

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	14
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10268asp-x0

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Code flash	Data flash	RAM	20 pins	24 pins	30 pins
16 KB	2 KB	2 KB	_	_	R5F102AA
	_		_	_	R5F103AA
	2 KB	1.5 KB	R5F1026A Note 1	R5F1027A ^{Note 1}	_
			R5F1036A Note 1	R5F1037A Note 1	_
12 KB	2KB	1 KB	R5F10269 Note 1	R5F10279 Note 1	R5F102A9
			R5F10369 Note 1	R5F10379 Note 1	R5F103A9
8 KB	2 KB	768 B	R5F10268 Note 1	R5F10278 Note 1	R5F102A8
			R5F10368 Note 1	R5F10378 Note 1	R5F103A8
4 KB	2KB	512 B	R5F10267	R5F10277	R5F102A7
	_		R5F10367	R5F10377	R5F103A7
2 KB	2 KB	256 B	R5F10266 Note 2		_
			R5F10366 Note 2		

O ROM, RAM capacities

Notes 1. This is 640 bytes when the self-programming function or data flash function is used. (For details, see CHAPTER 3 CPU ARCHITECTURE.)

2. The self-programming function cannot be used for R5F10266 and R5F10366.

Caution When the flash memory is rewritten via a user program, the code flash area and RAM area are used because each library is used. When using the library, refer to RL78 Family Flash Self Programming Library Type01 User's Manual and RL78 Family Data Flash Library Type04 User's Manual.

<R>

1.2 List of Part Numbers

Figure 1-1. Part Number, Memory Size, and Package of RL78/G12

Notes 1. For details about the differences between the R5F102 products and the R5F103 products of RL78/G12, see 1.1 Differences between the R5F102 Products and the R5F103 Products.

2. Products only for "A: Consumer applications ($T_A = -40$ to $+85^{\circ}C$)" and "D: Industrial applications ($T_A = -40$ to $+85^{\circ}C$)"

1.4.3 30-pin products

• 30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)

Note Provided only in the R5F102 products.

Caution Connect the REGC pin to Vss via capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.5 Pin Identification.

2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR).

1.7 Outline of Functions

This outline describes the function at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

-							(1/2)		
	Item	20-	pin	24-	pin	30-pin			
		R5F1026x	R5F1036x	R5F1027x	R5F1037x	R5F102Ax	R5F103Ax		
Code flash	n memory	2 to 16	KB ^{Note 1}	4 to		16 KB			
Data flash	memory	2 KB	-	2 KB	-	2 KB –			
RAM		256 B to 1.5 KB 512 B to 1.5 KB 512 B to 2KB				to 2KB			
Address space 1 MB									
Main system clock	High-speed system clock	X1 (crystal/cer HS (High-spee HS (High-spee LS (Low-speed	amic) oscillation d main) mode : d main) mode : 1 main) mode : 1	, external main s 1 to 20 MHz (Vor 1 to 16 MHz (Vor 1 to 8 MHz (Vor =	eystem clock inp = 2.7 to 5.5 V) = 2.4 to 5.5 V) = 1.8 to 5.5 V)	ut (EXCLK) ,			
	High-speed on-chip oscillator clock	HS (High-speed HS (High-speed LS (Low-speed	S (High-speed main) mode : 1 to 24 MHz ($V_{DD} = 2.7$ to 5.5 V), S (High-speed main) mode : 1 to 16 MHz ($V_{DD} = 2.4$ to 5.5 V), S (Low-speed main) mode : 1 to 8 MHz ($V_{DD} = 1.8$ to 5.5 V)						
Low-speed	d on-chip oscillator clock	15 kHz (TYP)	15 kHz (TYP)						
General-p	urpose register	(8-bit register >	< 8) × 4 banks						
Minimum i	instruction execution time	0.04167 <i>μ</i> s (Hi	gh-speed on-ch	ip oscillator clock	k: f⊮ = 24 MHz c	operation)			
		0.05 μs (High-speed system clock: f _{MX} = 20 MHz operation)							
Instruction	n set	Data transfer (8/16 bits)							
		Adder and subtractor/logical operation (8/16 bits)							
		Multiplication (8 bits × 8 bits)							
	ſ	Rotate, barre	el shift, and bit n	nanipulation (set,	reset, test, and	Boolean operati	ion), etc.		
I/O port	Total	1	8	2	2	2	6		
	CMOS I/O	1 (N-ch C [V⊳⊳ withstan	2).D. I/O d voltage]: 4)	1 (N-ch C) [V⊳⊳ withstan	6).D. I/O d voltage]: 5)	2 (N-ch C [V⊳⊳ withstan	1).D. I/O d voltage]: 9)		
	CMOS input	4	1	4	ļ	3	3		
	N-ch open-drain I/O (6 V tolerance)			2	2				
Timer	16-bit timer		4 cha	innels		8 cha	nnels		
	Watchdog timer			1 cha	annel				
	12-bit Interval timer			1 cha	annel				
	Timer output		4 cha (PWM outp	nnels outs: 3 ^{Note 3})		8 chai (PWM output	nnels s: 7 ^{Note 3}) ^{Note 2}		

