

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	14
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10267asp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.6 Block Diagram

1.6.2 24-pin products

Note Provided only in the R5F102 products.

1.6.3 30-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR).

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

(3/4)

Parameter	Symbol	Condition	S	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	Normal input buffer		0.8Vpp		VDD	V
		20-, 24-pin products: P00 to P0 P40 to P42)3 ^{№te 2} , P10 to P14,				
		30-pin products: P00, P01, P1 P40, P50, P51, P120, P147	-pin products: P00, P01, P10 to P17, P30, P31, 0, P50, P51, P120, P147				
	VIH2	TTL input buffer	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	5.5 V 2.2		VDD	V
		20-, 24-pin products: P10, P11	$3.3~V \leq V_{\text{DD}} < 4.0~V$	2.0		VDD	V
		30-pin products: P01, P10, P11, P13 to P17	$1.8~V \leq V_{\text{DD}} < 3.3~V$	1.5		VDD	V
	VIH3	P20 to P23		0.7Vdd		VDD	V
	VIH4	P60, P61	0.7Vdd		6.0	V	
	VIH5	P121, P122, P125 ^{Note 1} , P137, I	0.8VDD		VDD	V	
Input voltage, low	VIL1	Normal input buffer		0		0.2VDD	V
		20-, 24-pin products: P00 to P0 P40 to P42					
		30-pin products: P00, P01, P10 P40, P50, P51, P120, P147) to P17, P30, P31,				
	VIL2	TTL input buffer	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	0		0.8	V
		20-, 24-pin products: P10, P11	$3.3~V \leq V_{\text{DD}} < 4.0~V$	0		0.5	V
		30-pin products: P01, P10, P11, P13 to P17	$1.8~V \leq V_{\text{DD}} < 3.3~V$	0		0.32	V
	VIL3	P20 to P23		0		0.3VDD	V
	VIL4	P60, P61		0		0.3VDD	V
	VIL5	P121, P122, P125 ^{Note 1} , P137, I	EXCLK, RESET	0		0.2VDD	V
Output voltage, high	V _{OH1}	20-, 24-pin products: P00 to P03 ^{№ete 2} , P10 to P14,	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -10.0 \ \text{mA} \end{array}$	VDD-1.5			V
		P40 to P42 30-pin products:	4.0 V \leq V_{DD} \leq 5.5 V, I_{OH1} = -3.0 mA	VDD-0.7			V
		P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120,	$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \text{I}_{\text{OH1}} = -2.0 \ \text{mA} \end{array}$	Vdd-0.6			V
		P147	$\begin{array}{l} 1.8 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -1.5 \ mA \end{array}$	V _{DD} -0.5			V
	V _{OH2}	P20 to P23	Іон2 = -100 <i>µ</i> А	VDD-0.5			V

Notes 1. 20, 24-pin products only.

2. 24-pin products only.

- Caution The maximum value of V_H of pins P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24pin products, and P00, P10 to P15, P17, and P50 for 30-pin products is V_{DD} even in N-ch open-drain mode. High level is not output in the N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(1/2)

(2) 30-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit		
Supply	IDD1	Operating	, U I	$f_{\text{IH}} = 24 \; MHz^{\text{Note 3}}$	Basic	$V_{DD} = 5.0 V$		1.5		mA		
current Note 1		mode	main) mode ^{Note 4}		operation	$V_{DD} = 3.0 V$		1.5				
					Normal	$V_{DD} = 5.0 V$		3.7	5.5	mA		
					operation	V _{DD} = 3.0 V		3.7	5.5			
				$f_{\text{IH}} = 16 \; MHz^{\text{Note 3}}$	6 MHz ^{Note 3}	$V_{DD} = 5.0 V$		2.7	4.0	mA		
						V _{DD} = 3.0 V		2.7	4.0			
			LS (Low-speed	f⊪ = 8 MHz ^{Note 3}	$f_{IH}=8\ MHz^{Note3}$		$V_{DD} = 3.0 V$		1.2	1.8	mA	
	main) mode ^{Note 4}			V _{DD} = 2.0 V		1.2	1.8					
	HS (High-spee main) mode ^{Neted}	HS (High-speed			Square wave input		3.0	4.6	mA			
		main) mode ^{Note 4}			Resonator connection		3.2	4.8				
				$f_{MX} = 20 \text{ MHz}^{Note 2},$	⊣z ^{Note 2} ,	Square wave input		3.0	4.6	mA		
					VDD = 3.0 V	VDD = 3.0 V		Resonator connection		3.2	4.8	
					Square wave input		1.9	2.7	mA			
				$V_{DD} = 5.0 V$		Resonator connection		1.9	2.7			
				$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		1.9	2.7	mA		
				$V_{DD} = 3.0 V$		Resonator connection		1.9	2.7			
			LS (Low-speed	$f_{MX} = 8 MHz^{Note 2}$,		Square wave input		1.1	1.7	mA		
	main) mode ^{Note 4}			Resonator connection		1.1	1.7					
		$f_{MX} = 8 \text{ MHz}^{Note 2},$		Square wave input		1.1	1.7	mA				
				$V_{DD} = 2.0 V$		Resonator connection		1.1	1.7			

Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. When high-speed on-chip oscillator clock is stopped.
- 3. When high-speed system clock is stopped
- 4. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode: $V_{DD} = 2.7 \text{ V}$ to 5.5 V @1 MHz to 24 MHz $V_{DD} = 2.4 \text{ V}$ to 5.5 V @1 MHz to 16 MHz

LS(Low speed main) mode: $V_{DD} = 1.8 \text{ V to } 5.5 \text{ V} @1 \text{ MHz to } 8 \text{ MHz}$

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$.

2.4 AC Characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Items	Symbol		Condition	IS	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсч	Main system	HS (High-	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.04167		1	μS
instruction execution time)		clock (fMAIN) operation	speed main) mode	$2.4~V \leq V_{\text{DD}} < 2.7~V$	0.0625		1	μS
			LS (Low- speed main) mode	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	0.125		1	μS
		During self	HS (High-	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.04167		1	μS
		programming	speed main) mode	$2.4~V \leq V_{\text{DD}} < 2.7~V$	0.0625		1	μS
			LS (Low- speed main) mode	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	0.125		1	μS
External main system clock	fex	$2.7~V \leq V_{\text{DD}} \leq 5$	1.0		20.0	MHz		
frequency		$2.4~V \leq V_{\text{DD}} < 2.7~V$			1.0		16.0	MHz
		$1.8~V \leq V_{\text{DD}} < 2$.4 V		1.0		8.0	MHz
External main system clock	texh, texl	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			24			ns
input high-level width, low- level width		$2.4~V \leq V_{\text{DD}} < 2.7~V$			30			ns
		$1.8~V \leq V_{\text{DD}} < 2.4~V$			60			ns
TI00 to TI07 input high-level width, low-level width	t⊓∺, t⊓∟				1/fмск + 10			ns
TO00 to TO07 output	fто	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$					12	MHz
frequency		$2.7~V \leq V_{\text{DD}} < 4$.0 V				8	MHz
		$1.8~V \leq V_{\text{DD}} < 2$.7 V				4	MHz
PCLBUZ0, or PCLBUZ1	f PCL	$4.0~V \leq V_{\text{DD}} \leq 5$.5 V				16	MHz
output frequency		$2.7~V \leq V_{\text{DD}} < 4$.0 V				8	MHz
		$1.8~V \leq V_{\text{DD}} < 2$.7 V				4	MHz
INTP0 to INTP5 input high- level width, low-level width	tın⊤н, tın⊤∟				1			μS
KR0 to KR9 input available width	tкя				250			ns
RESET low-level width	tRSL				10			μs

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the timer clock select register 0 (TPS0) and the CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7))

AC Timing Test Point

2.5 Peripheral Functions Characteristics

AC Timing Test Point

2.5.1 Serial array unit

(1) During communication at same potential (UART mode) ($T_A = -40$ to $+85^{\circ}$ C, 1.8 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

(1A = 10.10	,							
Parameter	Symbol	Conditions		Conditions HS (high-speed main) Mode		•	LS (low main)	Unit
			MIN.	MAX.	MIN.	MAX.		
Transfer rate				fмск/6		fмск/6	bps	
Note 1		Theoretical value of the maximum transfer rate $f_{\text{CLK}} = f_{\text{MCK}}{}^{\text{Note2}}$		4.0		1.3	Mbps	

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are: HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 5.5 V)

