

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	14
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10267asp-x0

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Code flash	Data flash	RAM	20 pins	24 pins	30 pins
16 KB	2 KB	2 KB	_	—	R5F102AA
	_		_	—	R5F103AA
	2 KB	1.5 KB	R5F1026A Note 1	R5F1027A ^{Note 1}	
	_		R5F1036A Note 1	R5F1037A Note 1	
12 KB	2KB	1 KB	R5F10269 Note 1	R5F10279 Note 1	R5F102A9
	_		R5F10369 Note 1	R5F10379 Note 1	R5F103A9
8 KB	2 KB	768 B	R5F10268 Note 1	R5F10278 Note 1	R5F102A8
	—		R5F10368 Note 1	R5F10378 Note 1	R5F103A8
4 KB	2KB	512 B	R5F10267	R5F10277	R5F102A7
	_		R5F10367	R5F10377	R5F103A7
2 KB	2 KB	256 B	R5F10266 Note 2		
	—		R5F10366 Note 2	—	

O ROM, RAM capacities

Notes 1. This is 640 bytes when the self-programming function or data flash function is used. (For details, see CHAPTER 3 CPU ARCHITECTURE.)

2. The self-programming function cannot be used for R5F10266 and R5F10366.

Caution When the flash memory is rewritten via a user program, the code flash area and RAM area are used because each library is used. When using the library, refer to RL78 Family Flash Self Programming Library Type01 User's Manual and RL78 Family Data Flash Library Type04 User's Manual.

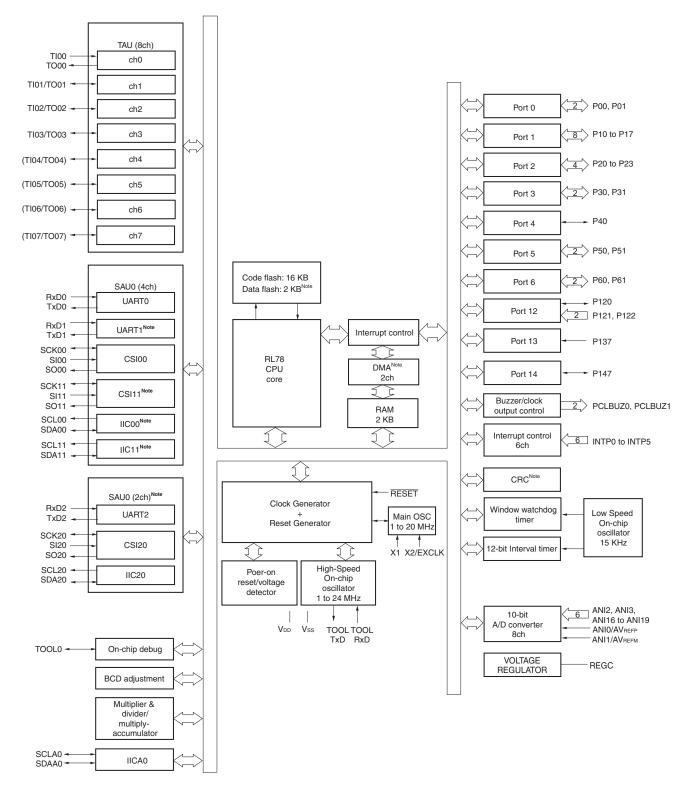
1.3.2 On-chip oscillator characteristics

(1) High-speed on-chip oscillator oscillation frequency of the R5F102 products

Oscillator	Condition	MIN	MAX	Unit
High-speed on-chip	T _A = -20 to +85 °C	-1.0	+1.0	%
oscillator oscillation	T _A = -40 to -20 °C	-1.5	+1.5	
frequency accuracy	T _A = +85 to +105 °C	-2.0	+2.0	

(2) High-speed on-chip oscillator oscillation frequency of the R5F103 products

Oscillator	Condition	MIN	MAX	Unit
High-speed on-chip	T _A = -40 to + 85 °C	-5.0	+5.0	%
oscillator oscillation				
frequency accuracy				


1.3.3 Peripheral Functions

The following are differences in peripheral functions between the R5F102 products and the R5F103 products.

	_			R5F103	product	
RL78/G12	20, 24 pin	30 pin product	20, 24 pin	30 pin		
		product		product	product	
Serial interface	UART	1 channel	3 channels	1 channel		
	CSI	2 channels	3 channels	1 channel		
	Simplified I ² C	2 channels	3 channels	None		
DMA function		2 channels		None		
Safety function	CRC operation	Yes		None		
	RAM guard	Yes		None		
	SFR guard	Yes		None		

1.6.3 30-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR).

