

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	14
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10268asp-v5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

O ROM, RAM capacities

Code flash	Data flash	RAM	20 pins	24 pins	30 pins
16 KB	2 KB	2 KB	_	_	R5F102AA
	_		_	_	R5F103AA
	2 KB	1.5 KB	R5F1026A Note 1	R5F1027A Note 1	_
	_		R5F1036A Note 1	R5F1037A Note 1	_
12 KB	2KB	1 KB	R5F10269 Note 1	R5F10279 Note 1	R5F102A9
	_		R5F10369 Note 1	R5F10379 Note 1	R5F103A9
8 KB	2 KB	768 B	R5F10268 Note 1	R5F10278 Note 1	R5F102A8
	_		R5F10368 Note 1	R5F10378 Note 1	R5F103A8
4 KB	2KB	512 B	R5F10267	R5F10277	R5F102A7
	_		R5F10367	R5F10377	R5F103A7
2 KB	2 KB	256 B	R5F10266 Note 2	_	_
	_		R5F10366 Note 2	_	_

Notes 1. This is 640 bytes when the self-programming function or data flash function is used. (For details, see CHAPTER 3 CPU ARCHITECTURE.)

2. The self-programming function cannot be used for R5F10266 and R5F10366.

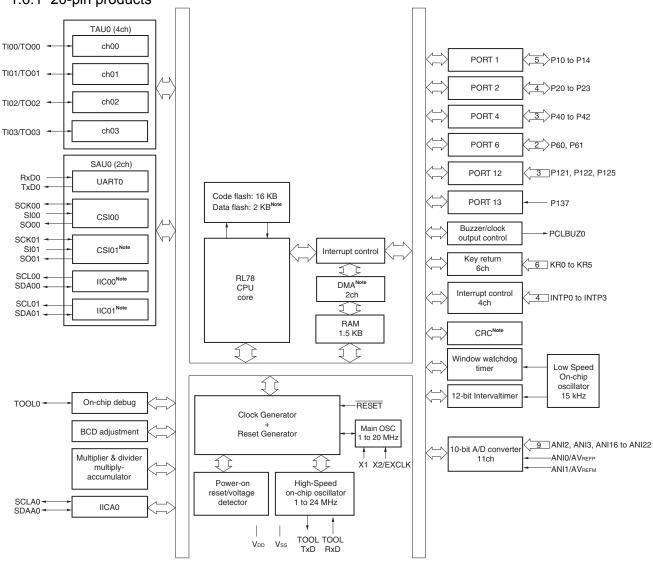
Caution When the flash memory is rewritten via a user program, the code flash area and RAM area are used because each library is used. When using the library, refer to RL78 Family Flash Self Programming Library Type01 User's Manual and RL78 Family Data Flash Library Type04 User's Manual.

1.4.2 24-pin products

<R> • 24-pin plastic HWQFN (4 × 4 mm, 0.5 mm pitch)

Note Provided only in the R5F102 products.

Remarks 1. For pin identification, see 1.5 Pin Identification.


- 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR).
- 3. It is recommended to connect an exposed die pad to Vss.

1.5 Pin Identification

ANI0 to ANI3,		REGC:	Regulator Capacitance
ANI16 to ANI22:	Analog input	RESET:	Reset
AVREFM:	Analog Reference Voltage Minus	RxD0 to RxD2:	Receive Data
AVREFP:	Analog reference voltage plus	SCK00, SCK01, SCK11,	
EXCLK:	External Clock Input	SCK20:	Serial Clock Input/Output
	(Main System Clock)	SCL00, SCL01,	
INTP0 to INTP5	Interrupt Request From Peripheral	SCL11, SCL20, SCLA0:	Serial Clock Input/Output
KR0 to KR9:	Key Return	SDA00, SDA01, SDA11,	
P00 to P03:	Port 0	SDA20, SDAA0:	Serial Data Input/Output
P10 to P17:	Port 1	SI00, SI01, SI11, SI20:	Serial Data Input
P20 to P23:	Port 2	SO00, SO01, SO11,	
P30 to P31:	Port 3	SO20:	Serial Data Output
P40 to P42:	Port 4	TI00 to TI07:	Timer Input
P50, P51:	Port 5	TO00 to TO07:	Timer Output
P60, P61:	Port 6	TOOL0:	Data Input/Output for Tool
P120 to P122, P125:	Port 12	TOOLRxD, TOOLTxD:	Data Input/Output for External
P137:	Port 13		Device
P147:	Port 14	TxD0 to TxD2:	Transmit Data
PCLBUZ0, PCLBUZ1:	Programmable Clock Output/	VDD:	Power supply
	Buzzer Output	Vss:	Ground
		X1, X2:	Crystal Oscillator (Main System Clock)

1.6 Block Diagram

1.6.1 20-pin products

Note Provided only in the R5F102 products.

