

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

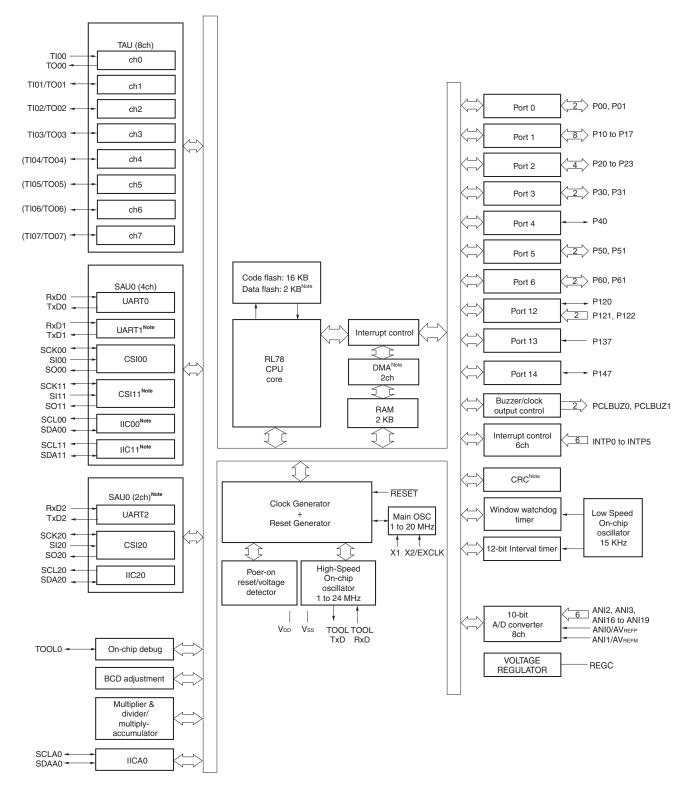
Details

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	14
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10269asp-v5

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Code flash	Data flash	RAM	20 pins	24 pins	30 pins
16 KB	2 KB	2 KB	_	—	R5F102AA
	_		_	—	R5F103AA
	2 KB	1.5 KB	R5F1026A Note 1	R5F1027A ^{Note 1}	
	_		R5F1036A Note 1	R5F1037A Note 1	
12 KB	2KB	1 KB	R5F10269 Note 1	R5F10279 Note 1	R5F102A9
	_		R5F10369 Note 1	R5F10379 Note 1	R5F103A9
8 KB	2 KB	768 B	R5F10268 Note 1	R5F10278 Note 1	R5F102A8
	—		R5F10368 Note 1	R5F10378 Note 1	R5F103A8
4 KB	2KB	512 B	R5F10267	R5F10277	R5F102A7
	_		R5F10367	R5F10377	R5F103A7
2 KB	2 KB	256 B	R5F10266 Note 2		
	—		R5F10366 Note 2	—	

O ROM, RAM capacities


Notes 1. This is 640 bytes when the self-programming function or data flash function is used. (For details, see CHAPTER 3 CPU ARCHITECTURE.)

2. The self-programming function cannot be used for R5F10266 and R5F10366.

Caution When the flash memory is rewritten via a user program, the code flash area and RAM area are used because each library is used. When using the library, refer to RL78 Family Flash Self Programming Library Type01 User's Manual and RL78 Family Data Flash Library Type04 User's Manual.

1.6.3 30-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR).

2.3 DC Characteristics

2.3.1 Pin characteristics

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{№06 1}	Іон1	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42 30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147				-10.0 Note 2	mA
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-30.0	mA
		Total of P40 to P42	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-6.0	mA
		30-pin products: Total of P00, P01, P40, P120 (When duty \leq 70% ^{Note 3})	$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			-4.5	mA
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-80.0	mA
		Total of P00 to P03 ^{Note 4} , P10 to P14	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-18.0	mA
		30-pin products: Total of P10 to P17, P30, P31, P50, P51, P147 (When duty \leq 70% ^{Note 3})	$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			-10.0	mA
		Total of all pins (When duty $\leq 70\%^{Note 3}$)				-100	mA
	Іон2	Per pin for P20 to P23				-0.1	mA
		Total of all pins				-0.4	mA

Notes 1. value of current at which the device operation is guaranteed even if the current flows from the VDD pin to an output pin.

