b = 20 \text{ pr}, \text{ H}_b = 1.4 \text{ K}_2$		10		10		ns
		C₀ = 20 pF. R₀ =						
Delay time from SCK00↑	t _{KSO1}	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.$	5 V. 2.7 V ≤ V _b ≤ 4.0 V.		10		10	ns
to SO00 output Note 2		Сь = 20 pF, Rь =	= 1.4 kΩ					
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.$	0 V, 2.3 V \leq V _b \leq 2.7 V,		10		10	ns
		$C_b = 20 \text{ pF}, R_b =$	= 2.7 kΩ					

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

(Notes, Caution, and Remarks are listed on the next page.)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3)

Parameter	Symbol	Conditions	HS (hig main)	h-speed Mode	LS (low main)	v-speed Mode	Unit
			MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) ^{Note 1}	tsıĸı		81		479		ns
		$\label{eq:VD} \begin{array}{l} 2.7 \; V \leq V_{\text{DD}} < 4.0 \; V, \; 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 30 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	177		479		ns
		$\label{eq:VD} \begin{array}{l} 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V^{\text{Note 2}}, \\ C_{b} = 30 \ pF, \ R_{b} = 5.5 \ k\Omega \end{array}$	479		479		ns
SIp hold time (from SCKp↑) ^{Note 1}	tksii	$\begin{array}{l} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	19		19		ns
		$\label{eq:VD} \begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	19		19		ns
		$\label{eq:VD} \begin{array}{l} \mbox{1.8 V} \leq V_{\text{DD}} < 3.3 \ \text{V}, \ \mbox{1.6 V} \leq V_{b} \leq 2.0 \ \text{V}^{\mbox{Note 2}}, \\ \mbox{C}_{b} = 30 \ \mbox{pF}, \ \mbox{R}_{b} = 5.5 \ \mbox{k} \Omega \end{array}$	19		19		ns
Delay time from SCKp↓ to	tkso1			100		100	ns
SOp output Note 1		$\label{eq:VD} \hline 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \\ \hline$		195		195	ns
		$\label{eq:VD} \hline \hline 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \\ \hline \hline$		483		483	ns

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

2. Use it with $V_{DD} \ge V_b$.

(Cautions and Remarks are listed on the next page.)

19

25

25

25

19

25

25

25

ns

ns

ns

ns

Delay time from

SOp output Note 1

SCKp↑ to

tkso1

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$ Parameter Symbol Conditions HS (high-speed LS (low-speed Unit main) Mode main) Mode MIN. MAX. MIN. MAX. SIp setup time $4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$ 44 tsik1 110 ns (to SCKp↓) Note 1 $C_{\text{b}}=30 \text{ pF}, \text{ R}_{\text{b}}=1.4 \text{ k}\Omega$ $2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ 44 110 ns $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ 1.8 V \leq V_{DD} < 3.3 V, 1.6 V \leq V_b \leq 2.0 V $^{\text{Note 2}},$ 110 110 ns $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$ Slp hold time 4.0 V \leq V_{DD} \leq 5.5 V, 2.7 V \leq V_b \leq 4.0 V, 19 tksi1 19 ns (from SCKp \downarrow) ^{Note 1} $C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$ $2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ 19 19 ns $C_b = 30 \text{ pF}, \text{ } \text{R}_b = 2.7 \text{ } \text{k}\Omega$

 $1.8 \text{ V} \le V_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le V_{\text{b}} \le 2.0 \text{ V}^{\text{Note 2}},$

 $4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$

 $2.7~V \leq V_{\text{DD}} < 4.0~V,\, 2.3~V \leq V_{\text{b}} \leq 2.7~V,$

 $1.8 \text{ V} \le V_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le V_{b} \le 2.0 \text{ V}^{\text{Note 2}},$

 $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$

 $C_b = 30 \text{ pF}, R_b = 1.4 \text{ } \text{k}\Omega$

 $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$

 $C_{\text{b}}=30 \text{ pF}, \text{ } \text{R}_{\text{b}}=5.5 \text{ } \text{k}\Omega$

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock

output) (3/3) (T_ = $40 \pm 25\%$ 1.8 V < V = 55% V V = 0.0%

- **Notes 1.** When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. **2.** Use it with $V_{DD} \ge V_b$.
- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.
 - **Remarks 1.** R_b [Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b [F]: Communication line (SCKp, SOp) load capacitance, V_b [V]: Communication line voltage
 - **2.** p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