1.7 Outline of Functions

<R>

This outline describes the function at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

	Item	20-pin		24-pin		30-pin			
		R5F1026x	R5F1036x	R5F1027x	R5F1037x	R5F102Ax	R5F103Ax		
Code flas	h memory	2 to 16 KB Note 1			4 to 1	16 KB			
Data flasi	n memory	2 KB	-	2 KB	=	2 KB	-		
RAM		256 B to	o 1.5 KB	512 B to	1.5 KB	512 B	to 2KB		
Address	space			1 N	МВ				
Main system clock	High-speed system clock	HS (High-spee	ed main) mode :	1 to 20 MHz (V _D 1 to 16 MHz (V _D	system clock inp D = 2.7 to 5.5 V, D = 2.4 to 5.5 V, D = 1.8 to 5.5 V	,			
	High-speed on-chip oscillator clock	HS (High-spee	(High-speed main) mode : 1 to 24 MHz (V_{DD} = 2.7 to 5.5 V), (High-speed main) mode : 1 to 16 MHz (V_{DD} = 2.4 to 5.5 V), (Low-speed main) mode : 1 to 8 MHz (V_{DD} = 1.8 to 5.5 V)						
Low-spee	ed on-chip oscillator clock	15 kHz (TYP)							
General-	ourpose register	(8-bit register × 8) × 4 banks							
Minimum	instruction execution time	0.04167 μ s (High-speed on-chip oscillator clock: f_{H} = 24 MHz operation)							
		0.05 μs (High-speed system clock: f _{MX} = 20 MHz operation)							
Instructio	n set	Data transfer (8/16 bits)							
		Adder and subtractor/logical operation (8/16 bits)							
		Multiplication (8 bits × 8 bits)							
	1	Rotate, barrel shift, and bit manipulation (set, reset, test, and Boolean operation), etc.							
I/O port	Total	1	8	2	2	2	26		
	CMOS I/O	(N-ch (2 D.D. I/O nd voltage]: 4)	(N-ch C	6 D.D. I/O nd voltage]: 5)	(N-ch (21 O.D. I/O nd voltage]: 9)		
	CMOS input	,	4	4	4	;	3		
	N-ch open-drain I/O (6 V tolerance)			2	2				
Timer	16-bit timer		4 cha	nnels		8 cha	nnels		
	Watchdog timer	1 channel							
	12-bit Interval timer			1 cha	annel				
	Timer output	4 channels (PWM outputs: 3 Note 3)				8 channels (PWM outputs: 7 Note 3) Note 2			

Notes 1. The self-programming function cannot be used in the R5F10266 and R5F10366.

- 2. The maximum number of channels when PIOR0 is set to 1.
- 3. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves). (See 6.9.3 Operation as multiple PWM output function.)

Caution When the flash memory is rewritten via a user program, the code flash area and RAM area are used because each library is used. When using the library, refer to RL78 Family Flash Self Programming Library Type01 User's Manual and RL78 Family Data Flash Library Type04 User's Manual.

