

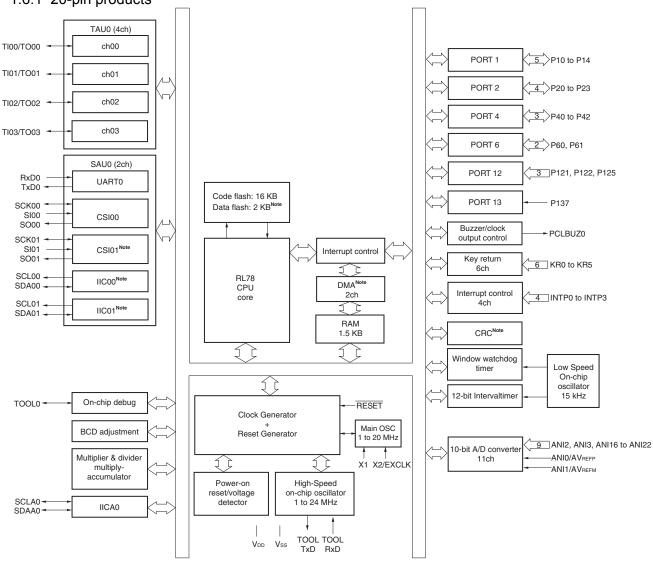
Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

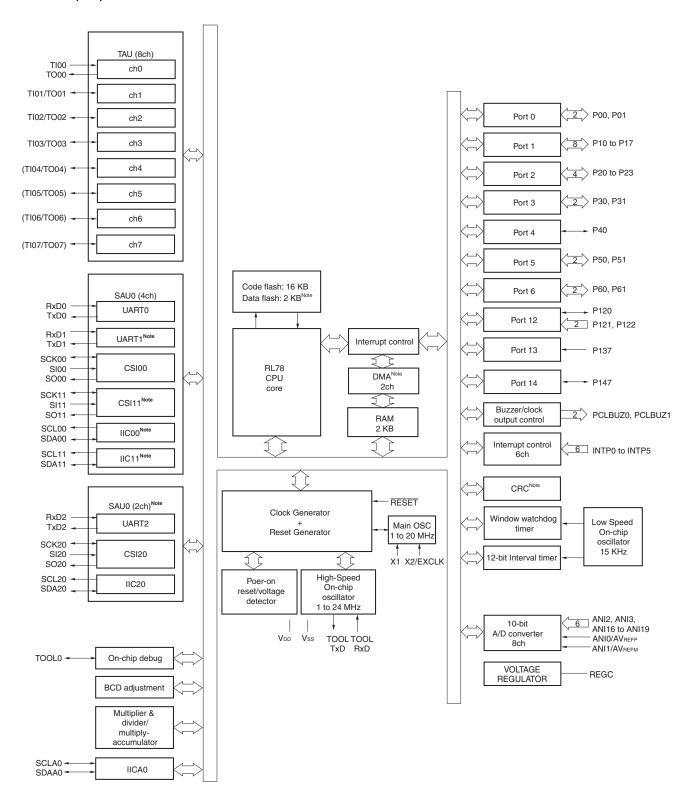
Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	14
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10268asp-v0


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RL78/G12 1. OUTLINE

1.6 Block Diagram


1.6.1 20-pin products

Note Provided only in the R5F102 products.

RL78/G12 1. OUTLINE

1.6.3 30-pin products

Note Provided only in the R5F102 products.

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See **Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR)**.

2.2 Oscillator Characteristics

2.2.1 X1 oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator /	$2.7~V \leq V_{DD} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal oscillator	1.8 V ≤ V _{DD} < 2.7 V	1.0		8.0	

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator, refer to 5.4 System Clock Oscillator.

2.2.2 On-chip oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Oscillators	Parameters	Conditions		MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		24	MHz
High-speed on-chip oscillator		R5F102 products	$T_A = -20 \text{ to } +85^{\circ}\text{C}$	-1.0		+1.0	%
clock frequency accuracy			$T_A = -40 \text{ to } -20^{\circ}\text{C}$	-1.5		+1.5	%
		R5F103 products		-5.0		+5.0	%
Low-speed on-chip oscillator clock frequency	fıL				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H) and bits 0 to 2 of HOCODIV register.