CSI mode connection diagram (during communication at different potential)

LVD	detection volt	age of	interrupt	& I	reset	mode
(T	10 to 195°C	Vara /	$V_{22} < 5.5$	v	Vac -	0 V/

(1A = -40 10 + 65)	C, VPDR		$\leq 5.5 \text{ V}, \text{ Vss} = 0 \text{ V}$					
Parameter	Symbol		Conc	litions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVDB0	Vpoc2,	VPOC1, VPOC0 = 0, 0, 1, fall	ing reset voltage	1.80	1.84	1.87	v
mode	VLVDB1		LVIS1, LVIS0 = 1, 0	Rising reset release voltage	1.94	1.98	2.02	v
				Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB2		LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB3		LVIS1, LVIS0 = 0, 0	Rising reset release voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDC0	VPOC2,	VPOC1, VPOC0 = 0, 1, 0, fall	ing reset voltage	2.40	2.45	2.50	V
	VLVDC1		LVIS1, LVIS0 = 1, 0	Rising reset release voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDC3		LVIS1, LVIS0 = 0, 0	Rising reset release voltage	3.68	3.75	3.82	V
				Falling interrupt voltage	3.60	3.67	3.74	V
	VLVDD0	VPOC2,	VPOC1, VPOC1 = 0, 1, 1, fall	ing reset voltage	2.70	2.75	2.81	V
	VLVDD1		LVIS1, LVIS0 = 1, 0	Rising reset release voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2		LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V
	VLVDD3		LVIS1, LVIS0 = 0, 0	Rising reset release voltage	3.98	4.06	4.14	V
				Falling interrupt voltage	3.90	3.98	4.06	V

2.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 28.4 AC Characteristics.

Parameter	Symbol	Conditions		HS (high-spee	Unit	
				MIN.	MAX.	
SCKp cycle time	tkCY1	tксү1 \geq 4/fclк	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	334		ns
			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	500		ns
SCKp high-/low-level width	tкнı,	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V \\ \\ 2.7 \ V \leq V_{DD} \leq 5.5 \ V \\ \\ 2.4 \ V \leq V_{DD} \leq 5.5 \ V \end{array}$		tксү1/2–24		ns
	tĸ∟1			tксү1/2–36		ns
				tксү1/2-76		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsik1	$\begin{array}{c} 4.0 \ V \leq V_{DD} \leq 5.5 \ V \\ \\ 2.7 \ V \leq V_{DD} \leq 5.5 \ V \end{array}$		66		ns
				66		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5$	V	113		ns
SIp hold time (from SCKp↑) Note 2	tksi1			38		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	$C = 30 \text{ pF}^{Note4}$			50	ns

(2)	During communication at same potential (CSI mode) (master mode, SCKp internal clock outpu	t)
(T/	$A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$	

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.
- **Caution** Select the normal input buffer for the SIp pin and the normal output mode for the SOp and SCKp pins by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).
- **Remarks 1.** p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3)
 - 2. fmck: Serial array unit operation clock frequency
 - (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3))

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- Remarks 1. p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3)
 2. fMCK: Serial array unit operation clock frequency
 - (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3))

Parameter	Symbol	Conditions		HS (high-s Mc	peed main) ode	Unit	
					MIN.	MAX.	
Transfer rate Note4		Reception				f _{MCK} /12 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		2.0	Mbps
			$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$			fмск/12 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		2.0	Mbps
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$			fмск/12 Note 1	bps	
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		2.0	Mbps
		Transmission	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5 \\ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \end{array}$.5 V,) V		Note 3	bps
				Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k} \Omega, V_b = 2.7 \text{ V}$		2.0 Note 4	Mbps
			$2.7 \text{ V} \leq V_{\text{DD}} < 4$ $2.3 \text{ V} \leq V_{\text{b}} \leq 2.7$.0 V, 7 V,		Note 5	bps
				Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, \text{R}_b = 2.7 \text{k} \Omega, \text{V}_b = 2.3 \text{ V}$		1.2 Note 6	Mbps
			$2.4 V \le V_{DD} < 3$ $1.6 V \le V_b \le 2.0$.3 V,) V		Notes 2, 7	bps
				Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$		0.43 Note 8	Mbps

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

 $(T_A = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq V_{DD} \leq 5.5 V) 16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)

3. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq V_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =

$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- **Remarks 1.** R_b[Ω]: Communication line (TxDq) pull-up resistance, C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)
 - fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

4. UART0 of the 20- and 24-pin products supports communication at different potential only when the peripheral I/O redirection function is not used.