2.3 DC Characteristics

2.3.1 Pin characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/4)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42				-10.0 Note 2	mA
		30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147					
		20-, 24-pin products:	$4.0~V \leq V_{DD} \leq 5.5~V$			-30.0	mA
		Total of P40 to P42	$2.7~V \leq V_{DD} < 4.0~V$			-6.0	mA
		30-pin products: Total of P00, P01, P40, P120 (When duty ≤ 70% Note 3)	1.8 V ≤ V _{DD} < 2.7 V			-4.5	mA
		20-, 24-pin products:	$4.0~V \leq V_{DD} \leq 5.5~V$			-80.0	mA
		Total of P00 to P03 ^{Note 4} , P10 to P14	$2.7~V \leq V_{DD} < 4.0~V$			-18.0	mA
		30-pin products: Total of P10 to P17, P30, P31, P50, P51, P147 (When duty ≤ 70% Note 3)	1.8 V ≤ V _{DD} < 2.7 V			-10.0	mA
		Total of all pins (When duty ≤ 70% Note 3)				-100	mA
	10н2	Per pin for P20 to P23				-0.1	mA
		Total of all pins				-0.4	mA

- **Notes 1**. value of current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin.
 - 2. However, do not exceed the total current value.
 - 3. The output current value under conditions where the duty factor ≤ 70%.
 If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).
 - Total output current of pins = $(loh \times 0.7)/(n \times 0.01)$
 - <Example> Where n = 80% and IoH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

4. 24-pin products only.

Caution P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24-pin products, and P00, P10 to P15, P17, and P50 for 30-pin products do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(1) 20-, 24-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2 Note 2	HALT	HS (High-speed	fin = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		440	1210	μА
current Note 1		mode	main) mode ^{Note 6}		V _{DD} = 3.0 V		440	1210	
					V _{DD} = 5.0 V		400	950	μА
					V _{DD} = 3.0 V		400	950	
			main) mode Note 6 HS (High-speed main) mode Note 6	fih = 8 MHz ^{Note 4}	V _{DD} = 3.0 V		270	542	μА
					V _{DD} = 2.0 V		270	542	
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		280	1000	μА
				V _{DD} = 5.0 V	Resonator connection		450	1170	
				$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		280	1000	μА
			V _{DD} = 3.0 V	Resonator connection		450	1170		
			$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$ $V_{DD} = 5.0 \text{ V}$	Square wave input		190	590	μ A	
				Resonator connection		260	660		
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$ $V_{DD} = 3.0 \text{ V}$	Square wave input		190	590	μ A
					Resonator connection		260	660	
			LS (Low-speed	$f_{MX} = 8 MHz^{Note 3},$	Square wave input		110	360	μ A
			main) mode Note 6	V _{DD} = 3.0 V	Resonator connection		150	416	
				$f_{MX} = 8 MHz^{Note 3},$	Square wave input		110	360	μ A
				V _{DD} = 2.0 V	Resonator connection		150	416	
	IDD3 Note 5	STOP	T _A = -40°C				0.19	0.50	μА
		mode	T _A = +25°C				0.24	0.50	
			$T_A = +50^{\circ}C$ $T_A = +70^{\circ}C$				0.32	0.80	
							0.48	1.20	
			T _A = +85°C				0.74	2.20	

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator clock is stopped.
 - 4. When high-speed system clock is stopped.
 - 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **6.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz

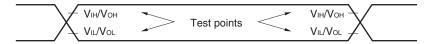
 V_{DD} = 2.4 V to 5.5 V @1 MHz to 16 MHz

LS(Low speed main) mode: VDD = 1.8 V to 5.5 V @1 MHz to 8 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except temperature condition of the TYP. value is $T_A = 25$ °C, other than STOP mode