- 2. However, do not exceed the total current value.
- 3. The output current value under conditions where the duty factor \leq 70%. If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).
 - Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$ <Example> Where n = 80% and IOH = -10.0 mA
 - Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

- 4. 24-pin products only.
- Caution P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24-pin products, and P00, P10 to P15, P17, and P50 for 30-pin products do not output high level in N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(1/2)

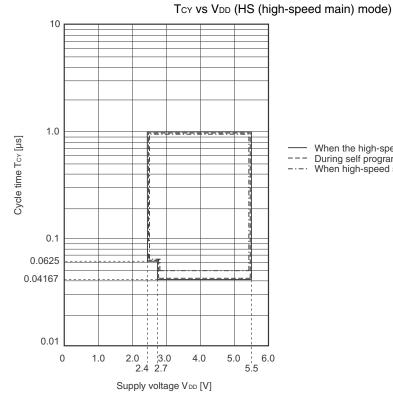
(2) 30-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit						
Supply	IDD1	Operating	, U I	$f_{\text{IH}} = 24 \; MHz^{\text{Note 3}}$	Basic	$V_{DD} = 5.0 V$		1.5		mA						
current Note 1		mode main) mode ^{Note4} operation $V_{DD} = 3.0 \text{ V}$	main) mode ^{Note 4}	main) mode ^{™œ₄}	main) mode ^{™®₄}	main) mode ^{™æ₄}	main) mode ^{Note4}	$V_{DD} = 3.0 V$		1.5						
					Normal	$V_{DD} = 5.0 V$		3.7	5.5	mA						
					operation	V _{DD} = 3.0 V		3.7	5.5							
				f⊪ = 16 MHz ^{№te 3}		$V_{DD} = 5.0 V$		2.7	4.0	mA						
						V _{DD} = 3.0 V		2.7	4.0							
			LS (Low-speed			$V_{DD} = 3.0 V$		1.2	1.8	mA						
		main) mode ^{Note 4}	main) mode ^{Note 4}	main) mode ^{Note 4}	main) mode ^{Note 4}	main) mode ^{™®4}	main) mode ^{Note 4}	main) mode ^{Note 4}	main) mode ^{Note 4}	ste 4		V _{DD} = 2.0 V		1.2	1.8	
			HS (High-speed	$ \begin{array}{l} \text{HS (High-speed} \\ \text{main) mode}^{\text{Nde4}} \end{array} \begin{array}{l} \text{f}_{\text{MX}} = 20 \text{ MHz}^{2} \\ \text{V}_{\text{DD}} = 5.0 \text{ V} \end{array} $	$f_{MX} = 20 \text{ MHz}^{Note 2},$		Square wave input		3.0	4.6	mA					
		main) mode ^{№æ4}			,	main) mode ^{™∞4}	main) mode ^{™®4}	$V_{DD} = 5.0 V$		Resonator connection		3.2	4.8			
							$f_{MX} = 20 \text{ MHz}^{Note 2},$		Square wave input		3.0	4.6	mA			
			$V_{\text{DD}} = 3.0 \text{ V}$	$V_{DD} = 3.0 V$	Resonator connection		3.2	4.8								
				$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		1.9	2.7	mA						
				$V_{DD} = 5.0 V$		Resonator connection		1.9	2.7							
				$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		1.9	2.7	mA						
				$V_{DD} = 3.0 V$		Resonator connection		1.9	2.7							
			LS (Low-speed	$f_{MX} = 8 MHz^{Note 2}$,		Square wave input		1.1	1.7	mA						
			main) mode ^{Note 4}	$V_{DD} = 3.0 V$		Resonator connection		1.1	1.7							
				$f_{MX} = 8 \text{ MHz}^{Note 2},$		Square wave input		1.1	1.7	mA						
				$V_{DD} = 2.0 V$		Resonator connection		1.1	1.7							

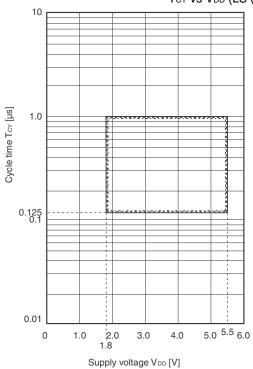
Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. When high-speed on-chip oscillator clock is stopped.
- 3. When high-speed system clock is stopped
- 4. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.