16 MHz (2.4 V
$$\leq$$
 VDD \leq 5.5 V)

LS (low-speed main) mode: 8 MHz (1.8 V
$$\leq$$
 VDD \leq 5.5 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 2), g: PIM, POM number (g = 0, 1)

2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

Parameter	Symbol	С	Conditions		HS (high-speed main) Mode		eed main) de	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tKCY1	tксү1 ≥ 4/fc∟к	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	167		500		ns
			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	250		500		ns
			$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	-		500		ns
SCKp high-/low-level width	tкнı,	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V	tксү1/2–12		tксү1/2-50		ns
	tĸ∟1	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		tксү1/2–18		tксү1/2-50		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		tксү1/2–38		tксү1/2–50		ns
		$1.8~V \leq V_{\text{DD}} \leq$	5.5 V	-		tксү1/2-50		ns
SIp setup time (to SCKp↑)	tsik1	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		44		110		ns
Note 1		$2.7~V \leq V_{\text{DD}} \leq$	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			110		ns
		$2.4~V \leq V_{\text{DD}} \leq$	5.5 V	75		110		ns
		$1.8~V \leq V_{\text{DD}} \leq$	5.5 V	-		110		ns
SIp hold time (from SCKp↑) ^{№te 2}	tksi1			19		19		ns
Delay time from SCKp↓ to SOp output ^{№te 3}	tkso1	C = 30 pF ^{Note4}			25		25	ns

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (T_A = -40 to +85°C, 1.8 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.
- **Caution** Select the normal input buffer for the SIp pin and the normal output mode for the SOp and SCKp pins by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).
- **Remarks 1.** p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products)
 - 2. fMCK: Serial array unit operation clock frequency
 - (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products.))

Parameter	Symbol	Conc	litions	HS (high main)		LS (low-sp Mo	eed main) de	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note4	t ксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	20 MHz < fмск	8/f мск		-		ns
			fмск ≤ 20 MHz	6/fмск		6/fмск		ns
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	16 MHz < fмск	8/fмск		-		ns
			fмск ≤ 16 MHz	6/fмск		6/fмск		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		6/fмск		6/fмск		ns
				and 500		and 500		
		$1.8~V \le V_{\text{DD}} \le 5.5~V$		-		6/fмск		ns
						and 750		
SCKp high-/low-level	tкн2,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2-7		tксү2/2-7		ns
width	tĸ∟2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2-8		tксү2/2-8		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2–18		tксү2/2-18		ns
		$1.8~V \leq V_{\text{DD}} \leq 5.5~V$		-		tксү2/2-18		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsık2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск + 20		1/fмск + 30		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск + 30		1/fмск + 30		ns
		$1.8~V \leq V_{\text{DD}} \leq 5.5~V$		-		1/fмск + 30		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi2			1/f _{мск} + 31		1/fмск + 31		ns
Delay time from SCKp↓ to	tkso2	C = 30 pF ^{Note4}	$2.7~V \le V_{\text{DD}} \le 5.5~V$		2/fмск + 44		2/fмск + 110	ns
SOp output Note 3			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		2/fмск + 75		2/fмск + 110	ns
			$1.8~V \leq V_{\text{DD}} \leq 5.5~V$		-		2/fмск + 110	ns

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (T_A = -40 to +85°C, 1.8 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- **Caution** Select the normal input buffer for the SIp and SCKp pins and the normal output mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).

Parameter	Symbol	Conditions		```	igh-speed n) Mode		w-speed) Mode	Unit	
					MIN.	MAX.	MIN.	MAX.	
Transfer rate ^{№0te4}		Reception	$4.0 V \le V_{DD} \le 5.5 V$, $2.7 V \le V_b \le 4.0 V$			fмск/6 Note1		fмск/6 Note1	bps
			Theor	retical value of the maximum ier rate f _{CLK}		4.0		1.3	Mbps
			$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \\ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V \end{array}$			fмск/6 Note1		fмск/6 Note1	bps
		transf	retical value of the maximum er rate f _{CLK} ^{Note3}		4.0		1.3	Mbps	
			$ 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \\ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V $			fмск/6 Notes1, 2		fмск/6 Notes1, 2	bps
			transf	retical value of the maximum er rate f _{CLK} ^{Note3}		4.0		1.3	Mbps
		Transmission	$4.0 V \le V_{DD} \le 5.5 V$, $2.7 V \le V_b \le 4.0 V$			Note4		Note4	bps
			Theor transf	retical value of the maximum er rate 50 pF, $R_b = 1.4 \text{ k}\Omega$, $V_b = 2.7 \text{ V}$		2.8 Note5		2.8 Note5	Mbps
			$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \\ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \end{array}$			Note6		Note6	bps
			Theor transf	retical value of the maximum er rate $50 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega, \text{ V}_{\text{b}} = 2.3 \text{ V}$		1.2 Note7		1.2 Note7	Mbps
		$\label{eq:VDD} \begin{array}{l} 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \\ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V \end{array}$			Notes 2, 8		Notes 2, 8	bps	
			transf	retical value of the maximum er rate 50 pF, $R_b = 5.5 \text{ k}\Omega$, $V_b = 1.6 \text{ V}$		0.43 Note9		0.43 Note9	Mbps