2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

 $(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le VDD \le 5.5 \text{ V}, Vss = 0 \text{ V})$

(3/4)

•		, ,					
Parameter	Symbol	Condition	s	MIN.	TYP.	MAX.	Unit
Input voltage, high	V _{IH1}	Normal input buffer		0.8V _{DD}		V _{DD}	٧
		20-, 24-pin products: P00 to P0 P40 to P42	20-, 24-pin products: P00 to P03 ^{Note 2} , P10 to P14, P40 to P42				
		30-pin products: P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147					
	V _{IH2}	TTL input buffer	$4.0~V \leq V_{DD} \leq 5.5~V$	2.2		V _{DD}	٧
		20-, 24-pin products: P10, P11	$3.3~V \leq V_{DD} < 4.0~V$	2.0		V _{DD}	٧
		30-pin products: P01, P10, P11, P13 to P17	1.8 V ≤ V _{DD} < 3.3 V	1.5		V _{DD}	V
	VIH3	P20 to P23		0.7V _{DD}		V _{DD}	٧
	V _{IH4}	P60, P61	0.7V _{DD}		6.0	٧	
	V _{IH5}	P121, P122, P125 ^{Note 1} , P137, I	0.8V _{DD}		V _{DD}	٧	
Input voltage, low	VIL1	Normal input buffer		0		0.2V _{DD}	٧
		20-, 24-pin products: P00 to P0 P40 to P42	20-, 24-pin products: P00 to P03 ^{Note 2} , P10 to P14, P40 to P42				
		30-pin products: P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147					
	V _{IL2}	TTL input buffer	$4.0~V \leq V_{DD} \leq 5.5~V$	0		0.8	>
		20-, 24-pin products: P10, P11	$3.3~V \leq V_{DD} < 4.0~V$	0		0.5	٧
		30-pin products: P01, P10, P11, P13 to P17	$1.8~\textrm{V} \leq \textrm{V}_\textrm{DD} < 3.3~\textrm{V}$	0		0.32	V
	V _{IL3}	P20 to P23		0		0.3V _{DD}	٧
	V _{IL4}	P60, P61		0		0.3V _{DD}	٧
	V _{IL5}	P121, P122, P125 ^{Note 1} , P137, I	EXCLK, RESET	0		0.2V _{DD}	٧
Output voltage, high	V _{OH1}	20-, 24-pin products: P00 to P03 ^{Note 2} , P10 to P14,	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -10.0 \text{ mA}$	V _{DD} -1.5			V
		P40 to P42 30-pin products:	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -3.0 \text{ mA}$	V _{DD} -0.7			V
		P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120,	$2.7~V \leq V_{DD} \leq 5.5~V,$ $I_{OH1} = -2.0~mA$	V _{DD} -0.6			V
		P147	$1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -1.5 \text{ mA}$	V _{DD} -0.5			V
	V _{OH2}	P20 to P23	Iон₂ = −100 μA	V _{DD} -0.5			V

Notes 1. 20, 24-pin products only.

2. 24-pin products only.

Caution The maximum value of V_{IH} of pins P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24-pin products, and P00, P10 to P15, P17, and P50 for 30-pin products is V_{DD} even in N-ch open-drain mode. High level is not output in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(1) 20-, 24-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2 Note 2	HALT	HS (High-speed	fin = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		440	1210	μА
current Note 1		mode	main) mode ^{Note 6}		V _{DD} = 3.0 V		440	1210	
				fin = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		400	950	μА
			LS (Low-speed main) mode Note 6 HS (High-speed		V _{DD} = 3.0 V		400	950	
				fih = 8 MHz ^{Note 4}	V _{DD} = 3.0 V		270	542	μА
					V _{DD} = 2.0 V		270	542	
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		280	1000	μА
			main) mode ^{Note 6}	V _{DD} = 5.0 V	Resonator connection		450	1170	
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		280	1000	μА
			V _{DD} = 3.0 V	Resonator connection		450	1170		
			$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		190	590	μ A	
				V _{DD} = 5.0 V	Resonator connection		260	660	
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		190	590	μ A
				$V_{DD} = 3.0 \text{ V}$ $f_{MX} = 8 \text{ MHz}^{\text{Note 3}},$	Resonator connection		260	660	
			LS (Low-speed		Square wave input		110	360	μ A
			main) mode Note 6	V _{DD} = 3.0 V	Resonator connection		150	416	
				$f_{MX} = 8 MHz^{Note 3},$	Square wave input		110	360	μ A
				V _{DD} = 2.0 V	Resonator connection		150	416	
	IDD3 Note 5	STOP	T _A = -40°C				0.19	0.50	μА
		mode	T _A = +25°C				0.24	0.50	
			T _A = +50°C				0.32	0.80	
			T _A = +70°C				0.48	1.20	
			T _A = +85°C				0.74	2.20	