Notes 1. The self-programming function cannot be used in the R5F10266 and R5F10366.

2. The maximum number of channels when PIOR0 is set to 1.

3. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves). (See **6.9.3 Operation as multiple PWM output function**.)

Caution When the flash memory is rewritten via a user program, the code flash area and RAM area are used because each library is used. When using the library, refer to RL78 Family Flash Self Programming Library Type01 User's Manual and RL78 Family Data Flash Library Type04 User's Manual.

<R> 2. ELECTRICAL SPECIFICATIONS ($T_A = -40$ to +85°C)

<r></r>	This chapter de	scribes the following electrical specifications.
	Target products	A: Consumer applications $T_A = -40$ to $+85^{\circ}C$
<r></r>		R5F102xxAxx, R5F103xxAxx
_		D: Industrial applications $T_A = -40$ to $+85^{\circ}C$
<r></r>		R5F102xxDxx, R5F103xxDxx
		G: Industrial applications when $T_A = -40$ to $+105^{\circ}C$ products is used in the range of $T_A = -40$ to $+85^{\circ}C$
<h></h>		R5F102xxGxx
	Cautions 1.	he RL78 microcontrollers have an on-chip debug function, which is provided for development and

Fautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.

2. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product.

(1/2)

(2) 30-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit												
Supply	DD1	Operating	HS (High-speed	$f_{IH}=24\ MHz^{Note3}$	Basic	$V_{DD} = 5.0 V$		1.5		mA												
current Note 1		mode	main) mode ^{Note 4}		operation	V _{DD} = 3.0 V		1.5														
					Normal	$V_{DD} = 5.0 V$		3.7	5.5	mA												
					operation	V _{DD} = 3.0 V		3.7	5.5													
				f⊪ = 16 MHz ^{№te 3}		V _{DD} = 5.0 V		2.7	4.0	mA												
						V _{DD} = 3.0 V		2.7	4.0													
			LS (Low-speed $f_{IH} = 8 \text{ MHz}^{Note 3}$ main) mode $Note 4$	f⊩ = 8 MHz ^{Note 3}		$V_{DD} = 3.0 V$		1.2	1.8	mA												
						V _{DD} = 2.0 V		1.2	1.8													
	HS (High-sp	HS (High-speed	$f_{\text{MX}} = 20 \text{ MHz}^{\text{Note 2}},$		Square wave input		3.0	4.6	mA													
main) mode	main) mode ^{Note 4}	$V_{DD} = 5.0 V$		Resonator connection		3.2	4.8															
			fмx :		$\label{eq:masses} \begin{split} f_{MX} &= 20 \ MHz^{\text{Note 2}}, \\ V_{DD} &= 3.0 \ V \\ \\ f_{MX} &= 10 \ MHz^{\text{Note 2}}, \end{split}$		Square wave input		3.0	4.6	mA											
				$V_{\text{DD}} = 3.0 \text{ V}$ $f_{\text{MX}} = 10 \text{ MHz}^{\text{Note 2}},$		$V_{\text{DD}} = 3.0 \text{ V}$ $f_{\text{MX}} = 10 \text{ MHz}^{\text{Note 2}},$	$V_{DD} = 3.0 \text{ V}$ fmx = 10 MHz ^{Note 2} ,		Resonator connection		3.2	4.8										
								$f_{MX} = 10 \text{ MHz}^{Note 2},$	$f_{MX} = 10 \text{ MHz}^{Note 2},$	$f_{MX} = 10 \text{ MHz}^{Note 2}$,	$f_{MX} = 10 \text{ MHz}^{Note 2}$,	$f_{MX} = 10 \text{ MHz}^{Note 2},$	$f_{MX} = 10 \text{ MHz}^{Note 2}$,	$f_{MX} = 10 \text{ MHz}^{Note 2},$	$f_{MX} = 10 \text{ MHz}^{Note 2},$	$f_{MX} = 10 \text{ MHz}^{Note 2},$	$f_{MX} = 10 \text{ MHz}^{Note 2}$,	$f_{MX} = 10 \text{ MHz}^{Note 2}$,	$f_{MX} = 10 \text{ MHz}^{Note 2}$,	$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input
			$V_{DD} = 5.0 V$	VDD = 5.0 V		Resonator connection		1.9	2.7													
				$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		1.9	2.7	mA												
				$V_{DD} = 3.0 V$		Resonator connection		1.9	2.7													
	LS (Low-speed main) mode ^{1kas4}	LS (Low-speed	$f_{MX} = 8 MHz^{Note 2}$,		Square wave input		1.1	1.7	mA													
		$V_{\text{DD}} = 3.0 \text{ V}$		Resonator connection		1.1	1.7															
			$f_{MX} = 8 \text{ MHz}^{Note 2},$		Square wave input		1.1	1.7	mA													
				VDD = 2.0 V		Resonator connection		1.1	1.7													

Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. When high-speed on-chip oscillator clock is stopped.
- 3. When high-speed system clock is stopped
- 4. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode: $V_{DD} = 2.7 \text{ V}$ to 5.5 V @1 MHz to 24 MHz $V_{DD} = 2.4 \text{ V}$ to 5.5 V @1 MHz to 16 MHz

LS(Low speed main) mode: $V_{DD} = 1.8 V$ to 5.5 V @1 MHz to 8 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$.

2.4 AC Characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Items	Symbol		Condition	s	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсч	Main system	HS (High-	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.04167		1	μS
instruction execution time)		clock (fMAIN) operation	speed main) mode	$2.4~V \leq V_{\text{DD}} < 2.7~V$	0.0625		1	μS
			LS (Low- speed main) mode	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	0.125		1	μS
		During self	HS (High-	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.04167		1	μs
		programming	speed main) mode	$2.4~V \leq V_{\text{DD}} < 2.7~V$	0.0625		1	μS
			LS (Low- speed main) mode	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	0.125		1	μS
External main system clock	fex	$2.7~V \leq V_{\text{DD}} \leq 5$.5 V		1.0		20.0	MHz
frequency		$2.4~V \leq V_{\text{DD}} < 2.7~V$			1.0		16.0	MHz
		$1.8 \text{ V} \leq V_{\text{DD}} < 2.4 \text{ V}$			1.0		8.0	MHz
External main system clock	texн, texL	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			24			ns
input high-level width, low-		$2.4~V \leq V_{\text{DD}} < 2.7~V$			30			ns
		$1.8 \text{ V} \leq V_{\text{DD}} < 2.4 \text{ V}$			60			ns
TI00 to TI07 input high-level width, low-level width	tn∺, tn∟				1/fмск + 10			ns
TO00 to TO07 output	fто	$4.0~V \leq V_{\text{DD}} \leq 5$.5 V				12	MHz
frequency		$2.7~V \leq V_{\text{DD}} < 4$	0 V				8	MHz
		$1.8 \ V \leq V_{\text{DD}} < 2.7 \ V$					4	MHz
PCLBUZ0, or PCLBUZ1	f PCL	$4.0~V \leq V_{\text{DD}} \leq 5$.5 V				16	MHz
output frequency		$2.7~V \leq V_{\text{DD}} < 4$.0 V				8	MHz
		$1.8~V \leq V_{\text{DD}} < 2$.7 V				4	MHz
INTP0 to INTP5 input high- level width, low-level width	tinth, tintl				1			μS
KR0 to KR9 input available width	tкв				250			ns
RESET low-level width	t RSL				10			μs