HS(High speed main) mode: $V_{DD} = 2.7 \text{ V}$ to 5.5 V @1 MHz to 24 MHz $V_{DD} = 2.4 \text{ V}$ to 5.5 V @1 MHz to 16 MHz

LS(Low speed main) mode: $V_{DD} = 1.8 V$ to 5.5 V @1 MHz to 8 MHz

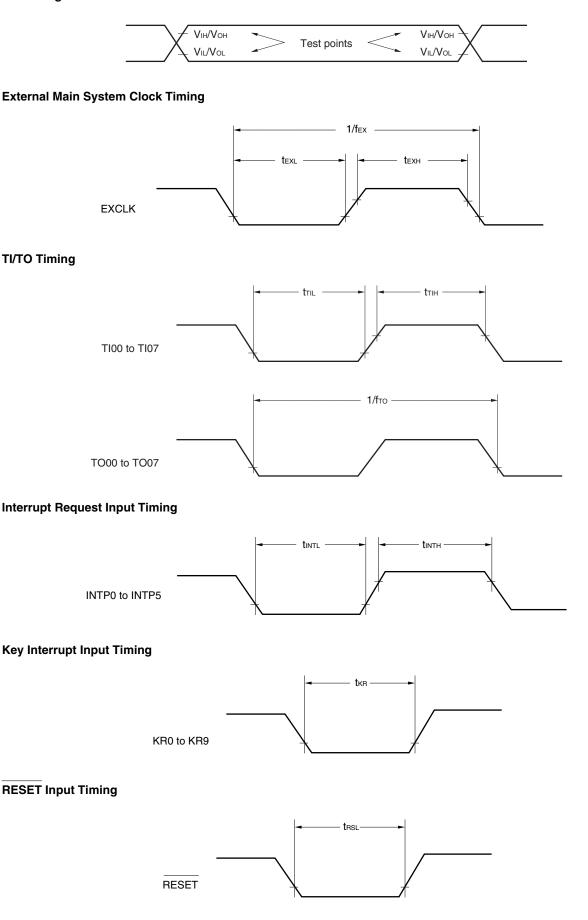
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$.


Minimum Instruction Execution Time during Main System Clock Operation

When the high-speed on-chip oscillator clock is selected During self programming When high-speed system clock is selected _ _ _

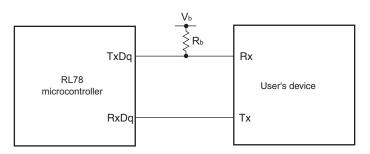
_ . _ .

TCY vs VDD (LS (low-speed main) mode)

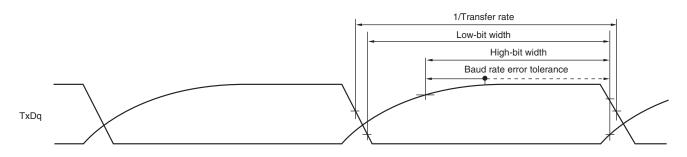


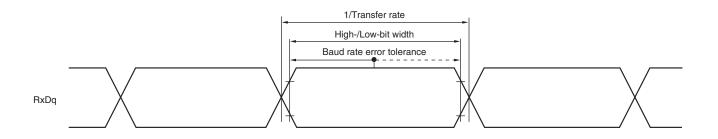
When the high-speed on-chip oscillator clock is selected

--- During self programming ---. When high-speed system clock is selected



AC Timing Test Point





UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- **Remarks 1.** R_b[Ω]: Communication line (TxDq) pull-up resistance, C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)
 - fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 - m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))
 - **4.** UART0 of the 20- and 24-pin products supports communication at different potential only when the peripheral I/O redirection function is not used.

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AV_{REFM} (ADREFM = 1), target pin: ANI0, ANI2, ANI3, and ANI16 to ANI22

(TA = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, Reference voltage (+) = V_{BGR}^{Note 3}, Reference voltage (-) = AV_{REFM} Note ⁴ = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		bit
Conversion time	t CONV	8-bit resolution	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	8-bit resolution			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution			±1.0	LSB
Analog input voltage	VAIN		0		$V_{\text{BGR}}{}^{\text{Note 3}}$	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. Refer to 28.6.2 Temperature sensor/internal reference voltage characteristics.

4. When reference voltage (-) = Vss, the MAX. values are as follows.

Zero-scale error: Add $\pm 0.35\%$ FSR to the MAX. value when reference voltage (–) = AV_{REFM}. Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (–) = AV_{REFM}. Differential linearity error: Add ± 0.2 LSB to the MAX. value when reference voltage (–) = AV_{REFM}.