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator clock is stopped.
 - 4. When high-speed system clock is stopped.
 - 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **6.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz

 V_{DD} = 2.4 V to 5.5 V @1 MHz to 16 MHz

LS(Low speed main) mode: VDD = 1.8 V to 5.5 V @1 MHz to 8 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except temperature condition of the TYP. value is $T_A = 25$ °C, other than STOP mode

(2) 30-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/2)

			3 0.0 V, V33 =	/						(1/2			
Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit			
Supply	I _{DD1}	Operating	HS (High-speed	f _{IH} = 24 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		1.5		mA			
current Note 1		mode	main) mode Note 4		operation	V _{DD} = 3.0 V		1.5					
					Normal	V _{DD} = 5.0 V		3.7	5.5	mA			
					operation	V _{DD} = 3.0 V		3.7	5.5				
				f _{IH} = 16 MHz ^{Note 3}		V _{DD} = 5.0 V		2.7	4.0	mA			
						V _{DD} = 3.0 V		2.7	4.0				
			LS (Low-speed	f _{IH} = 8 MHz ^{Note 3}		V _{DD} = 3.0 V		1.2	1.8	mA			
			main) mode Note 4			V _{DD} = 2.0 V		1.2	1.8				
			HS (High-speed	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$		Square wave input		3.0	4.6	mA			
			main) mode Note 4	$V_{DD} = 5.0 \text{ V}$	$V_{DD} = 5.0 \text{ V}$	$de^{Note 4} V_{DD} = 5.0 V$		Resonator connection		3.2	4.8		
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$		Square wave input		3.0	4.6	mA			
				$V_{DD} = 3.0 \text{ V}$	V _{DD} = 3.0 V		Resonator connection		3.2	4.8			
					İ		$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$		Square wave input		1.9	2.7	mA
				$V_{DD} = 5.0 \text{ V}$		Resonator connection		1.9	2.7				
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$		Square wave input		1.9	2.7	mA			
				V _{DD} = 3.0 V		Resonator connection		1.9	2.7				
			LS (Low-speed	$f_{MX} = 8 MHz^{Note 2}$		Square wave input		1.1	1.7	mA			
			main) mode Note 4	V _{DD} = 3.0 V		Resonator connection		1.1	1.7				
				$f_{MX} = 8 MHz^{Note 2}$		Square wave input		1.1	1.7	mA			
				$V_{DD} = 2.0 \text{ V}$		Resonator connection		1.1	1.7				

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator clock is stopped.
 - 3. When high-speed system clock is stopped
 - **4.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode: $V_{DD} = 2.7 \text{ V to } 5.5 \text{ V } @ 1 \text{ MHz to } 24 \text{ MHz}$

V_{DD} = 2.4 V to 5.5 V @1 MHz to 16 MHz

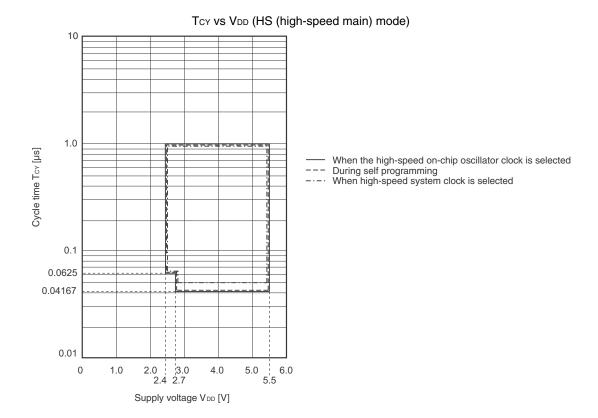
LS(Low speed main) mode: $V_{DD} = 1.8 \text{ V to } 5.5 \text{ V } @ 1 \text{ MHz to } 8 \text{ MHz}$