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the timer clock select register 0 (TPS0) and the CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7))

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkCY1	tксү1 ≥ 4/fclк	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	167		500		ns
			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	250		500		ns
			$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	_		500		ns
SCKp high-/low-level width	tкнı,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		tксү1/2-12		tксү1/2–50		ns
	tĸ∟1	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		tксү1/2–18		tксү1/2–50		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		tксү1/2-38		tксү1/2–50		ns
		$1.8~V \leq V_{\text{DD}} \leq 5.5~V$		_		tксү1/2-50		ns
SIp setup time (to SCKp↑)	tsik1	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		44		110		ns
Note 1		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		44		110		ns
		$2.4~V \leq V_{\text{DD}} \leq$	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			110		ns
		$1.8~V \leq V_{\text{DD}} \leq 5.5~V$		-		110		ns
SIp hold time (from SCKp↑) ^{№te 2}	tksi1			19		19		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 30 pF ^{Note4}			25		25	ns

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (T_A = -40 to +85°C, 1.8 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.
- **Caution** Select the normal input buffer for the SIp pin and the normal output mode for the SOp and SCKp pins by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).
- **Remarks 1.** p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products)
 - 2. fMCK: Serial array unit operation clock frequency
 - (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products.))

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- **Remarks 1.** R_b[Ω]: Communication line (TxDq) pull-up resistance, C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)
 - fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 - m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))
 - **4.** UART0 of the 20- and 24-pin products supports communication at different potential only when the peripheral I/O redirection function is not used.

(7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCK00... internal clock output, corresponding CSI00 only)

Parameter	Symbol		Conditions	HS (hig main)	h-speed Mode	n-speed LS (low-spe Mode main) Mod		Unit
				MIN.	MAX.	MIN.	MAX.	
SCK00 cycle time	t ксү1	tĸcv1 ≥ 2/fclĸ	$\begin{array}{l} \mbox{4.0 V} \leq V_{DD} \leq 5.5 \ V, \\ \mbox{2.7 V} \leq V_b \leq 4.0 \ V, \\ \mbox{C}_b = 20 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$	200		1150		ns
			$\label{eq:linear} \begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	300		1150		ns
SCK00 high-level width	tкнı	$4.0~V \leq V_{\text{DD}} \leq 5.$	5 V, 2.7 V \leq Vb \leq 4.0 V,	tксү1/2 –		tксү1/2-		ns
		$C_b = 20 \text{ pF}, \text{ R}_b =$	= 1.4 kΩ	50		50		
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} =$	0 V, 2.3 V \leq V_b \leq 2.7 V, = 2.7 k\Omega	tксү1/2 – 120		tксү1/2 – 120		ns
SCK00 low-level width	tĸ∟ı	4.0 V \leq V _{DD} \leq 5. C _b = 20 pF. R _b =	$0.~V \leq V_{DD} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$ $C_b = 20~pF,~R_b = 1.4~k\Omega$			tксү1/2 – 50		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$		tксү1/2 –		tксү1/2 –		ns
		C_b = 20 pF, R_b = 2.7 k Ω		10		50		
SI00 setup time	tsik1	$4.0~V \leq V_{\text{DD}} \leq 5.$	58		479		ns	
		$C_b = 20 \text{ pF}, \text{ R}_b =$	= 1.4 kΩ					
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.$	0 V, 2.3 V \leq V _b \leq 2.7 V,	121		479		ns
		$C_b = 20 \text{ pF}, \text{ R}_b =$	= 2.7 kΩ					
SI00 hold time	tksi1	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V,$		10		10		ns
(from SCK00 ¹)		$C_b = 20 \text{ pF}, \text{R}_b = 1.4 \text{ k}\Omega$						
		$2.7 \text{ V} \leq V_{\text{DD}} < 4.$	10		10		ns	
		$C_b = 20 \text{ pF}, R_b =$						
Delay time from SCK00↓	tkso1	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V,$			60		60	ns
		C _b = 20 pF, R _b =						
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.$	$0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$		130		130	ns
		C _b = 20 pF, R _b =	= 2.7 kΩ					
SI00 setup time (to SCK00↓) ^{Note 2}	tsik1	$4.0 V \leq V DD \leq 5.$	$5 V, 2.7 V \le V_b \le 4.0 V,$	23		110		ns
($C_b = 20 \text{ pr}, \text{ Rb} = 0.7 \text{ V} < V_{\text{Rb}} < 4$	$= 1.4 \text{ K}_2$	22		110		-
		$2.7 V \le V D C = 20 \text{ pE } B_{\text{b}} = -20 \text$	$0 \ 0, 2.3 \ 0 \ge 0 \ 0 \ge 2.7 \ 0,$			110		115
SIO0 hold time	trout	$40V \le V_{PP} \le 5$	5 V 2 7 V < V < 1 0 V	10		10		ne
(from SCK00↓) Note 2	LKSII	$4.0 V \le V D U \le 0.$	$5 \text{V}, 2.7 \text{V} \ge \text{V}_0 \ge 4.0 \text{V},$	10		10		115
		27 V < Vpp < 4	$0 V 2 3 V < V_{\rm b} < 27 V$	10		10		ns
		C₀ = 20 pF. R₀ =	= 2.7 kΩ					
Delay time from SCK00↑	t _{KSO1}	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.$	5 V. 2.7 V ≤ V _b ≤ 4.0 V.		10		10	ns
to SO00 output Note 2		Сь = 20 pF, Rь =	= 1.4 kΩ					
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.$	0 V, 2.3 V \leq V _b \leq 2.7 V,		10		10	ns
		$C_b = 20 \text{ pF}, R_b =$	= 2.7 kΩ					