<R> 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS $T_A = -40$ to +105°C)

<R> This chapter describes the following electrical specifications.

Target products G: Industrial applications $T_A = -40$ to $+105^{\circ}C$

<R> R5F102xxGxx

- **Cautions 1.** The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product.
 - **3.** Please contact Renesas Electronics sales office for derating of operation under $T_A = +85^{\circ}C$ to $+105^{\circ}C$. Derating is the systematic reduction of load for the sake of improved reliability.

Remark When the RL78 microcontroller is used in the range of T_A = -40 to +85 °C, see CHAPTER 28 <R> ELECTRICAL SPECIFICATIONS (A: T_A = -40 to +85 °C).

There are following differences between the products "G: Industrial applications ($T_A = -40$ to $+105^{\circ}C$)" and the products "A: Consumer applications, and D: Industrial applications".

Parameter	Арр	lication
	A: Consumer applications, D: Industrial applications	G: Industrial applications
Operating ambient temperature	T _A = -40 to +85°C	T _A = -40 to +105°C
Operating mode	HS (high-speed main) mode:	HS (high-speed main) mode only:
Operating voltage range	$2.7~V \leq V_{\text{DD}} \leq 5.5~V@1~MHz$ to 24 MHz	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$ @ 1 MHz to 24 MHz
	$2.4~V \leq V_{\text{DD}} \leq 5.5~V@1~\text{MHz}$ to 16 MHz	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$ @1 MHz to 16 MHz
	LS (low-speed main) mode:	
	1.8 V \leq V_{DD} \leq 5.5 V@1 MHz to 8 MHz	
High-speed on-chip oscillator clock	R5F102 products, 1.8 V \leq V_DD \leq 5.5 V:	R5F102 products, 2.4 V \leq V _{DD} \leq 5.5 V:
accuracy	±1.0%@ T _A = -20 to +85°C	±2.0%@ T _A = +85 to +105°C
	$\pm 1.5\%$ @ T _A = -40 to -20°C	±1.0%@ T _A = -20 to +85°C
	R5F103 products, 1.8 V \leq V_DD \leq 5.5 V:	±1.5% @ T _A = -40 to -20°C
	±5.0%@ T _A = -40 to +85°C	
Serial array unit	UART	UART
	CSI: fcLK/2 (supporting 12 Mbps), fcLK/4	CSI: fclk/4
	Simplified I ² C communication	Simplified I ² C communication
Voltage detector	Rise detection voltage: 1.88 V to 4.06 V	Rise detection voltage: 2.61 V to 4.06 V
	(12 levels)	(8 levels)
	Fall detection voltage: 1.84 V to 3.98 V	Fall detection voltage: 2.55 V to 3.98 V
	(12 levels)	(8 levels)

Remark The electrical characteristics of the products G: Industrial applications (T_A = -40 to +105°C) are different from those of the products "A: Consumer applications, and D: Industrial applications". For details, refer to 29.1 to 29.10.

(2) 30-pin products

$A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = 0^{-1}$	V)
--	----

(T _A = -40 to	+105°C,	$2.4 V \leq V_D$	□ ≤ 5.5 V, V ss =	= 0 V)						(1/2)
Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply		Operating	HS (High-speed	$f_{IH} = 24 \ MHz^{Note 3}$	Basic	VDD = 5.0 V		1.5		mA
current ^{Note 1}		mode	main) mode ^{№084}		operation	VDD = 3.0 V		1.5		
					Normal	V _{DD} = 5.0 V		3.7	5.8	mA
					operation	VDD = 3.0 V		3.7	5.8	
				$f_{IH} = 16 \text{ MHz}^{Note 3}$		V _{DD} = 5.0 V		2.7	4.2	mA
						VDD = 3.0 V		2.7	4.2	
				$f_{MX} = 20 \text{ MHz}^{Note 2},$		Square wave input		3.0	4.9	mA
				$V_{DD} = 5.0 V$		Resonator connection		3.2	5.0	
				$f_{MX} = 20 \text{ MHz}^{Note 2},$		Square wave input		3.0	4.9	mA
				$V_{\text{DD}} = 3.0 \text{ V}$		Resonator connection		3.2	5.0	
				$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		1.9	2.9	mA
				$V_{DD} = 5.0 \text{ V}$		Resonator connection		1.9	2.9	
				$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		1.9	2.9	mA
				$V_{DD} = 3.0 V$		Resonator connection		1.9	2.9	

Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. When high-speed on-chip oscillator clock is stopped.
- 3. When high-speed system clock is stopped
- 4. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz VDD = 2.4 V to 5.5 V @1 MHz to 16 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$.