2.4 AC Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$


Items	Symbol		Condition	S	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Tcy	Main system	HS (High-	$2.7~V \leq V_{DD} \leq 5.5~V$	0.04167		1	μS
instruction execution time)		clock (fMAIN) operation	speed main) mode	$2.4~\textrm{V} \leq \textrm{V}_\textrm{DD} < 2.7~\textrm{V}$	0.0625		1	μS
			LS (Low- speed main) mode	$1.8~V \leq V_{DD} \leq 5.5~V$	0.125		1	μs
		During self	HS (High-	$2.7~V \leq V_{DD} \leq 5.5~V$	0.04167		1	μS
		programming	speed main) mode	$2.4~V \leq V_{DD} < 2.7~V$	0.0625		1	μS
			LS (Low- speed main) mode	$1.8~V \le V_{DD} \le 5.5~V$	0.125		1	μs
External main system clock	fex	$2.7~V \leq V_{DD} \leq 5.5~V$			1.0		20.0	MHz
frequency		$2.4~V \leq V_{DD} < 2.7~V$			1.0		16.0	MHz
		$1.8~V \leq V_{DD} < 2.4~V$			1.0		8.0	MHz
External main system clock	texh, texl	$2.7~V \leq V_{DD} \leq 5.5~V$			24			ns
input high-level width, low-level width		$2.4~V \leq V_{DD} < 2.7~V$			30			ns
level width		$1.8~V \le V_{DD} < 2.4~V$			60			ns
TI00 to TI07 input high-level width, low-level width	тпн, тп∟				1/fмск + 10			ns
TO00 to TO07 output	fто	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$					12	MHz
frequency		$2.7~V \leq V_{DD} < 4$.0 V				8	MHz
		1.8 V ≤ V _{DD} < 2	.7 V				4	MHz
PCLBUZ0, or PCLBUZ1	f PCL	4.0 V ≤ V _{DD} ≤ 5	.5 V				16	MHz
output frequency		$2.7~V \leq V_{DD} < 4$.0 V				8	MHz
		1.8 V ≤ V _{DD} < 2.7 V					4	MHz
INTP0 to INTP5 input high- level width, low-level width	tinth, tintl				1			μS
KR0 to KR9 input available width	tĸĸ				250			ns
RESET low-level width	trsl				10			μS

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the timer clock select register 0 (TPS0) and the CKS0n bit of timer mode register 0 (TMR0n). n: Channel number (n = 0 to 7))

2.5 Peripheral Functions Characteristics

AC Timing Test Point

2.5.1 Serial array unit

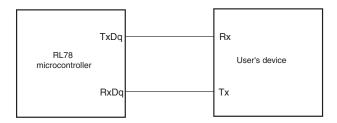
(1) During communication at same potential (UART mode)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

	,	1 = 122 = 616 1, 168 = 6 1,							
Parameter	Symbol	Conditions		Symbol Conditions		h-speed Mode	,	/-speed Mode	Unit
			MIN.	MAX.	MIN.	MAX.			
Transfer rate				fмск/6		fмск/6	bps		
Note 1		Theoretical value of the maximum transfer rate $f_{\text{CLK}} = f_{\text{MCK}}^{\text{Note2}}$		4.0		1.3	Mbps		

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:


HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 5.5 V)

16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)


LS (low-speed main) mode: $8 \text{ MHz} (1.8 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V})$

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 2), g: PIM, POM number (g = 0, 1)