2.2 Oscillator Characteristics

2.2.1 X1 oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator /	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal oscillator	$1.8~V \leq V_{\text{DD}} < 2.7~V$	1.0		8.0	

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- **Remark** When using the X1 oscillator, refer to **5.4 System Clock Oscillator**.

2.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Oscillators	Parameters	Conditions		MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		24	MHz
High-speed on-chip oscillator		R5F102 products	$T_A = -20 \text{ to } +85^{\circ}\text{C}$	-1.0		+1.0	%
clock frequency accuracy			$T_A = -40$ to $-20^{\circ}C$	-1.5		+1.5	%
		R5F103 products		-5.0		+5.0	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H) and bits 0 to 2 of HOCODIV register.

2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

(2) 30-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit							
Supply	DD2 Note 2	HALT	HS (High-speed	$f_{IH} = 24 \text{ MHz}^{Note 4}$	V _{DD} = 5.0 V		440	1280	μA							
current Note 1		mode	main) mode ^{Note6}		V _{DD} = 3.0 V		440	1280								
				$f_{IH} = 16 \text{ MHz}^{Note 4}$	$V_{DD} = 5.0 V$		400	1000	μA							
					$V_{DD} = 3.0 V$		400	1000								
			LS (Low-speed	$f_{\text{IH}} = 8 \text{ MHz}^{\text{Note 4}}$	$V_{DD} = 3.0 V$		260	530	μA							
			main) mode ^{Note6}		$V_{DD} = 2.0 V$		260	530								
			HS (High-speed	$f_{MX} = 20 \text{ MHz}^{Note 3}$,	Square wave input		280	1000	μA							
			main) mode ^{Note6}	$V_{DD} = 5.0 V$	Resonator connection		450	1170								
				$f_{MX} = 20 \text{ MHz}^{Note 3}$,	Square wave input		280	1000	μA							
				$V_{DD} = 3.0 V$	Resonator connection		450	1170								
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		190	600	μA							
		LS (Low-speed	VDD = 3.0 V LS (Low-speed fmx = 8 MHz ^{Note}		$V_{DD} = 5.0 V$	Resonator connection		260	670							
											$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		190	600	μA
						$V_{DD} = 3.0 V$	Resonator connection		260	670						
				```	$f_{MX} = 8 MHz^{Note 3}$ ,	Square wave input		95	330	μA						
			main) mode ^{Note 6}	$V_{DD} = 3.0 V$	Resonator connection		145	380								
				$f_{MX} = 8 MHz^{Note 3}$	Square wave input		95	330	μA							
				$V_{DD} = 2.0 V$	Resonator connection		145	380								
		STOP	$T_{\text{A}} = -40^{\circ}C$				0.18	0.50	μA							
		mode	$T_A = +25^{\circ}C$				0.23	0.50								
			$T_A = +50^{\circ}C$				0.30	1.10								
			$T_A = +70^{\circ}C$				0.46	1.90								
			T _A = +85°C				0.75	3.30								

Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. During HALT instruction execution by flash memory.
- 3. When high-speed on-chip oscillator clock is stopped.
- 4. When high-speed system clock is stopped.
- 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.
- 6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS (High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz

VDD = 2.4 V to 5.5 V @1 MHz to 16 MHz

LS (Low speed main) mode: VDD = 1.8 V to 5.5 V @1 MHz to 8 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
  - 2. fin: high-speed on-chip oscillator clock frequency
  - 3. Except STOP mode, temperature condition of the TYP. value is TA = 25°C.



### (3) Peripheral functions (Common to all products)

### $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed onchip oscillator operating current	FiL Note 1				0.20		μA
12-bit interval timer operating current	ITMKA Notes 1, 2, 3				0.02		μA
Watchdog timer operating current	WDT Notes 1, 2, 4	fı∟ = 15 kHz			0.22		μA
A/D converter	ADC Notes 1, 5	When conversion at	Normal mode, $AV_{REFP} = V_{DD} = 5.0 V$		1.30	1.70	mA
operating current		maximum speed	Low voltage mode, $AV_{REFP} = V_{DD} = 3.0 V$		0.50	0.70	mA
A/D converter reference voltage operating current	ADREF Note 1				75.0		μA
Temperature sensor operating current	TMPS ^{Note 1}				75.0		μA
LVD operating current	LVD Notes 1, 6				0.08		μA
Self- programming operating current	FSP Notes 1, 8				2.00	12.20	mA
BGO operating current	IBGO Notes 1, 7				2.00	12.20	mA
SNOOZE	ISNOZ Note 1	ADC operation	The mode is performed Note 9		0.50	0.60	mA
operating current			The A/D conversion operations are performed, Low voltage mode, $AV_{REFP} = V_{DD} = 3.0 V$		1.20	1.44	mA
		CSI/UART operation			0.70	0.84	mA