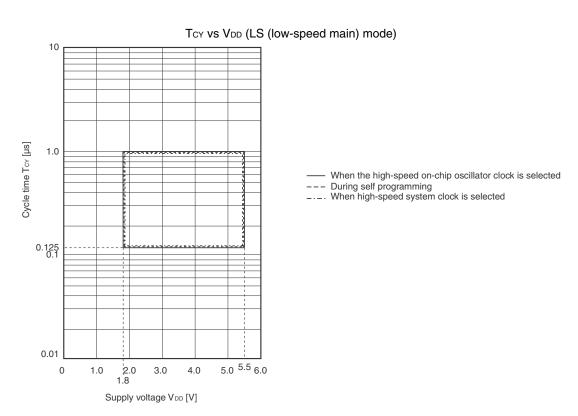
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25$ °C.

(3) Peripheral functions (Common to all products)

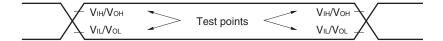
$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed onchip oscillator operating current	FIL Note 1				0.20		μΑ
12-bit interval timer operating current	ÎTMKA Notes 1, 2, 3				0.02		μΑ
Watchdog timer operating current	WDT Notes 1, 2, 4	fıL = 15 kHz			0.22		μΑ
A/D converter	IADC Notes 1, 5	When conversion at	Normal mode, AVREFP = VDD = 5.0 V		1.30	1.70	mA
operating current		maximum speed	Low voltage mode, AV _{REFP} = V _{DD} = 3.0 V		0.50	0.70	mA
A/D converter reference voltage operating current	ADREF Note 1				75.0		μΑ
Temperature sensor operating current	ITMPS Note 1				75.0		μА
LVD operating current	ILVD Notes 1, 6				0.08		μΑ
Self- programming operating current	FSP Notes 1, 8				2.00	12.20	mA
BGO operating current	IBGO Notes 1, 7				2.00	12.20	mA
SNOOZE	ISNOZ Note 1	ADC operation	The mode is performed Note 9		0.50	0.60	mA
operating current			The A/D conversion operations are performed, Low voltage mode, AVREFP = VDD = 3.0 V		1.20	1.44	mA
		CSI/UART operation			0.70	0.84	mA

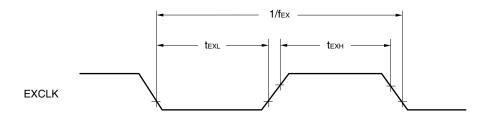

Notes 1. Current flowing to the V_{DD} .

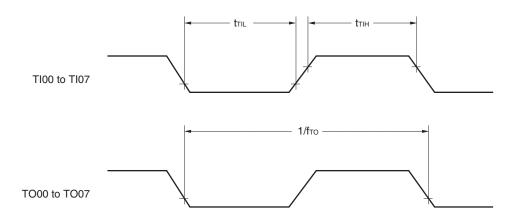

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and IFIL and ITMKA when the 12-bit interval timer operates.
- 4. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.
- **5.** Current flowing only to the A/D converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- **6.** Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit operates.
- 7. Current flowing only during data flash rewrite.
- 8. Current flowing only during self programming.
- 9. For shift time to the SNOOZE mode, see 17.3.3 SNOOZE mode.