2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Cond	ditions	HS (high main) l	•	, ,	peed main) ode	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note4	tkcy2	$4.0~V \leq V_{DD} \leq 5.5~V$	20 MHz < fmck	8/fмск		-		ns
			fмcк≤20 MHz	6/fмск		6/fмск		ns
		$2.7~V \leq V_{DD} \leq 5.5~V$	16 MHz < fмск	8/fмск		_		ns
			fмcк ≤ 16 MHz	6/fмск		6/fмск		ns
		$2.4~V \leq V_{DD} \leq 5.5~V$		6/fмск		6/fмск		ns
				and 500		and 500		
		1.8 V ≤ V _{DD} ≤ 5.5 V		-		6/fмск		ns
						and 750		
SCKp high-/low-level	tĸн2,	$4.0~V \leq V_{DD} \leq 5.5~V$		tксү2/2-7		tксу2/2-7		ns
width	t _{KL2}	$2.7~V \leq V_{DD} \leq 5.5~V$		tксү2/2-8		tксу2/2-8		ns
		$2.4~V \leq V_{DD} \leq 5.5~V$		tксу2/2-18		tксу2/2-18		ns
		1.8 V ≤ V _{DD} ≤ 5.5 V		-		tkcy2/2-18		ns
SIp setup time	tsık2	$2.7~V \leq V_{DD} \leq 5.5~V$		1/fмск +		1/fмск +		ns
(to SCKp↑) Note 1				20		30		
		$2.4~V \leq V_{DD} \leq 5.5~V$		1/fмск +		1/fмск +		ns
				30		30		
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		_		1/fмск + 30		ns
SIp hold time	tksi2			1/f _{MCK} +		1/fмск +		ns
(from SCKp↑) Note 2			T	31		31		
Delay time from SCKp↓ to	tkso2	C = 30 pF Note4	$2.7~V \leq V_{DD} \leq 5.5~V$		2/fмск + 44		2/fмск + 110	ns
SOp output Note 3			$2.4~V \leq V_{DD} \leq 5.5~V$		2/fмск + 75		2/fмск + 110	ns
			1.8 V ≤ V _{DD} ≤ 5.5 V		=		2/fмск + 110	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp and SCKp pins and the normal output mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		h-speed Mode	,	v-speed Mode	Unit
			MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$ 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, $ $ C_b = 100 \ pF, \ R_b = 2.8 \ k\Omega $		400 ^{Note1}		300 ^{Note1}	kHz
		$ 2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, $ $ C_{\text{b}} = 100 \text{ pF}, \ R_{\text{b}} = 2.7 \text{ k}\Omega $		400 ^{Note1}		300 ^{Note1}	kHz
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}, \\ C_{\text{b}} = 100 \text{ pF}, \ R_{\text{b}} = 5.5 \text{ k}\Omega$		300 ^{Note1}		300 ^{Note1}	kHz
Hold time when SCLr = "L"	tLOW	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, R_{\text{b}} = 2.8 \text{ k}\Omega$	1150		1550		ns
		$ 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, $ $ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega $	1150		1550		ns
			1550		1550		ns
Hold time when SCLr = "H"	tнідн	$4.0~V \leq V_{DD} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$ $C_b = 100~pF,~R_b = 2.8~k\Omega$	675		610		ns
		$ 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, $ $ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega $	600		610		ns
		$ \begin{aligned} &1.8 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}, \end{aligned}^{\text{Note2}} \\ &C_{\text{b}} = 100 \text{ pF}, \ R_{\text{b}} = 5.5 \text{ k}\Omega \end{aligned} $	610		610		ns
Data setup time (reception)	tsu:dat	$4.0~V \leq V_{DD} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$ $C_b = 100~pF,~R_b = 2.8~k\Omega$	1/fmck + 190 Note3		1/f _{MCK} + 190 _{Note3}		ns
		$2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V,$ $C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega$	1/fmck + 190 Note3		1/fмск + 190 _{Note3}		ns
		$1.8~V \leq V_{DD} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V, \label{eq:vb}$ $C_b = 100~pF,~R_b = 5.5~k\Omega$	1/fмск + 190 Note3		1/f _{MCK} + 190 _{Note3}		ns
Data hold time (transmission)	thd:dat	$4.0~V \leq V_{DD} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$ $C_b = 100~pF,~R_b = 2.8~k\Omega$	0	355	0	355	ns
		$ 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, $ $ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega $	0	355	0	355	ns
		$ \begin{aligned} &1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V, \end{aligned} $ $ &C_{b} = 100 \ pF, \ R_{b} = 5.5 \ k\Omega $	0	405	0	405	ns

- Notes 1. The value must also be equal to or less than fmck/4.
 - 2. Use it with $V_{DD} \ge V_b$.
 - 3. Set tsu:DAT so that it will not exceed the hold time when SCLr = "L" or SCLr = "H".
- Cautions 1. Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
 - 2. IIC01 and IIC11 cannot communicate at different potential.

(Remarks are listed on the next page.)

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - **3.** When $AV_{REFP} < V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.05\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AVREFP = VDD.

- **4.** Values when the conversion time is set to 57 μ s (min.) and 95 μ s (max.).
- 5. Refer to 28.6.2 Temperature sensor/internal reference voltage characteristics.

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI22

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error Note 1	AINL	10-bit resolution			1.2	±5.0	LSB
		AVREFP = VDD Note 3	/REFP = V _{DD} Note 3		1.2	±8.5 Note 4	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μS
		Target ANI pin: ANI16 to ANI22	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
		$1.8~V \leq V_{DD} \leq 5.5~V$	17		39	μS	
				57		95	μS
Zero-scale error Notes 1, 2	EZS	10-bit resolution				±0.35	%FSR
		AVREFP = VDD Note 3				±0.60 Note 4	%FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution				±0.35	%FSR
		AVREFP = VDD Note 3				±0.60 Note 4	%FSR
Integral linearity error Note 1	ILE	10-bit resolution				±3.5	LSB
		AVREFP = VDD Note 3				±6.0 Note 4	LSB
Differential linearity	DLE	10-bit resolution				±2.0	LSB
error ^{Note 1}		$AV_{REFP} = V_{DD}^{Note3}$				±2.5 Note 4	LSB
Analog input voltage	VAIN	ANI16 to ANI22		0		AVREFP and VDD	V

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - **3.** When $AV_{REFP} \leq V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 4.0 LSB to the MAX, value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.20\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AVREFP = VDD.

4. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).

2.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{PDR} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection supply voltage	V _{LVD0}	Power supply rise time	3.98	4.06	4.14	٧
		Power supply fall time	3.90	3.98	4.06	٧
	V _{LVD1}	Power supply rise time	3.68	3.75	3.82	٧
		Power supply fall time	3.60	3.67	3.74	٧
	V _{LVD2}	Power supply rise time	3.07	3.13	3.19	٧
		Power supply fall time	3.00	3.06	3.12	٧
	V LVD3	Power supply rise time	2.96	3.02	3.08	٧
		Power supply fall time	2.90	2.96	3.02	٧
	V _{LVD4}	Power supply rise time	2.86	2.92	2.97	٧
		Power supply fall time	2.80	2.86	2.91	٧
	V _{LVD5}	Power supply rise time	2.76	2.81	2.87	٧
		Power supply fall time	2.70	2.75	2.81	٧
	V _{LVD6}	Power supply rise time	2.66	2.71	2.76	٧
		Power supply fall time	2.60	2.65	2.70	٧
	V LVD7	Power supply rise time	2.56	2.61	2.66	٧
		Power supply fall time	2.50	2.55	2.60	٧
	V _{LVD8}	Power supply rise time	2.45	2.50	2.55	٧
		Power supply fall time	2.40	2.45	2.50	٧
	V _{LVD9}	Power supply rise time	2.05	2.09	2.13	٧
		Power supply fall time	2.00	2.04	2.08	٧
	V _{LVD10}	Power supply rise time	1.94	1.98	2.02	٧
		Power supply fall time	1.90	1.94	1.98	٧
	V _{LVD11}	Power supply rise time	1.84	1.88	1.91	٧
		Power supply fall time	1.80	1.84	1.87	٧
Minimum pulse width	tLW		300			μS
Detection delay time					300	μS

3.3 DC Characteristics

3.3.1 Pin characteristics

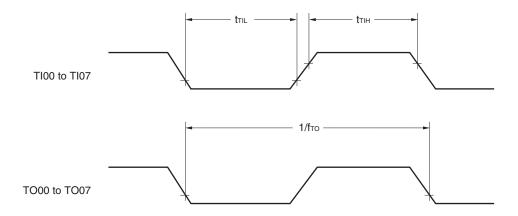
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/4)

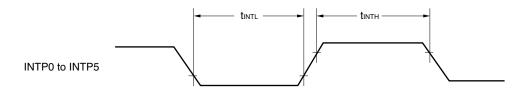
Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42				-3.0 Note 2	mA
		30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147					
		20-, 24-pin products:	$4.0~V \leq V_{DD} \leq 5.5~V$			-9.0	mA
		Total of P40 to P42	$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$			-6.0	mA
		30-pin products: Total of P00, P01, P40, P120 (When duty ≤ 70% Note 3)	2.4 V ≤ V _{DD} < 2.7 V			-4.5	mA
		20-, 24-pin products: Total of P00 to P03 ^{Note 4} , P10 to P14	$4.0~V \leq V_{DD} \leq 5.5~V$			-27.0	mA
			$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$			-18.0	mA
		30-pin products: Total of P10 to P17, P30, P31, P50, P51, P147 (When duty ≤ 70% Note 3)	2.4 V ≤ V _{DD} < 2.7 V			-10.0	mA
		Total of all pins (When duty $\leq 70\%^{\text{Note 3}}$)				-36.0	mA
	І ОН2	Per pin for P20 to P23				-0.1	mA
		Total of all pins				-0.4	mA

- **Notes 1**. value of current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin.
 - 2. However, do not exceed the total current value.
 - 3. The output current value under conditions where the duty factor ≤ 70%.
 If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).
 - Total output current of pins = $(loh \times 0.7)/(n \times 0.01)$
 - <Example> Where n = 80% and IoH = -10.0 mA

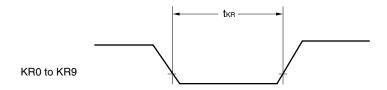
Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7$ mA

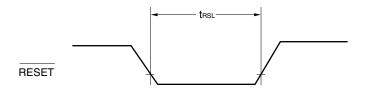

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

4. 24-pin products only.