(3) Peripheral functions (Common to all products)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed onchip oscillator operating current	FIL Note 1				0.20		μA
12-bit interval timer operating current	ITMKA Notes 1, 2, 3				0.02		μA
Watchdog timer operating current	WDT Notes 1, 2, 4	fı∟ = 15 kHz			0.22		μA
A/D converter	IADC	When conversion	Normal mode, AV _{REFP} = V _{DD} = 5.0 V		1.30	1.70	mA
operating current	Notes 1, 5	at maximum speed	Low voltage mode, AV _{REFP} = V _{DD} = 3.0 V		0.50	0.70	mA
A/D converter reference voltage operating current	IADREF Note 1				75.0		μA
Temperature sensor operating current	ITMPS Note 1				75.0		μA
LVD operating current	ILVD Notes 1, 6				0.08		μA
Self-programming operating current	IFSP Notes 1, 8				2.00	12.20	mA
BGO operating current	BGO Notes 1, 7				2.00	12.20	mA
SNOOZE operating	Isnoz	ADC operation	The mode is performed Note 9		0.50	1.10	mA
current	Note 1		The A/D conversion operations are performed, Low voltage mode, $AV_{REFP} = V_{DD} = 3.0 \text{ V}$		1.20	2.04	mA
		CSI/UART operation	<u>ו</u>		0.70	1.54	mA

Notes 1. Current flowing to the VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and IFIL and ITMKA when the 12-bit interval timer operates.
- 4. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.
- 5. Current flowing only to the A/D converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 6. Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit operates.
- 7. Current flowing only during data flash rewrite.
- **8.** Current flowing only during self programming.
- 9. For shift time to the SNOOZE mode, see 17.3.3 SNOOZE mode.

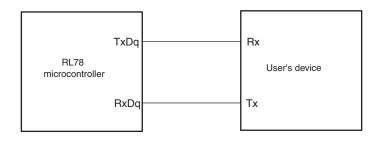

Remarks 1. fill: Low-speed on-chip oscillator clock frequency

2. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

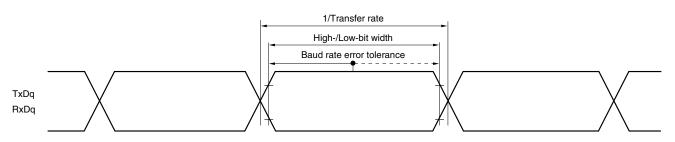
3.5 Peripheral Functions Characteristics

AC Timing Test Point

3.5.1 Serial array unit

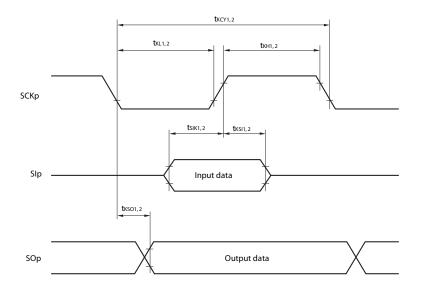

(1) During communication at same potential (UART mode) (T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

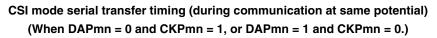
Parameter	Symbol	Conditions	HS (high-speed main) Mode		
			MIN.	MAX.	
Transfer rate				fмск/12	bps
Note 1		Theoretical value of the maximum transfer rate $f_{CLK} = f_{MCK}^{Note2}$		2.0	Mbps

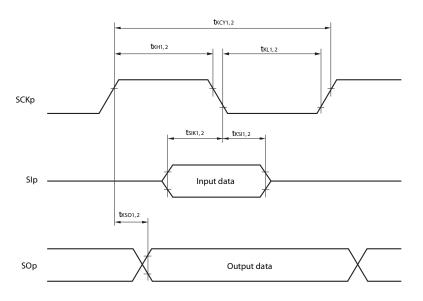

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- 2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are: HS (high-speed main) mode: 24 MHz (2.7 V \leq V_{DD} \leq 5.5 V) 16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)
- **Caution** Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)


UART mode bit width (during communication at same potential) (reference)


Remarks 1. q: UART number (q = 0 to 2), g: PIM, POM number (g = 0, 1)