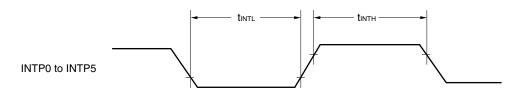
Remarks 1. fil: Low-speed on-chip oscillator clock frequency

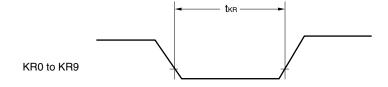

2. Temperature condition of the TYP. value is $T_A = 25$ °C

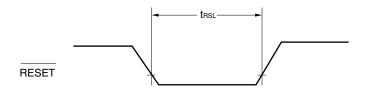
Minimum Instruction Execution Time during Main System Clock Operation



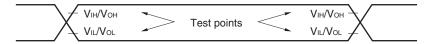

AC Timing Test Point


External Main System Clock Timing


TI/TO Timing


Interrupt Request Input Timing

Key Interrupt Input Timing



RESET Input Timing

2.5 Peripheral Functions Characteristics

AC Timing Test Point

2.5.1 Serial array unit

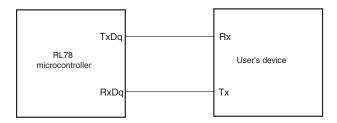
(1) During communication at same potential (UART mode)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

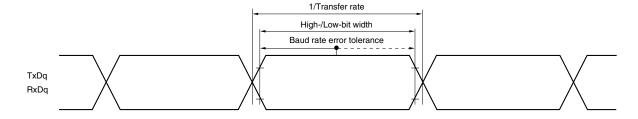
	,	1 = 122 = 616 1, 168 = 6 1,					
Parameter	Symbol	Conditions		h-speed Mode	,	/-speed Mode	Unit
			MIN.	MAX.	MIN.	MAX.	
Transfer rate				fмск/6		fмск/6	bps
Note 1		Theoretical value of the maximum transfer rate $f_{\text{CLK}} = f_{\text{MCK}}^{\text{Note2}}$		4.0		1.3	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:


HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 5.5 V)

16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)


LS (low-speed main) mode: $8 \text{ MHz} (1.8 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V})$

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 2), g: PIM, POM number (g = 0, 1)

2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

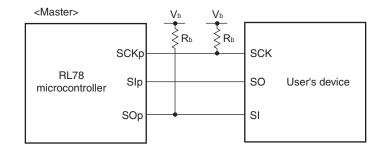
(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) ($T_A = -40$ to +85°C, 1.8 V \leq V_{DD} \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	С	Conditions	` •	HS (high-speed main) Mode		LS (low-speed main) Mode		
				MIN.	MAX.	MIN.	MAX.		
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fcLk	$2.7~V \leq V_{DD} \leq 5.5~V$	167		500		ns	
			$2.4~V \leq V_{DD} \leq 5.5~V$	250		500		ns	
			$1.8~V \leq V_{DD} \leq 5.5~V$	-		500		ns	
SCKp high-/low-level width	tкн1,	$4.0~V \leq V_{DD} \leq$	5.5 V	tксү1/2-12		tkcy1/2-50		ns	
	t _{KL1}	$2.7~V \leq V_{DD} \leq$	5.5 V	tkcy1/2-18		tkcy1/2-50		ns	
		$2.4~V \leq V_{DD} \leq$	5.5 V	tkcy1/2-38		tkcy1/2-50		ns	
		1.8 V ≤ V _{DD} ≤	5.5 V	-		tkcy1/2-50		ns	
SIp setup time (to SCKp↑)	tsıĸı	$4.0~V \leq V_{DD} \leq$	5.5 V	44		110		ns	
Note 1		$2.7 \text{ V} \leq V_{DD} \leq 8$	5.5 V	44		110		ns	
		$2.4~V \leq V_{DD} \leq$	5.5 V	75		110		ns	
		$1.8~V \leq V_{DD} \leq$	5.5 V	-		110		ns	
SIp hold time (from SCKp↑) Note 2	tksıı			19		19		ns	
Delay time from SCKp↓ to SOp output Note 3	tkso1	C = 30 pF Note4			25		25	ns	

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp and SCKp pins by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).

- **Remarks 1.** p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products)
 - 2. fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products.))