Caution P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24-pin products, and P00, P10 to P15, P17, and P50 for 30-pin products do not output high level in N-ch open-drain mode.

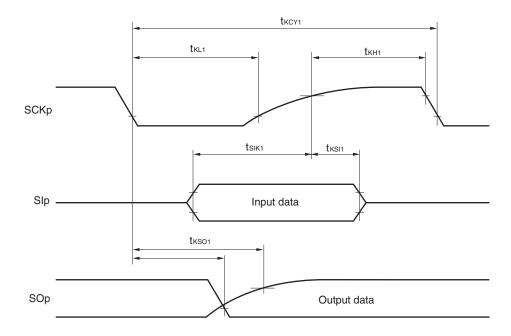
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.


TI/TO Timing

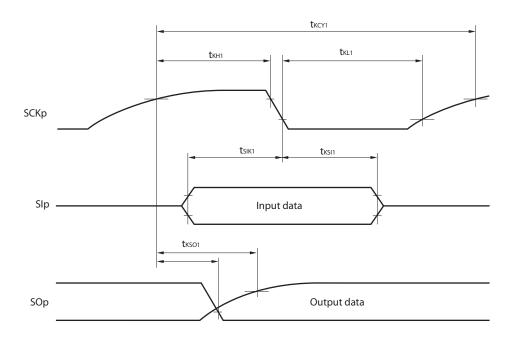

Interrupt Request Input Timing

Key Interrupt Input Timing

RESET Input Timing

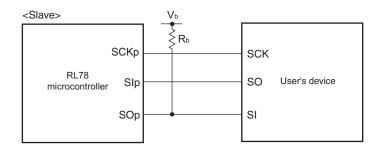

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3)

(Ta = -40 to +105°C, 2.4 V \leq VDD \leq VDD \leq 5.5 V, Vss = 0 V)

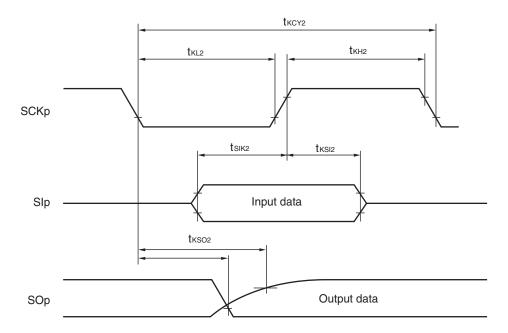

Symbol		Conditions		HS (high-speed main) Mode		
			MIN.	MAX.		
tkcy1	tkcy1 ≥ 4/fclk	$4.0~V \leq V_{DD} \leq 5.5~V,$	600		ns	
		$2.7~V \leq V_b \leq 4.0~V,$				
		$C_b=30~pF,~R_b=1.4~k\Omega$				
		$2.7~V \leq V_{DD} < 4.0~V,$	1000		ns	
		$2.3~V \leq V_b \leq 2.7~V,$				
		$C_b=30~pF,~R_b=2.7~k\Omega$				
		$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$	2300		ns	
		$1.6 \ V \le V_b \le 2.0 \ V,$				
		$C_b = 30$ pF, $R_b = 5.5$ k Ω				
t _{KH1}	$4.0 \; V \leq V_{DD} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V,$		tkcy1/2 -150		ns	
	C _b = 30 pF, R _b	$_{0}$ = 1.4 k Ω				
	2.7 V ≤ V _{DD} < 4	$4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$	tксү1/2 -340		ns	
	C _b = 30 pF, R _b	$_{0}$ = 2.7 k Ω				
	2.4 V ≤ V _{DD} < 3	3.3 V, 1.6 V ≤ V _b ≤ 2.0 V,	tксү1/2 -916		ns	
	C _b = 30 pF, R _b	$_{0}$ = 5.5 k Ω				
tkl1	4.0 V ≤ V _{DD} ≤ \$	$5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$	tkcy1/2 -24		ns	
	C _b = 30 pF, R _b	o = 1.4 kΩ				
	2.7 V ≤ V _{DD} < 4	$4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$	tkcy1/2 -36		ns	
			tkcy1/2 -100		ns	
			1.60.42			
	tkcy1 tkH1	tkcy1 t	$t_{KCY1} \qquad t_{KCY1} \geq 4/f_{CLK} \qquad 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \\ 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \\ 2.4 \ V \leq V_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \\ \end{cases}$ $t_{KH1} \qquad 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \\ 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \\ 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \\ \end{cases}$	$t_{KCY1} \qquad t_{KCY1} \geq 4/f_{CLK} \qquad 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \\ 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \\ 2.4 \ V \leq V_{DD} < 3.3 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \\ 2.4 \ V \leq V_{DD} < 3.3 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \\ t_{KH1} \qquad 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \\ 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \\ 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \\ t_{KL1} \qquad 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \\ 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \\ 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \\ 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \\ 2.4 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \\ 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ t_{KCY1/2} = 36 \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \\ 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ t_{KCY1/2} = 100 \\ t_{KCY1/2} = 100$	$t_{KCY1} = t_{KCY1} \ge 4/f_{CLK} = t_{KCY1} \ge 4.0 \text{ V}, \\ t_{Cb} = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega = t_{KCY1} \ge t_{KCY$	

- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.
- **Remarks 1.** R_b [Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b [F]: Communication line (SCKp, SOp) load capacitance, V_b [V]: Communication line voltage
 - **2.** p: CSI number (p = 00, 20)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1)

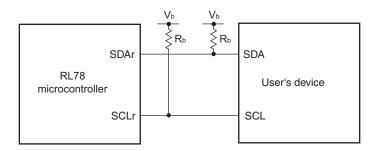


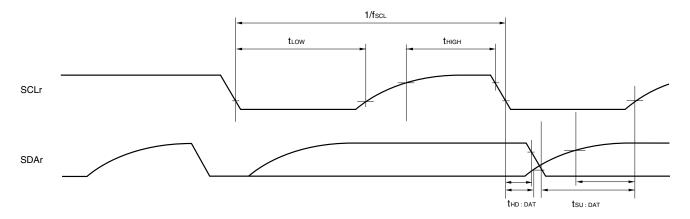
CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)



Remark p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

CSI mode connection diagram (during communication at different potential)


CSI mode serial transfer timing (slave mode) (during communication at different potential)
(When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)


Remarks 1. R_b [Ω]: Communication line (SOp) pull-up resistance, C_b [F]: Communication line (SOp) load capacitance, V_b [V]: Communication line voltage

- 2. p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)
- fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn))

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** Rb $[\Omega]$: Communication line (SDAr, SCLr) pull-up resistance, Cb [F]: Communication line (SDAr, SCLr) load capacitance, Vb [V]: Communication line voltage
 - **2.** r: IIC Number (r = 00, 20)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number (m = 0,1), n: Channel number (n = 0)

3.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(Ta = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection supply voltage	V _{LVD0}	Power supply rise time	3.90	4.06	4.22	٧
		Power supply fall time	3.83	3.98	4.13	٧
	V _{LVD1}	Power supply rise time	3.60	3.75	3.90	٧
		Power supply fall time	3.53	3.67	3.81	٧
	V _{LVD2}	Power supply rise time	3.01	3.13	3.25	٧
		Power supply fall time	2.94	3.06	3.18	٧
	V LVD3	Power supply rise time	2.90	3.02	3.14	٧
		Power supply fall time	2.85	2.96	3.07	٧
	V _{LVD4}	Power supply rise time	2.81	2.92	3.03	٧
		Power supply fall time	2.75	2.86	2.97	٧
	V LVD5	Power supply rise time	2.70	2.81	2.92	٧
		Power supply fall time	2.64	2.75	2.86	٧
	V _{LVD6}	Power supply rise time	2.61	2.71	2.81	٧
		Power supply fall time	2.55	2.65	2.75	٧
	V LVD7	Power supply rise time	2.51	2.61	2.71	٧
		Power supply fall time	2.45	2.55	2.65	٧
Minimum pulse width	tuw		300			μs
Detection delay time					300	μS