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

(Notes, Caution, and Remarks are listed on the next page.)

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode	э)

Parameter	Symbol	Conditions	HS (hig main)	h-speed Mode	LS (lov main)	Unit	
			MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$\begin{array}{l} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; V, 2.7 \; V \leq V_{b} \leq 4.0 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 2.8 \; k\Omega \end{array}$		400 ^{Note1}		300 ^{Note1}	kHz
		$\label{eq:VD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 100 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$		400 ^{Note1}		300 ^{Note1}	kHz
		$\begin{array}{l} 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V, \\ C_{\text{b}} = 100 \ \text{pF}, \ B_{\text{b}} = 5.5 \ \text{k}\Omega \end{array}$		300 ^{Note1}		300 ^{Note1}	kHz
Hold time when SCLr = "L"	t∟ow	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 100 \ pF, \ R_b = 2.8 \ k\Omega \end{array}$	1150		1550		ns
		$\label{eq:VD} \begin{split} 2.7 \; V &\leq V_{\text{DD}} < 4.0 \; \text{V}, 2.3 \; \text{V} \leq V_{\text{b}} \leq 2.7 \; \text{V}, \\ C_{\text{b}} &= 100 \; \text{pF}, \; \text{R}_{\text{b}} = 2.7 \; \text{k} \Omega \end{split}$	1150		1550		ns
		$\label{eq:VDD} \begin{split} 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V, \\ \text{C}_{\text{b}} = 100 \ \text{pF}, \ \text{R}_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$	1550		1550		ns
Hold time when SCLr = "H"	tніgн	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{b} \leq 4.0 \ V, \\ C_{b} = 100 \ pF, \ R_{b} = 2.8 \ k\Omega \end{array}$	675		610		ns
		$\label{eq:VD} \begin{split} 2.7 \ V &\leq V_{\text{DD}} < 4.0 \ V, 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} &= 100 \ p\text{F}, \ R_{\text{b}} = 2.7 \ \text{k}\Omega \end{split}$	600		610		ns
		$\label{eq:VDD} \begin{split} 1.8 \ V &\leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V, \\ \\ C_{b} &= 100 \ pF, \ R_{b} = 5.5 \ k\Omega \end{split}$	610		610		ns
Data setup time (reception)	tsu:dat	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{b} \leq 4.0 \ V, \\ C_{b} = 100 \ pF, \ R_{b} = 2.8 \ k\Omega \end{array}$	1/fмск + 190 _{Note3}		1/fмск + 190 _{Note3}		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fмск + 190 _{Note3}		1/fмск + 190 _{Note3}		ns
		$\label{eq:VD} \begin{array}{l} 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V, \\ \\ C_{b} = 100 \ pF, \ R_{b} = 5.5 \ k\Omega \end{array}$	1/fмск + 190 _{Note3}		1/fмск + 190 _{Note3}		ns
Data hold time (transmission)	thd:dat	$\begin{array}{l} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; V, 2.7 \; V \leq V_{\text{b}} \leq 4.0 \; V, \\ C_{\text{b}} = 100 \; pF, \; R_{\text{b}} = 2.8 \; k\Omega \end{array}$	0	355	0	355	ns
		$ \begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array} $	0	355	0	355	ns
		$\begin{split} 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V, \\ \\ C_{\text{b}} = 100 \ pF, \ R_{\text{b}} = 5.5 \ k\Omega \end{split}$	0	405	0	405	ns