- 2. fMCK: Serial array unit operation clock frequency
 - (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 - m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- Remarks 1. p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3)
 2. fMCK: Serial array unit operation clock frequency
 - (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3))

Baud rate error (theoretical value) =

$$) = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \,[\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- 4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
- 5. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq VDD < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

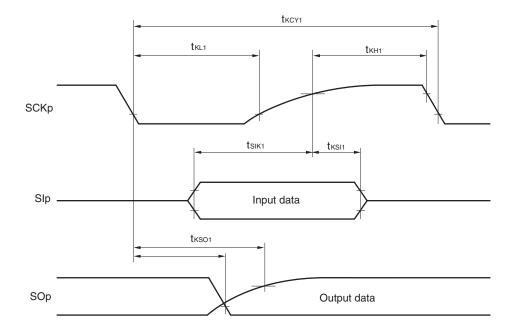
Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =

 $\begin{array}{c} \displaystyle \frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \\ \hline \\ \displaystyle (\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits} \end{array} \times 100 \ [\%]$

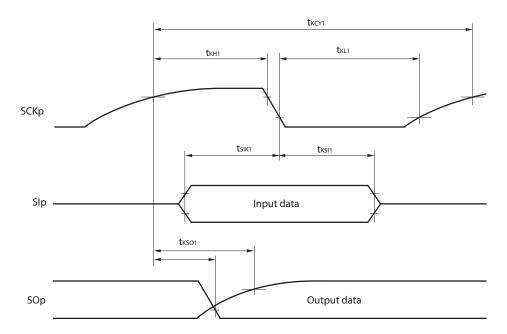
- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- 6. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 5** above to calculate the maximum transfer rate under conditions of the customer.
- 7. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

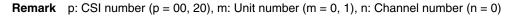
Expression for calculating the transfer rate when 2.4 V \leq V_DD < 3.3 V, 1.6 V \leq V_b \leq 2.0 V


Maximum transfer rate =

$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = $\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \,[\%]$


- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 7 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.



CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp external clock input)
(T₄ = –40 to +105°C, 2.4 V ≤ V _{DD} ≤ 5.5 V, Vss = 0 V)

Parameter	Symbol		Conditions	HS (high-spe Mod	,	Unit
			MIN.	MAX.		
SCKp cycle time Note 1	t кСY2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	20 MHz < fmck \leq 24 MHz	24/f мск		ns
		$2.7~V \leq V_b \leq 4.0~V$	8 MHz < fмск ≤ 20 MHz	20/f мск		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	16/f мск		ns
			fмск \leq 4 MHz	12/ fмск		ns
		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	20 MHz < fмск ≤ 24 MHz	32/ fмск		ns
		$2.3~V \leq V_b \leq 2.7~V$	16 MHz < fмск \leq 20 MHz	28/ fмск		ns
			8 MHz < fмск \leq 16 MHz	24/fмск		ns
			4 MHz < fмск \leq 8 MHz	16/ fмск		ns
			fмск \leq 4 MHz	12/fмск		ns
		$2.4~V \leq V_{\text{DD}} < 3.3~V,$	20 MHz < fмск \leq 24 MHz	72/fмск		ns
		$1.6~V \leq V_b \leq 2.0~V$	16 MHz < fмск ≤ 20 MHz	6 4/fмск		ns
			8 MHz < fмск \leq 16 MHz	52/ fмск		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	32/fмск		ns
			fмск \leq 4 MHz	20/fмск		ns
SCKp high-/low-level	tкн2,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,~2.7$	$7~V \leq V_{b} \leq 4.0~V$	tkcy2/2 – 24		ns
width	tĸ∟2	$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V}$	$3~V \leq V_b \leq 2.7~V$	tkcy2/2 – 36		ns
		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V}, 1.0 \text{ V}$	$6 \text{ V} \leq V_b \leq 2.0 \text{ V}$	tkcy2/2 - 100		ns
SIp setup time	tsik2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,~2.7$	$7 \text{ V} \leq V_{\text{DD}} \leq 4.0 \text{ V}$	1/fмск + 40		ns
(to SCKp↑) Note 2		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V}$	$3~V \leq V_b \leq 2.7~V$	1/fмск + 40		ns
		$2.4~V \leq V_{\text{DD}} < 3.3~V,~1.6~V \leq V_{\text{DD}} \leq 2.0~V$		1/fмск + 60		ns
SIp hold time (from SCKp↑) ^{№ote 3}	tksi2			1/fмск + 62		ns
Delay time from SCKp \downarrow to	tĸso2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,~2.7$	$7 \text{ V} \leq V_b \leq 4.0 \text{ V},$		2/fмск +	ns
SOp output Note 4		$C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ km}$	2		240	
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V}$	$3 V \leq V_b \leq 2.7 V,$		2/fмск +	ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ ks}$	2		428	
		$2.4 \text{ V} \le \text{V}_{\text{DD}}$ < 3.3 V , 1.0 C	$6 \text{ V} \leq \text{V}_{b} \leq 2.0 \text{ V},$		2/fмск +	ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ kg}$	2		1146	