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) ($T_A = -40$ to $+85^{\circ}$ C, 1.8 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- $\textbf{2.} \quad \textbf{Use it with } V_{\text{DD}} \geq V_{\text{b}}.$
- 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are: HS (high-speed main) mode: 24 MHz (2.7 V \leq V_{DD} \leq 5.5 V)

16 MHz (2.4 V
$$\leq$$
 V_{DD} \leq 5.5 V)

LS (low-speed main) mode: 8 MHz (1.8 V \leq V_DD \leq 5.5 V)

4. The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq V_DD \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =

$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =

 $\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}$ $(\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits} \times 100 [\%]$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- **Notes 1.** When DAP00 = 0 and CKP00 = 0, or DAP00 = 1 and CKP00 = 1
 - **2.** When DAP00 = 0 and CKP00 = 1, or DAP00 = 1 and CKP00 = 0.
- Caution Select the TTL input buffer for the SI00 pin and the N-ch open drain output (V_{DD} tolerance) mode for the SO00 pin and SCK00 pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b [Ω]:Communication line (SCK00, SO00) pull-up resistance, C_b [F]: Communication line (SCK00, SO00) load capacitance, V_b [V]: Communication line voltage
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register 0 (SPS0) and the CKS00 bit of serial mode register 00 (SMR00).)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

3.3.2 Supply current characteristics

(1) 20-, 24-pin products

<u>(1A = 10 to</u>	1100 0,		<u> </u>	•••)						("-)
Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply		Operating	HS (High-speed	$f_{\text{IH}} = 24 \text{ MHz}^{\text{Note 3}}$	Basic	$V_{DD} = 5.0 V$		1.5		mA
current ^{Note 1}		mode	main) mode ^{Note 4}		operation	VDD = 3.0 V		1.5		
					Normal	$V_{DD} = 5.0 V$		3.3	5.3	mA
					operation VDD	$V_{DD} = 3.0 V$		3.3	5.3	
				$f_{\text{IH}} = 16 \text{ MHz}^{\text{Note 3}}$		$V_{DD} = 5.0 V$		2.5	3.9	mA
				V _{DD} =	$V_{DD} = 3.0 V$		2.5	3.9		
	f _{MX} = 20 MHz ^{Note}		Square wave input		2.8	4.7	mA			
				$V_{DD} = 5.0 V$) V F	Resonator connection		3.0	4.8	
				$f_{MX} = 20 \text{ MHz}^{Note 2},$		Square wave input		2.8	4.7	mA
				VDD = 3.0 V		Resonator connection		3.0	4.8	
				$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		1.8	2.8	mA
	V _{DD} = 5.0 V	$V_{DD} = 5.0 V$	Res	Resonator connection		1.8	2.8			
				$f_{MX} = 10 \text{ MHz}^{Note 2}$,		Square wave input		1.8	2.8	mA
				$V_{DD} = 3.0 V$		Resonator connection		1.8	2.8	

Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. When high-speed on-chip oscillator clock is stopped.
- **3.** When high-speed system clock is stopped
- 4. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode: $V_{DD} = 2.7$ V to 5.5 V @1 MHz to 24 MHz V_{DD} = 2.4 V to 5.5 V @1 MHz to 16 MHz

- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$.

(1/2)

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- **Remarks 1.** R_b[Ω]: Communication line (TxDq) pull-up resistance, C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)
 - fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

4. UART0 of the 20- and 24-pin products supports communication at different potential only when the peripheral I/O redirection function is not used.