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

- $\textbf{2.} \quad Use \text{ it with } V_{\text{DD}} \geq V_{\text{b}}.$
- 3. Set $t_{SU:DAT}$ so that it will not exceed the hold time when SCLr = "L" or SCLr = "H".
- **Cautions 1.** Select the TTL input buffer and the N-ch open drain output (V_{DD} tolerance) mode for the SDAr pin and the N-ch open drain output (V_{DD} tolerance) mode for the SCLr pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
 - 2. IIC01 and IIC11 cannot communicate at different potential.

(Remarks are listed on the next page.)

2.6.2 Temperature sensor/internal reference voltage characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.50	V
Temperature coefficient	Fvtmps	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

(T_A = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, HS (high-speed main) mode

2.6.3 POR circuit characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.47	1.51	1.55	V
	VPDR	Power supply fall time	1.46	1.50	1.54	V
Minimum pulse width Note	Tpw		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

3.4 AC Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Items	Symbol		Condition	S	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсү	Main system	HS (High-	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.04167		1	μS
instruction execution time)		clock (fMAIN) operation	speed main) mode	$2.4~V \leq V_{\text{DD}} < 2.7~V$	0.0625		1	μS
		During self	HS (High-	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.04167		1	μS
		programming	speed main) mode	$2.4~V \leq V_{\text{DD}} < 2.7~V$	0.0625		1	μS
External main system clock	fex	$2.7~V \leq V_{\text{DD}} \leq 5.4$	5 V		1.0		20.0	MHz
frequency		$2.4~V \leq V_{\text{DD}} < 2$.7 V		1.0		16.0	MHz
External main system clock	texн, texL	$2.7~V \leq V_{\text{DD}} \leq 5$.5 V		24			ns
input high-level width, low- level width		$2.4~V \leq V_{\text{DD}} < 2.7~V$						ns
TI00 to TI07 input high-level width, low-level width	t⊓∺, t⊤∟			1/fмск + 10			ns	
TO00 to TO07 output	fто	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$					12	MHz
frequency		$2.7~V \leq V_{\text{DD}} < 4.0~V$					8	MHz
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$					4	MHz
PCLBUZ0, or PCLBUZ1	f PCL	$4.0~V \leq V_{\text{DD}} \leq 5$.5 V				16	MHz
output frequency		$2.7~V \leq V_{\text{DD}} < 4.0~V$					8	MHz
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$					4	MHz
INTP0 to INTP5 input high- level width, low-level width	tinth, tintl				1			μS
KR0 to KR9 input available width	t KR				250			ns
RESET low-level width	trsL				10			μS

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the timer clock select register 0 (TPS0) and the CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7))

Parameter	Symbol		Conditions			peed main) ode	Unit
					MIN.	MAX.	
Transfer rate Note4		Reception	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5 \\ 2.7 \ V \leq V_b \leq 4.0 \end{array}$.5 V,) V		f _{MCK} /12 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		2.0	Mbps
			$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4 \\ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \end{array}$.0 V, 7 V		fмск/12 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		2.0	Mbps
			$2.4 \text{ V} \leq V_{DD} < 3$ $1.6 \text{ V} \leq V_b \leq 2.0$.3 V,) V		fмск/12 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		2.0	Mbps
		Transmission	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5 \\ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \end{array}$.5 V,) V		Note 3	bps
				Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k} \Omega, V_b = 2.7 \text{ V}$		2.0 Note 4	Mbps
			$2.7 \text{ V} \leq V_{\text{DD}} < 4$ $2.3 \text{ V} \leq V_{\text{b}} \leq 2.7$.0 V, 7 V,		Note 5	bps
				Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, \text{R}_b = 2.7 \text{k} \Omega, \text{V}_b = 2.3 \text{ V}$		1.2 Note 6	Mbps
			$2.4 V \le V_{DD} < 3$ $1.6 V \le V_b \le 2.0$.3 V,) V		Notes 2, 7	bps
				Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$		0.43 Note 8	Mbps