(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		h-speed Mode	LS (low-speed main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) Note 1	tsıĸı	$ 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, $ $ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega $	44		110		ns
		$ 2.7 \; V \leq V_{DD} < 4.0 \; V, 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega $	44		110		ns
		$ \begin{aligned} &1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V^{\text{Note 2}}, \\ &C_{b} = 30 \ pF, \ R_{b} = 5.5 \ k\Omega \end{aligned} $	110		110		ns
SIp hold time (from SCKp↓) Note 1	tksii	$ 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, $ $ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega $	19		19		ns
		$ 2.7 \; V \leq V_{DD} < 4.0 \; V, 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega $	19		19		ns
		$\begin{split} 1.8 \ V & \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ C_b & = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$	19		19		ns
Delay time from SCKp↑ to	tkso1	$ 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, $ $ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega $		25		25	ns
SOp output Note 1		$ 2.7 \; V \leq V_{DD} < 4.0 \; V, 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega $		25		25	ns
		$\begin{split} 1.8 \ V & \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ C_b & = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$		25		25	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. Use it with $V_{DD} \ge V_b$.
- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.
- **Remarks 1.** R_b [Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b [F]: Communication line (SCKp, SOp) load capacitance, V_b [V]: Communication line voltage
 - 2. p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

CSI mode connection diagram (during communication at different potential)

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		h-speed Mode	,	v-speed Mode	Unit
			MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$ 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, $ $ C_b = 100 \ pF, \ R_b = 2.8 \ k\Omega $		400 ^{Note1}		300 ^{Note1}	kHz
		$ 2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, $ $ C_{\text{b}} = 100 \text{ pF}, \ R_{\text{b}} = 2.7 \text{ k}\Omega $		400 ^{Note1}		300 ^{Note1}	kHz
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}, \\ C_{\text{b}} = 100 \text{ pF}, \ R_{\text{b}} = 5.5 \text{ k}\Omega$		300 ^{Note1}		300 ^{Note1}	kHz
Hold time when SCLr = "L"	tLOW	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, R_{\text{b}} = 2.8 \text{ k}\Omega$	1150		1550		ns
		$ 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, $ $ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega $	1150		1550		ns
			1550		1550		ns
Hold time when SCLr = "H"	tнідн	$4.0~V \leq V_{DD} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$ $C_b = 100~pF,~R_b = 2.8~k\Omega$	675		610		ns
		$ 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, $ $ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega $	600		610		ns
		$ \begin{aligned} &1.8 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}, \end{aligned}^{\text{Note2}} \\ &C_{\text{b}} = 100 \text{ pF}, \ R_{\text{b}} = 5.5 \text{ k}\Omega \end{aligned} $	610		610		ns
Data setup time (reception)	tsu:dat	$4.0~V \leq V_{DD} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$ $C_b = 100~pF,~R_b = 2.8~k\Omega$	1/fmck + 190 Note3		1/f _{MCK} + 190 _{Note3}		ns
		$2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V,$ $C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega$	1/fmck + 190 Note3		1/fмск + 190 _{Note3}		ns
		$1.8~V \leq V_{DD} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V, \label{eq:vb}$ $C_b = 100~pF,~R_b = 5.5~k\Omega$	1/fмск + 190 Note3		1/f _{MCK} + 190 _{Note3}		ns
Data hold time (transmission)	thd:dat	$4.0~V \leq V_{DD} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$ $C_b = 100~pF,~R_b = 2.8~k\Omega$	0	355	0	355	ns
		$ 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, $ $ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega $	0	355	0	355	ns
		$ \begin{aligned} &1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V, \end{aligned} $ $ &C_{b} = 100 \ pF, \ R_{b} = 5.5 \ k\Omega $	0	405	0	405	ns

- Notes 1. The value must also be equal to or less than fmck/4.
 - 2. Use it with $V_{DD} \ge V_b$.
 - 3. Set tsu:DAT so that it will not exceed the hold time when SCLr = "L" or SCLr = "H".
- Cautions 1. Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
 - 2. IIC01 and IIC11 cannot communicate at different potential.

(Remarks are listed on the next page.)

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - **3.** When $AV_{REFP} < V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.05\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AVREFP = VDD.

- **4.** Values when the conversion time is set to 57 μ s (min.) and 95 μ s (max.).
- 5. Refer to 28.6.2 Temperature sensor/internal reference voltage characteristics.