3.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode (T_A = -40 to +105°C, V_{PDR} \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection supply voltage	VLVDO	Power supply rise time	3.90	4.06	4.22	V
		Power supply fall time	3.83	3.98	4.13	V
	VLVD1	Power supply rise time	3.60	3.75	3.90	V
		Power supply fall time	3.53	3.67	3.81	V
	VLVD2	Power supply rise time	3.01	3.13	3.25	V
		Power supply fall time	2.94	3.06	3.18	V
	V _{LVD3}	Power supply rise time	2.90	3.02	3.14	V
		Power supply fall time	2.85	2.96	3.07	V
	VLVD4	Power supply rise time	2.81	2.92	3.03	V
		Power supply fall time	2.75	2.86	2.97	V
	VLVD5	Power supply rise time	2.70	2.81	2.92	V
		Power supply fall time	2.64	2.75	2.86	V
	VLVD6	Power supply rise time	2.61	2.71	2.81	V
		Power supply fall time	2.55	2.65	2.75	V
	VLVD7	Power supply rise time	2.51	2.61	2.71	V
		Power supply fall time	2.45	2.55	2.65	V
Minimum pulse width	tıw		300			μs
Detection delay time					300	μs

3.9 Dedicated Flash Memory Programmer Communication (UART)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit						
Transfer rate		During serial programming	115,200		1,000,000	bps						

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

3.10 Timing of Entry to Flash Memory Programming Modes

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset are released before external release			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset are released before external release	10			μS
Time to hold the TOOL0 pin at the low level after the external reset is released	tHD POR and LVD reset are released before external release		1			ms
(excluding the processing time of the firmware to control the flash memory)						

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - $t_{\text{su:}}$ Time to release the external reset after the TOOL0 pin is set to the low level
 - the: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

4. PACKAGE DRAWINGS

4.1 20-pin products

R5F1026AASP, R5F10269ASP, R5F10268ASP, R5F10267ASP, R5F10266ASP R5F1036AASP, R5F10369ASP, R5F10368ASP, R5F10367ASP, R5F10366ASP R5F1026ADSP, R5F10269DSP, R5F10268DSP, R5F10267DSP, R5F10266DSP R5F1036ADSP, R5F10369DSP, R5F10368DSP, R5F10367DSP, R5F10366DSP R5F1026AGSP, R5F10269GSP, R5F10268GSP, R5F10267GSP, R5F10266GSP

<R>

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]	
P-LSSOP20-4.4x6.5-0.65	PLSP0020JB-A	P20MA-65-NAA-1	0.1	

 detail of lead end

	(UNIT:mm)
ITEM	DIMENSIONS
D	6.50±0.10
E	4.40±0.10
HE	6.40±0.20
А	1.45 MAX.
A1	0.10±0.10
A2	1.15
е	0.65±0.12
bp	0.22 + 0.10 - 0.05
С	0.15 + 0.05 - 0.02
L	0.50±0.20
У	0.10
θ	0° to 10°

©2012 Renesas Electronics Corporation. All rights reserved.

1.Dimensions "%1" and "%2" do not include mold flash.

2.Dimension "X3" does not include trim offset.

<R>

4.3 30-pin products

R5F102AAASP, R5F102A9ASP, R5F102A8ASP, R5F102A7ASP R5F103AAASP, R5F103A9ASP, R5F103A8ASP, R5F103A7ASP R5F102AADSP, R5F102A9DSP, R5F102A8DSP, R5F102A7DSP R5F103AADSP, R5F103A9DSP, R5F103A8DSP, R5F103A7DSP R5F102AAGSP, R5F102A9GSP, R5F102A8GSP, R5F102A7GSP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP30-0300-0.65	PLSP0030JB-B	S30MC-65-5A4-3	0.18

NOTE

DI⊕

MM

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
А	9.85±0.15
В	0.45 MAX.
С	0.65 (T.P.)
D	$0.24^{+0.08}_{-0.07}$
E	0.1±0.05
F	1.3±0.1
G	1.2
Н	8.1±0.2
I	6.1±0.2
J	1.0±0.2
К	0.17±0.03
L	0.5
М	0.13
Ν	0.10
Р	3° ^{+5°} -3°
Т	0.25
U	0.6±0.15

J

©2012 Renesas Electronics Corporation. All rights reserved.

Κ

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.