Notes 1. Current flowing to the VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and IFIL and ITMKA when the 12-bit interval timer operates.
- 4. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.
- 5. Current flowing only to the A/D converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 6. Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit operates.
- 7. Current flowing only during data flash rewrite.
- 8. Current flowing only during self programming.
- 9. For shift time to the SNOOZE mode, see 17.3.3 SNOOZE mode.

Remarks 1. fil: Low-speed on-chip oscillator clock frequency

**2.** Temperature condition of the TYP. value is  $T_A = 25^{\circ}C$ 



Parameter	Symbol	С	conditions	HS (high- main) M		LS (low-spe Mod	-	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkCY1	tксү1 ≥ 4/fc∟к	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	167		500		ns
			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	250		500		ns
			$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	-		500		ns
SCKp high-/low-level width	tкнı,	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V	tксү1/2–12		tксү1/2-50		ns
	tĸ∟1	$2.7~V \leq V_{\text{DD}} \leq$	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			tксү1/2-50		ns
		$2.4~V \leq V_{\text{DD}} \leq$	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			tксү1/2–50		ns
		$1.8~V \leq V_{\text{DD}} \leq$	5.5 V	-		tксү1/2-50		ns
SIp setup time (to SCKp↑)	tsik1	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V	44		110		ns
Note 1		$2.7~V \leq V_{\text{DD}} \leq$	5.5 V	44		110		ns
		$2.4~V \leq V_{\text{DD}} \leq$	5.5 V	75		110		ns
		$1.8~V \leq V_{\text{DD}} \leq$	5.5 V	-		110		ns
SIp hold time (from SCKp↑) ^{№te 2}	tksi1			19		19		ns
Delay time from SCKp↓ to SOp output ^{№te 3}	tkso1	C = 30 pF ^{Note4}			25		25	ns

## (3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (T_A = -40 to +85°C, 1.8 V $\leq$ V_{DD} $\leq$ 5.5 V, V_{SS} = 0 V)

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to  $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - 4. C is the load capacitance of the SCKp and SOp output lines.
- **Caution** Select the normal input buffer for the SIp pin and the normal output mode for the SOp and SCKp pins by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).
- **Remarks 1.** p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products)
  - 2. fMCK: Serial array unit operation clock frequency
    - (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products.))



- **Remarks 1.** p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products.)
  - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products.))

(5)	During communication at same potential (simplified I ² C mode)
<b>(T</b> ₄	x = -40 to +85°C. 1.8 V < Vpp < 5.5 V. Vss = 0 V)

Parameter	Symbol	Conditions	HS (high-speed	main) Mode	Unit
			LS (low-speed	main) Mode	
			MIN.	MAX.	
SCLr clock frequency	fsc∟	$1.8~V \leq V_{\text{DD}} \leq 5.5~V,$		400 Note 1	kHz
		$C_{b} = 100 \text{ pF},  \text{R}_{b} = 3  \text{k} \Omega$			
		$1.8~V \leq V_{\text{DD}} < 2.7~V,$		300 Note 1	kHz
		$C_b$ = 100 pF, $R_b$ = 5 k $\Omega$			
Hold time when SCLr = "L"	t∟ow	$1.8~V \leq V_{\text{DD}} \leq 5.5~V,$	1150		ns
		$C_{b}=100 \text{ pF},  \text{R}_{b}=3  \text{k}\Omega$			
		$1.8~V \leq V_{\text{DD}} < 2.7~V,$	1550		ns
		$C_b$ = 100 pF, $R_b$ = 5 k $\Omega$			
Hold time when SCLr = "H"	tніgн	$1.8~V \leq V_{\text{DD}} \leq 5.5~V,$	1150		ns
		$C_{b}=100 \text{ pF},  \text{R}_{b}=3  \text{k}\Omega$			
		$1.8~V \leq V_{\text{DD}} < 2.7~V,$	1550		ns
		$C_b$ = 100 pF, $R_b$ = 5 k $\Omega$			
Data setup time (reception)	tsu:dat	$1.8~V \leq V_{\text{DD}} \leq 5.5~V,$	1/fмск + 145 Note 2		ns
		$C_{b}=100 \text{ pF},  \text{R}_{b}=3  \text{k}\Omega$			
		$1.8~V \leq V_{\text{DD}} < 2.7~V,$	1/fмск + 230 Note 2		ns
		$C_b$ = 100 pF, $R_b$ = 5 k $\Omega$			
Data hold time (transmission)	thd:dat	$1.8~V \leq V_{\text{DD}} \leq 5.5~V,$	0	355	ns
		$C_{b}=100 \text{ pF},  \text{R}_{b}=3  \text{k}\Omega$			
		$1.8~V \leq V_{\text{DD}} < 2.7~V,$	0	405	ns
		$C_b = 100 \text{ pF}, \text{R}_b = 5 \text{ k}\Omega$			