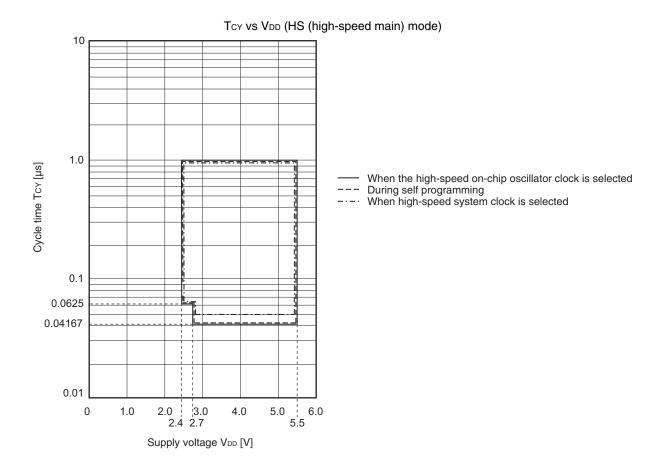
(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI22

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

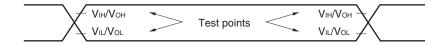
Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error Note 1	AINL	10-bit resolution			1.2	±5.0	LSB
		AVREFP = VDD Note 3			1.2	±8.5 Note 4	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μS
		Target ANI pin: ANI16 to ANI22	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
			$1.8~V \leq V_{DD} \leq 5.5~V$	17		39	μS
				57		95	μS
Zero-scale error Notes 1, 2	EZS	10-bit resolution				±0.35	%FSR
		AVREFP = VDD Note 3				±0.60 Note 4	%FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution				±0.35	%FSR
		AVREFP = VDD Note 3				±0.60 Note 4	%FSR
Integral linearity error Note 1	ILE	10-bit resolution				±3.5	LSB
		AVREFP = VDD Note 3				±6.0 Note 4	LSB
Differential linearity	DLE	10-bit resolution				±2.0	LSB
error ^{Note 1}		AVREFP = VDD Note 3				±2.5 Note 4	LSB
Analog input voltage	VAIN	ANI16 to ANI22		0		AVREFP and VDD	V

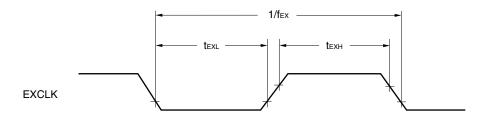
- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - **3.** When $AV_{REFP} \leq V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 4.0 LSB to the MAX, value when AV_{REFP} = V_{DD}.

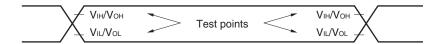

Zero-scale error/Full-scale error: Add $\pm 0.20\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AVREFP = VDD.


4. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).


Minimum Instruction Execution Time during Main System Clock Operation

AC Timing Test Point



External Main System Clock Timing

3.5 Peripheral Functions Characteristics

AC Timing Test Point

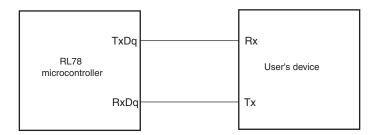
3.5.1 Serial array unit

(1) During communication at same potential (UART mode)

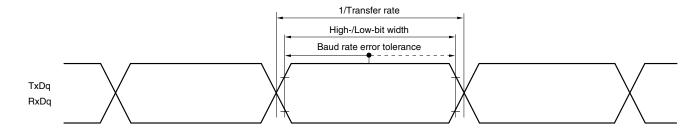
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

	1	1	,	ı		
Parameter	Symbol		Conditions	HS (high-spee	Unit	
				MIN.	MAX.	
Transfer rate					fмск/12	bps
Note 1			Theoretical value of the maximum transfer rate $f_{CLK} = f_{MCK}^{Note2}$		2.0	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.


2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 5.5 V)


16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

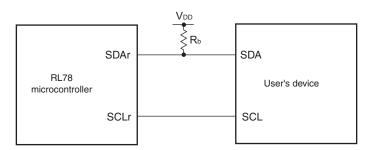
UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 2), g: PIM, POM number (g = 0, 1)

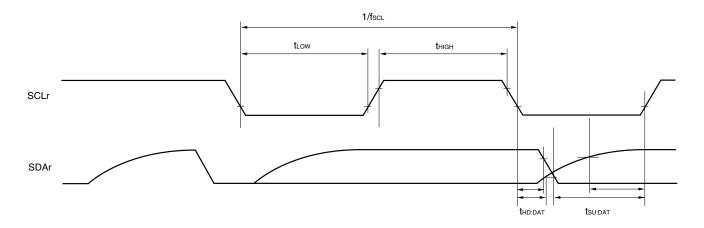
2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