(7)	Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp external clock input)
(TA	= –40 to +105°C, 2.4 V ≤ V _{DD} ≤ 5.5 V, V _{SS} = 0 V)

Parameter Symbol		Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time Note 1	tксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	20 MHz < fмск ≤ 24 MHz	24/f мск		ns
		$2.7~V \leq V_b \leq 4.0~V$	$8 \text{ MHz} < f_{MCK} \le 20 \text{ MHz}$	20/f мск		ns
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	16/f мск		ns
			fмск ≤4 MHz	12/f мск		ns
		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	20 MHz < fмск ≤ 24 MHz	32/fмск		ns
		$2.3~V \leq V_b \leq 2.7~V$	16 MHz < fмск ≤ 20 MHz	28/f мск		ns
			8 MHz < fмск \leq 16 MHz	24/f мск		ns
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	16/f мск		ns
			fмск ≤4 MHz	12/f мск		ns
		$2.4~V \leq V_{\text{DD}} < 3.3~V,$	20 MHz < fмск ≤ 24 MHz	72/f мск		ns
		$1.6~V \leq V_b \leq 2.0~V$	16 MHz < fмск ≤ 20 MHz	64/f мск		ns
			8 MHz < fмск \leq 16 MHz	52/f мск		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	32/f мск		ns
			fмск ≤4 MHz	20/f мск		ns
SCKp high-/low-level	tкн2,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,2.7$	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V}$			ns
width	tkl2	$2.7 \; V \leq V_{\text{DD}} < 4.0 \; V, 2.3$	$V \leq V_b \leq 2.7~V$	tkcy2/2 – 36		ns
		$2.4 \ V \le V_{\text{DD}} < 3.3 \ V, \ 1.6$	$V \leq V_b \leq 2.0 \ V$	tксү2/2 – 100		ns
SIp setup time	tsik2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,2.7$	$V \leq V_{\text{DD}} \leq 4.0 \ V$	1/fмск + 40		ns
(to SCKp↑) ^{Note 2}		$2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V$		1/fмск + 40		ns
		$2.4~V \leq V_{\text{DD}} < 3.3~V,~1.6~V \leq V_{\text{DD}} \leq 2.0~V$		1/fмск + 60		ns
SIp hold time (from SCKp↑) ^{№ote 3}	tksi2			1/fмск + 62		ns
Delay time from SCKp \downarrow to	tkso2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,2.7$	$V \leq V_b \leq 4.0 \ V,$		2/fмск +	ns
SOp output Note 4		C_b = 30 pF, R_b = 1.4 k Ω			240	
		$2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V,$			2/fмск +	ns
		C_b = 30 pF, R_b = 2.7 k Ω			428	
		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V}, 1.6$	$V \leq V_b \leq 2.0 V$,		2/fмск +	ns
		C_b = 30 pF, R_b = 5.5 k Ω			1146	

Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Cautions 1. Select the TTL input buffer for the SIp and SCKp pins and the N-ch open drain output (Vbb tolerance) mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

Rising reset release voltage

Falling interrupt voltage

MAX.

2.86

3.03

2.97

3.14

3.07

4.22

4.13

3.90

3.83

4.06

3.98

Unit

v

V

V

v

V

V

٧

LVD detection voltage of interrupt & reset mode

(T _A = -40 to +10	5°C, Vpd	$R \leq V D D$	$0 \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V}$				
Parameter	Symbol		Cond	MIN.	TYP.		
Interrupt and reset	VLVDD0	VPOC2,	VPOC1, VPOC1 = 0, 1, 1, fall	2.64	2.75		
mode	ode V _{LVDD1} LVIS1, LVIS0 = 1, 0		Rising reset release voltage	2.81	2.92		
				Falling interrupt voltage	2.75	2.86	
	VLVDD2		LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.90	3.02	
				Falling interrupt voltage	2.85	2.96	

LVIS1, LVIS0 = 0, 0

3.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

VLVDD3

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 29.4 AC Characteristics.