Notes 1. The value must also be equal to or less than  $f_{MCK}/4$ .

2. Set tsu:DAT so that it will not exceed the hold time when SCLr = "L" or SCLr = "H".

Caution Select the N-ch open drain output (VDD tolerance) mode for SDAr by using port output mode register h (POMh).

(Remarks are listed on the next page.)



Parameter Symbol			Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
					MIN.	MAX.	MIN.	MAX.	
Transfer rate ^{№0te4}		Reception	$4.0 V \le V_{DD} \le 5.5 V$ , $2.7 V \le V_b \le 4.0 V$			fмск/6 Note1		fмск/6 Note1	bps
			Theor	retical value of the maximum ier rate f _{CLK}		4.0		1.3	Mbps
			$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \\ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V \end{array}$			fмск/6 Note1		fмск/6 Note1	bps
		transf	retical value of the maximum er rate f _{CLK} ^{Note3}		4.0		1.3	Mbps	
		$\label{eq:VDD} \begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$			fмск/6 Notes1, 2		fмск/6 Notes1, 2	bps	
	transf	retical value of the maximum er rate f _{CLK} ^{Note3}		4.0		1.3	Mbps		
		Transmission	$4.0 V \le V_{DD} \le 5.5 V$ , $2.7 V \le V_b \le 4.0 V$			Note4		Note4	bps
	Theor transf	retical value of the maximum er rate 50 pF, $R_b = 1.4 \text{ k}\Omega$ , $V_b = 2.7 \text{ V}$		2.8 Note5		2.8 Note5	Mbps		
			$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \\ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \end{array}$			Note6		Note6	bps
	Theor transf	retical value of the maximum er rate $50 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega, \text{ V}_{\text{b}} = 2.3 \text{ V}$		1.2 Note7		1.2 Note7	Mbps		
		$\label{eq:VDD} \begin{array}{l} 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \\ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V \end{array}$			Notes 2, 8		Notes 2, 8	bps	
			transf	retical value of the maximum er rate 50 pF, $R_b = 5.5 \text{ k}\Omega$ , $V_b = 1.6 \text{ V}$		0.43 Note9		0.43 Note9	Mbps

## (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) ( $T_A = -40$ to $+85^{\circ}$ C, 1.8 V $\leq$ V_{DD} $\leq$ 5.5 V, V_{SS} = 0 V)

**Notes 1.** Transfer rate in the SNOOZE mode is 4800 bps only.

- $\textbf{2.} \quad \textbf{Use it with } V_{\text{DD}} \geq V_{\text{b}}.$
- 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are: HS (high-speed main) mode: 24 MHz (2.7 V  $\leq$  V_{DD}  $\leq$  5.5 V)

16 MHz (2.4 V 
$$\leq$$
 V_{DD}  $\leq$  5.5 V)

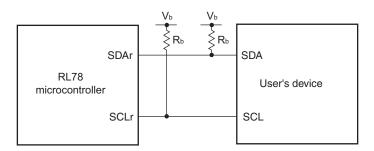
LS (low-speed main) mode: 8 MHz (1.8 V  $\leq$  V_DD  $\leq$  5.5 V)

**4.** The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate.

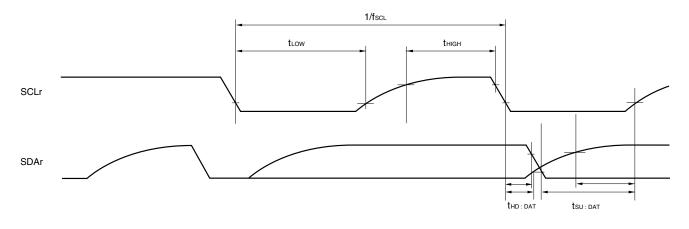
Expression for calculating the transfer rate when 4.0 V  $\leq$  V_DD  $\leq$  5.5 V and 2.7 V  $\leq$  V_b  $\leq$  4.0 V

Maximum transfer rate =

$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]


Baud rate error (theoretical value) =

 $\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}$   $(\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits} \times 100 [\%]$ 


* This value is the theoretical value of the relative difference between the transmission and reception sides.