(4) During communication at same potential (simplified I²C mode)


 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
SCLr clock frequency	fscL	$C_b=100~pF,~R_b=3~k\Omega$		100 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$C_b=100~pF,~R_b=3~k\Omega$	4600		ns
Hold time when SCLr = "H"	thigh	$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	4600		ns
Data setup time (reception)	tsu:dat	$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	1/fmck + 580 Note 2		ns
Data hold time (transmission)	thd:dat	$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	0	1420	ns


- Notes 1. The value must also be equal to or less than fmck/4.
 - 2. Set tsu:DAT so that it will not exceed the hold time when SCLr = "L" or SCLr = "H".

Caution Select the N-ch open drain output (V_{DD} tolerance) mode for SDAr by using port output mode register h (POMh).

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** $\mathsf{R}_{\mathsf{b}}\left[\Omega\right]$:Communication line (SDAr) pull-up resistance
 - Cb [F]: Communication line (SCLr, SDAr) load capacitance
 - 2. r: IIC number (r = 00, 01, 11, 20), h: = POM number (h = 0, 1, 4, 5)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 - m: Unit number (m = 0, 1), n: Channel number (0, 1, 3))

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 3** above to calculate the maximum transfer rate under conditions of the customer.
- 5. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq V_{DD} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

$$\label{eq:maximum transfer rate} \text{Maximum transfer rate} = \frac{1}{\{-C_b \times R_b \times \ln{(1-\frac{2.0}{V_b})}\} \times 3} \text{ [bps]}$$

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\}}{\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **6.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 5** above to calculate the maximum transfer rate under conditions of the customer.
- 7. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.4 V \leq VDD < 3.3 V, 1.6 V \leq Vb \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **8.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 7** above to calculate the maximum transfer rate under conditions of the customer.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-speed main) Mode		
			MIN.	MAX.		
SCLr clock frequency	fscL	$ 4.0~V \leq V_{DD} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V, $ $C_b = 100~pF,~R_b = 2.8~k\Omega $		100 ^{Note1}	kHz	
				100 ^{Note1}	kHz	
				100 ^{Note1}	kHz	
Hold time when SCLr = "L"	t.ow	$4.0 \; V \leq V_{DD} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V,$ $C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega$	4600		ns	
			4600		ns	
		$2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V,$ $C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega$	4650		ns	
Hold time when SCLr = "H"	tнівн	$ 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega $	2700		ns	
			2400		ns	
		$2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V,$ $C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega$	1830		ns	
Data setup time (reception)	tsu:dat	$ 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega $	1/fмск + 760 Note3		ns	
			1/f _{MCK} + 760 Note3		ns	
		$2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V,$ $C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega$	1/fмск + 570 ^{Note3}		ns	
Data hold time (transmission)	thd:dat	$ 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega $	0	1420	ns	
		$ 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega $	0	1420	ns	
			0	1215	ns	

- Notes 1. The value must also be equal to or less than fmck/4.
 - 2. Set tsu:DAT so that it will not exceed the hold time when SCLr = "L" or SCLr = "H".
- Cautions 1. Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
 - 2. IIC01 and IIC11 cannot communicate at different potential.

(Remarks are listed on the next page.)

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM (ADREFM = 1), target pin: ANI0, ANI2, ANI3, and ANI16 to ANI22

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = VBGR Note 3, Reference voltage (-) = AVREFM Note 4 = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		bit
Conversion time	tconv	8-bit resolution	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	8-bit resolution			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution			±1.0	LSB
Analog input voltage	VAIN		0		VBGR Note 3	V

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - 3. Refer to 29.6.2 Temperature sensor/internal reference voltage characteristics.
 - **4.** When reference voltage (–) = Vss, the MAX. values are as follows. Zero-scale error: Add ±0.35%FSR to the MAX. value when reference voltage (–) = AV_{REFM}.

Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (–) = AVREFM.

Differential linearity error: Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.