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

 $(T_A = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq V_{DD} \leq 5.5 V) 16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)

3. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq V_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =

$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- **Remarks 1.** R_b[Ω]: Communication line (TxDq) pull-up resistance, C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)
 - fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

4. UART0 of the 20- and 24-pin products supports communication at different potential only when the peripheral I/O redirection function is not used.

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

(7)	Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp external clock input)
(TA	= –40 to +105°C, 2.4 V ≤ V _{DD} ≤ 5.5 V, V _{SS} = 0 V)

Parameter	Symbol	Conditions		HS (high-spe Mod	ed main) e	Unit
				MIN.	MAX.	
SCKp cycle time Note 1	t ксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	20 MHz < fмск ≤ 24 MHz	24/f мск		ns
		$2.7~V \leq V_b \leq 4.0~V$	$8 \text{ MHz} < f_{MCK} \le 20 \text{ MHz}$	20/f мск		ns
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	16/f мск		ns
			fмск ≤4 MHz	12/f мск		ns
		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	20 MHz < fмск ≤ 24 MHz	32/fмск		ns
		$2.3~V \leq V_b \leq 2.7~V$	16 MHz < fмск ≤ 20 MHz	28/f мск		ns
			8 MHz < fмск \leq 16 MHz	24/f мск		ns
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	16/f мск		ns
			fмск ≤4 MHz	12/f мск		ns
		$2.4~V \leq V_{\text{DD}} < 3.3~V,$	20 MHz < fмск ≤ 24 MHz	72/f мск		ns
		$1.6~V \leq V_b \leq 2.0~V$	16 MHz < fмск ≤ 20 MHz	64/f мск		ns
			8 MHz < fмск \leq 16 MHz	52/f мск		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	32/f мск		ns
			fмск ≤4 MHz	20/f мск		ns
SCKp high-/low-level	tкн2, tкL2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V$		tксү2/2 – 24		ns
width		$2.7 \; V \leq V_{\text{DD}} < 4.0 \; V, 2.3$	$V \leq V_b \leq 2.7 \ V$	tkcy2/2 – 36		ns
		$2.4 \ V \le V_{\text{DD}} < 3.3 \ V, \ 1.6$	$V \leq V_b \leq 2.0 \ V$	tксү2/2 – 100		ns
SIp setup time	tsik2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,~2.7~V \leq V_{\text{DD}} \leq 4.0~V$		1/fмск + 40		ns
(to SCKp↑) ^{Note 2}		$2.7 \text{ V} \le V_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \le V_{\text{b}} \le 2.7 \text{ V}$		1/fмск + 40		ns
		$2.4~V \leq V_{\text{DD}} < 3.3~V,~1.6~V \leq V_{\text{DD}} \leq 2.0~V$		1/fмск + 60		ns
SIp hold time (from SCKp↑) ^{№ote 3}	tksi2			1/fмск + 62		ns
Delay time from SCKp \downarrow to	tkso2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,2.7$	$V \leq V_b \leq 4.0 \ V,$		2/fмск +	ns
SOp output Note 4		$C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$			240	
		$2.7 \text{ V} \le V_{\text{DD}} < 4.0 \text{ V}, 2.3$	$V \le V_b \le 2.7 V$,		2/fмск +	ns
		$C_{b}=30 \text{ pF}, \text{R}_{b}=2.7 \text{k}\Omega$			428	
		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V}, 1.6$	$V \leq V_b \leq 2.0 V$,		2/fмск +	ns
		$C_b = 30 \text{ pF}, \text{ R}_b = 5.5 \text{ k}\Omega$			1146	

Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Cautions 1. Select the TTL input buffer for the SIp and SCKp pins and the N-ch open drain output (Vbb tolerance) mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Input channel	Reference Voltage						
	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = VDD Reference voltage (-) = Vss	Reference voltage (+) = VBGR Reference voltage (-) = AVREFM				
ANI0 to ANI3	Refer to 29.6.1 (1).	Refer to 29.6.1 (3).	Refer to 29.6.1 (4).				
ANI16 to ANI22	Refer to 29.6.1 (2) .						
Internal reference voltage	Refer to 29.6.1 (1).		-				
Temperature sensor output voltage							

(1) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin: ANI2, ANI3, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AV}_{REFP} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Cor	ditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AVREFP = VDD Note 3			1.2	±3.5	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI2, ANI3	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μs
			$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μS
		10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: Internal	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.5625		39	μS
	reference vo temperature output voltag (HS (high-sp mode)	reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	17		39	μS
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution AVREFP = VDD Note 3			±0.25	%FSR	
Full-scale error ^{Notes 1, 2}	EFS	10-bit resolution AVREFP = VDD Note 3			±0.25	%FSR	
Integral linearity error ^{Note 1}	ILE	10-bit resolution AVREFP = VDD Note 3				±2.5	LSB
Differential linearity error	DLE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±1.5	LSB
Analog input voltage	VAIN	ANI2, ANI3		0		AVREFP	V
		Internal reference voltage (HS (high-speed main) mode)			VBGR Note 4		V
		Temperature sensor outp (HS (high-speed main) m	Temperature sensor output voltage (HS (high-speed main) mode)				V

(Notes are listed on the next page.)

<R>

<R> 3.7 RAM Data Retention Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 ^{Note}		5.5	V

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

3.8 Flash Memory Programming Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclк		1		24	MHz
Code flash memory rewritable times Notes 1, 2, 3	Cerwr	Retained for 20 years $T_A = 85^{\circ}C^{Notes 4}$	1,000			Times
Data flash memory rewritable times Notes 1, 2, 3		Retained for 1 year $T_A = 25^{\circ}C^{Notes 4}$		1,000,000		
		Retained for 5 years TA = $85^{\circ}C^{Notes 4}$	100,000			
		Retained for 20 years TA = $85^{\circ}C^{Notes 4}$	10,000			

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.
- 4. This temperature is the average value at which data are retained.

		Description		
Rev.	Date	Page	Summary	
2.00	Sep 06, 2013	55	Modification of description and Notes 3 and 4 in 2.6.1 (3)	
			Modification of description and Notes 3 and 4 in 2.6.1 (4)	
		57	Modification of table in 2.6.2 Temperature sensor/internal reference voltage characteristics	
		57	Modification of table and Note in 2.6.3 POR circuit characteristics	
		58	Modification of table in 2.6.4 LVD circuit characteristics	
		59	Modification of table of LVD detection voltage of interrupt & reset mode	
		59	Modification of number and title to 2.6.5 Power supply voltage rising slope characteristics	
		61	Modification of table, figure, and Remark in 2.10 Timing of Entry to Flash Memory	
			Programming Modes	
		62 to 103	Addition of products of industrial applications (G: $T_A = -40$ to $+105^{\circ}C$)	
		104 to 106	Addition of products of industrial applications (G: TA = -40 to +105°C)	
2.10	Mar 25, 2016	6	Modification of Figure 1-1 Part Number, Memory Size, and Package of RL78/G12	
		7	Modification of Table 1-1 List of Ordering Part Numbers	
		8	Addition of product name (RL78/G12) and description (Top View) in 1.4.1 20-pin	
			products	
		9	Addition of product name (RL78/G12) and description (Top View) in 1.4.2 24-pin	
		10	Addition of product name (RL78/G12) and description (Top View) in 1.4.3 30-pin	
		15	Modification of description in 1.7 Outline of Functions	
		16	Modification of description, and addition of target products	
		52	Modification of note 2 in 2.5.2 Serial interface IICA	
		60	Modification of title and note, and addition of caution in 2.7 RAM Data Retention	
			Characteristics	
		60	Modification of conditions in 2.8 Flash Memory Programming Characteristics	
		62	Modification of description, and addition of target products and remark	
		94	Modification of note 2 in 3.5.2 Serial interface IICA	
		102	Modification of title and note in 3.7 RAM Data Retention Characteristics	
		102	Modification of conditions in 3.8 Flash Memory Programming Characteristics	
		104 to 106	Addition of package name	

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.