### Simplified I²C mode connection diagram (during communication at different potential)



### Simplified I²C mode serial transfer timing (during communication at different potential)



- **Remarks 1.** R_b [Ω]: Communication line (SDAr, SCLr) pull-up resistance, C_b [F]: Communication line (SDAr, SCLr) load capacitance, V_b [V]: Communication line voltage
  - **2.** r: IIC Number (r = 00, 20)
  - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
    m: Unit number (m = 0,1), n: Channel number (n = 0))
  - 4. Simplified  $l^2$ C mode is supported only by the R5F102 products.

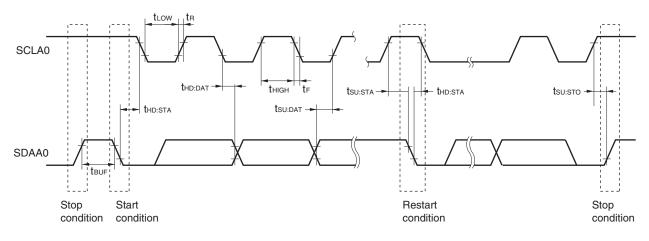


### 2.5.2 Serial interface IICA

Parameter	Symbol	Conditions	HS	HS (high-speed main) mode LS (low-speed main) mode			
			LS				
			Standa	rd Mode	Fast Mode		
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode: fclk≥ 3.5 MHz			0	400	kHz
		Normal mode: fcLK≥ 1 MHz	0	100			kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μS
Hold time ^{Note 1}	thd:sta		4.0		0.6		μS
Hold time when SCLA0 = "L"	tLOW		4.7		1.3		μs
Hold time when SCLA0 = "H"	tніgн		4.0		0.6		μs
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission) ^{Note 2}	thd:dat		0	3.45	0	0.9	μs
Setup time of stop condition	tsu:sto		4.0		0.6		μs
Bus-free time	<b>t</b> BUF		4.7		1.3		μs

### $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

<R>


The first clock pulse is generated after this period when the start/restart condition is detected. Notes 1.

2. The maximum value (MAX.) of thD:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution Only in the 30-pin products, the values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Normal mode:	$C_b = 400 \text{ pF}, \text{ Rb} = 2.7 \text{ k}\Omega$
Fast mode:	$C_b$ = 320 pF, Rb = 1.1 k $\Omega$

IICA serial transfer timing





### 2.6 Analog Characteristics

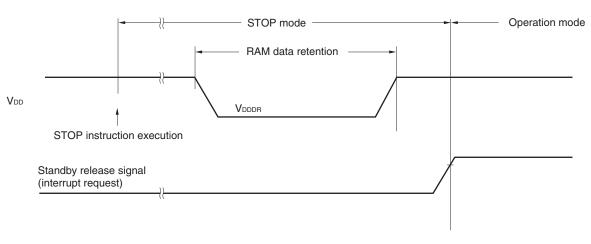
### 2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Input channel	Reference Voltage						
	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = VDD Reference voltage (-) = Vss	Reference voltage (+) = VBGR Reference voltage (-) = AVREFM				
ANI0 to ANI3	Refer to 28.6.1 (1).	Refer to <b>28.6.1 (3)</b> .	Refer to 28.6.1 (4).				
ANI16 to ANI22	Refer to 28.6.1 (2).						
Internal reference voltage	Refer to 28.6.1 (1).		-				
Temperature sensor output voltage							

(1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI2, ANI3, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{VDD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{AV}_{\text{REFP}}, \text{ Reference voltage (-)} = \text{AV}_{\text{REFM}} = 0 \text{ V})$ 


Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution			1.2	±3.5	LSB
		$AV_{REFP} = V_{DD}^{Note 3}$			1.2	$\pm 7.0^{\text{Note 4}}$	LSB
Conversion time	<b>t</b> CONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI2, ANI3	$2.7~V \leq V\text{dd} \leq 5.5~V$	3.1875		39	μS
			$1.8~V \leq V\text{dd} \leq 5.5~V$	17		39	μS
				57		95	μS
		10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: Internal	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μS
		reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±0.25	%FSR
		AVREFP = VDD				±0.50 ^{Note 4}	%FSR
Full-scale error ^{Notes 1, 2}	EFS	10-bit resolution				±0.25	%FSR
		$AV_{REFP} = V_{DD}^{Note 3}$				$\pm 0.50^{\text{Note 4}}$	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution				±2.5	LSB
		AVREFP = VDD Note 3			$\pm 5.0^{\text{Note 4}}$	LSB	
Differential linearity error	DLE	10-bit resolution				±1.5	LSB
Note 1		$AV_{REFP} = V_{DD}^{Note 3}$				$\pm 2.0^{\text{Note 4}}$	LSB
Analog input voltage	VAIN	ANI2, ANI3		0		AVREFP	V
		Internal reference voltage (2.4 V $\leq$ VDD $\leq$ 5.5 V, HS	e (high-speed main) mode)		VBGR Note 5		V
		Temperature sensor outp (2.4 V $\leq$ VDD $\leq$ 5.5 V, HS	out voltage (high-speed main) mode)		VTMPS25 Note :	5	V



#### <R> 2.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$						
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vdddr		1.46 ^{Note}		5.5	V

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.



### 2.8 Flash Memory Programming Characteristics

<r></r>	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	System clock frequency	fclĸ		1		24	MHz
	Code flash memory rewritable times	Cerwr	Retained for 20 years	1,000			Times
	Notes 1, 2, 3		$T_A = 85^{\circ}C$				
	Data flash memory rewritable times		Retained for 1 year		1,000,000		
	Notes 1, 2, 3		$T_A = 25^{\circ}C$				
			Retained for 5 years	100,000			
			$T_A = 85^{\circ}C$				
			Retained for 20 years	10,000			
			$T_A = 85^{\circ}C$				

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.



# <R> 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS $T_A = -40$ to +105°C)

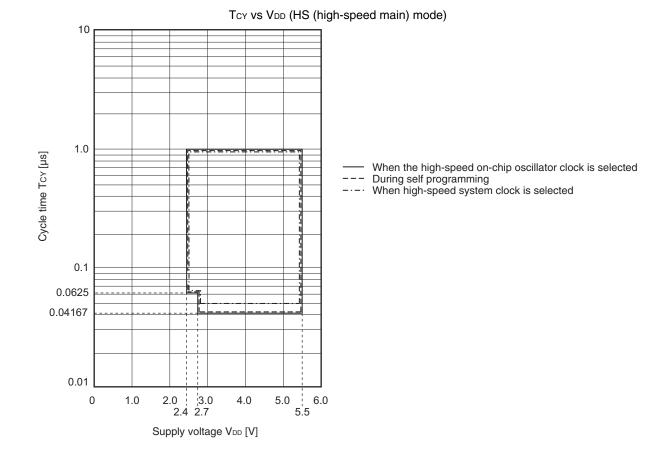
<R> This chapter describes the following electrical specifications.

Target products G: Industrial applications  $T_A = -40$  to  $+105^{\circ}C$ 

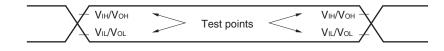
<R> R5F102xxGxx

- **Cautions 1.** The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
  - 2. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product.
  - **3.** Please contact Renesas Electronics sales office for derating of operation under  $T_A = +85^{\circ}C$  to  $+105^{\circ}C$ . Derating is the systematic reduction of load for the sake of improved reliability.

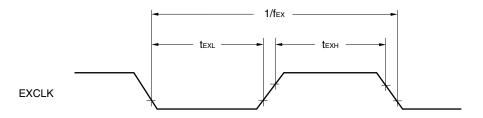
## Remark When the RL78 microcontroller is used in the range of T_A = -40 to +85 °C, see CHAPTER 28 <R> ELECTRICAL SPECIFICATIONS (A: T_A = -40 to +85 °C).


There are following differences between the products "G: Industrial applications ( $T_A = -40$  to  $+105^{\circ}C$ )" and the products "A: Consumer applications, and D: Industrial applications".

Parameter	Арр	lication
	A: Consumer applications, D: Industrial applications	G: Industrial applications
Operating ambient temperature	T _A = -40 to +85°C	T _A = -40 to +105°C
Operating mode	HS (high-speed main) mode:	HS (high-speed main) mode only:
Operating voltage range	$2.7~V \leq V_{\text{DD}} \leq 5.5~V@1~MHz$ to 24 MHz	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$ @ 1 MHz to 24 MHz
	$2.4~V \leq V_{\text{DD}} \leq 5.5~V@1~\text{MHz}$ to 16 MHz	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$ @1 MHz to 16 MHz
	LS (low-speed main) mode:	
	1.8 V $\leq$ V_{DD} $\leq$ 5.5 V@1 MHz to 8 MHz	
High-speed on-chip oscillator clock	R5F102 products, 1.8 V $\leq$ V_DD $\leq$ 5.5 V:	R5F102 products, 2.4 V $\leq$ V _{DD} $\leq$ 5.5 V:
accuracy	±1.0%@ T _A = -20 to +85°C	±2.0%@ T _A = +85 to +105°C
	$\pm 1.5\%$ @ T _A = -40 to -20°C	±1.0%@ T _A = -20 to +85°C
	R5F103 products, 1.8 V $\leq$ V_DD $\leq$ 5.5 V:	±1.5% @ T _A = -40 to -20°C
	±5.0%@ T _A = -40 to +85°C	
Serial array unit	UART	UART
	CSI: fcLK/2 (supporting 12 Mbps), fcLK/4	CSI: fclk/4
	Simplified I ² C communication	Simplified I ² C communication
Voltage detector	Rise detection voltage: 1.88 V to 4.06 V	Rise detection voltage: 2.61 V to 4.06 V
	(12 levels)	(8 levels)
	Fall detection voltage: 1.84 V to 3.98 V	Fall detection voltage: 2.55 V to 3.98 V
	(12 levels)	(8 levels)


Remark The electrical characteristics of the products G: Industrial applications (T_A = -40 to +105°C) are different from those of the products "A: Consumer applications, and D: Industrial applications". For details, refer to 29.1 to 29.10.




### Minimum Instruction Execution Time during Main System Clock Operation



### **AC Timing Test Point**

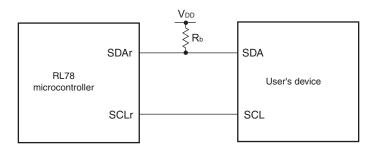


### External Main System Clock Timing

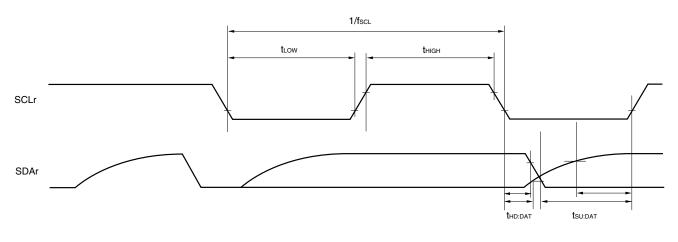




Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit				
			MIN.	MAX.					
SCLr clock frequency	fsc∟	$C_{\text{b}} = 100 \text{ pF},  \text{R}_{\text{b}} = 3  \text{k} \Omega$		100 Note 1	kHz				
Hold time when SCLr = "L"	tLOW	$C_b$ = 100 pF, $R_b$ = 3 k $\Omega$	4600		ns				
Hold time when SCLr = "H"	tніgн	$C_{\rm b}=100~pF,~R_{\rm b}=3~k\Omega$	4600		ns				
Data setup time (reception)	tsu:dat	$C_{\rm b}=100~pF,~R_{\rm b}=3~k\Omega$	1/fмск + 580 ^{Note 2}		ns				
Data hold time (transmission)	thd:dat	$C_b = 100 \text{ pF}, \text{ R}_b = 3 \text{ k}\Omega$	0	1420	ns				


### (4) During communication at same potential (simplified I²C mode)

### $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$


Notes 1. The value must also be equal to or less than fmck/4.

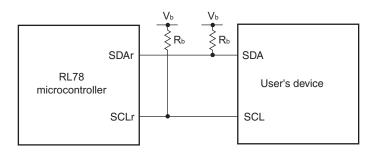
- Set tsu:DAT so that it will not exceed the hold time when SCLr = "L" or SCLr = "H". 2.
- Caution Select the N-ch open drain output (VDD tolerance) mode for SDAr by using port output mode register h (POMh).

Simplified I²C mode connection diagram (during communication at same potential)

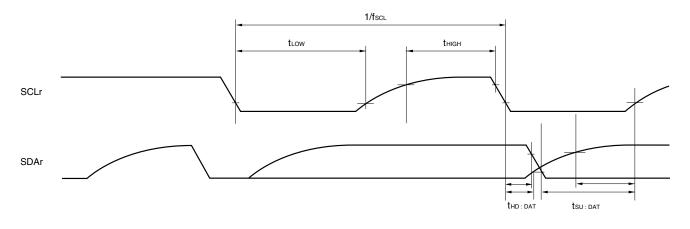


### Simplified I²C mode serial transfer timing (during communication at same potential)




- **Remarks 1.**  $R_b$  [ $\Omega$ ]:Communication line (SDAr) pull-up resistance Cb [F]: Communication line (SCLr, SDAr) load capacitance
  - 2. r: IIC number (r = 00, 01, 11, 20), h: = POM number (h = 0, 1, 4, 5)

3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).


m: Unit number (m = 0, 1), n: Channel number (0, 1, 3)



### Simplified I²C mode connection diagram (during communication at different potential)



### Simplified I²C mode serial transfer timing (during communication at different potential)



- Remarks 1. Rb [Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb [F]: Communication line (SDAr, SCLr) load capacitance, Vb [V]: Communication line voltage
  - **2.** r: IIC Number (r = 00, 20)
  - 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number (m = 0,1), n: Channel number (n = 0))



## (4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AV_{REFM} (ADREFM = 1), target pin: ANI0, ANI2, ANI3, and ANI16 to ANI22

(T_A = -40 to +105°C, 2.4 V  $\leq$  V_{DD}  $\leq$  5.5 V, V_{SS} = 0 V, Reference voltage (+) = V_{BGR}^{Note 3}, Reference voltage (-) = AV_{REFM}^{Note 4} = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		bit
Conversion time	tCONV	8-bit resolution	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	8-bit resolution			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution			±1.0	LSB
Analog input voltage	VAIN		0		$V_{\text{BGR}}{}^{\text{Note 3}}$	V

**Notes 1.** Excludes quantization error ( $\pm 1/2$  LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

### 3. Refer to 29.6.2 Temperature sensor/internal reference voltage characteristics.

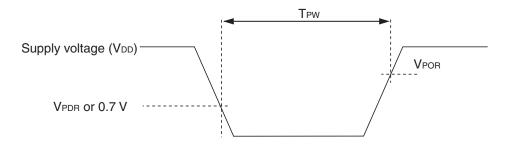
4. When reference voltage (-) = Vss, the MAX. values are as follows.

Zero-scale error: Add  $\pm 0.35\%$ FSR to the MAX. value when reference voltage (–) = AV_{REFM}. Integral linearity error: Add  $\pm 0.5$  LSB to the MAX. value when reference voltage (–) = AV_{REFM}. Differential linearity error: Add  $\pm 0.2$  LSB to the MAX. value when reference voltage (–) = AV_{REFM}.



### 3.6.2 Temperature sensor/internal reference voltage characteristics

		/ <b>\                              </b>				
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.50	V
Temperature coefficient	Fvtmps	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tамр		5			μs


### (T_A = -40 to $+105^{\circ}$ C, 2.4 V $\leq$ V_{DD} $\leq$ 5.5 V, V_{SS} = 0 V, HS (high-speed main) mode

### 3.6.3 POR circuit characteristics

### $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.45	1.51	1.57	V
	VPDR	Power supply fall time	1.44	1.50	1.56	V
Minimum pulse width Note	TPW		300			μs

**Note** Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).





Rising reset release voltage

Falling interrupt voltage

MAX.

2.86

3.03

2.97

3.14

3.07

4.22

4.13

3.90

3.83

4.06

3.98

Unit

v

V

V

v

V

V

٧

### LVD detection voltage of interrupt & reset mode

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, V_{PDR} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$											
	Parameter	Symbol	Conditions				TYP.				
Interrupt and reset	VLVDD0	VPOC2, VPOC1, VPOC1 = 0, 1, 1, falling reset voltage				2.75					
	mode	VLVDD1		LVIS1, LVIS0 = 1, 0	Rising reset release voltage	2.81	2.92				
					Falling interrupt voltage	2.75	2.86				
		VLVDD2		LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.90	3.02				
					Falling interrupt voltage	2.85	2.96				

LVIS1, LVIS0 = 0, 0

### 3.6.5 Power supply voltage rising slope characteristics

### $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

VLVDD3

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

**Caution** Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 29.4 AC Characteristics.