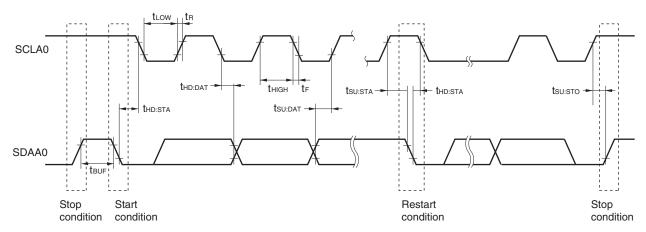
Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Cautions 1. Select the TTL input buffer for the SIp and SCKp pins and the N-ch open drain output (Vbb tolerance) mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.

3.5.2 Serial interface IICA

Parameter	Symbol	Conditions	HS (high-speed main) mode			Unit	
			Standard Mode		Fast Mode		
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode: fclk≥ 3.5 MHz			0	400	kHz
		Normal mode: fcLK≥ 1 MHz	0	100			kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μS
Hold time ^{Note 1}	thd:sta		4.0		0.6		μS
Hold time when SCLA0 = "L"	t∟ow		4.7		1.3		μS
Hold time when SCLA0 = "H"	tніgн		4.0		0.6		μS
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission)Note 2	thd:dat		0	3.45	0	0.9	μS
Setup time of stop condition	tsu:sto		4.0		0.6		μS
Bus-free time	t BUF		4.7		1.3		μS


$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- **Caution** Only in the 30-pin products, the values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

 $\label{eq:cb} \begin{array}{ll} \mbox{Normal mode:} & C_b = 400 \mbox{ pF}, \mbox{ Rb} = 2.7 \mbox{ } k\Omega \\ \mbox{Fast mode:} & C_b = 320 \mbox{ pF}, \mbox{ Rb} = 1.1 \mbox{ } k\Omega \end{array}$

IICA serial transfer timing

<R>

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AV_{REFM} (ADREFM = 1), target pin: ANI0, ANI2, ANI3, and ANI16 to ANI22

(T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, Reference voltage (+) = V_{BGR}^{Note 3}, Reference voltage (-) = AV_{REFM}^{Note 4} = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		bit
Conversion time	t CONV	8-bit resolution	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	8-bit resolution			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution			±1.0	LSB
Analog input voltage	VAIN		0		$V_{\text{BGR}}{}^{\text{Note 3}}$	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. Refer to 29.6.2 Temperature sensor/internal reference voltage characteristics.

4. When reference voltage (-) = Vss, the MAX. values are as follows.

Zero-scale error: Add $\pm 0.35\%$ FSR to the MAX. value when reference voltage (–) = AV_{REFM}. Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (–) = AV_{REFM}. Differential linearity error: Add ± 0.2 LSB to the MAX. value when reference voltage (–) = AV_{REFM}.

3.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode (T_A = -40 to +105°C, V_{PDR} \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection supply voltage	VLVDO	Power supply rise time	3.90	4.06	4.22	V
		Power supply fall time	3.83	3.98	4.13	V
	VLVD1	Power supply rise time	3.60	3.75	3.90	V
		Power supply fall time	3.53	3.67	3.81	V
	VLVD2	Power supply rise time	3.01	3.13	3.25	V
		Power supply fall time	2.94	3.06	3.18	V
	V _{LVD3}	Power supply rise time	2.90	3.02	3.14	V
		Power supply fall time	2.85	2.96	3.07	V
	VLVD4	Power supply rise time	2.81	2.92	3.03	V
		Power supply fall time	2.75	2.86	2.97	V
	VLVD5	Power supply rise time	2.70	2.81	2.92	v
		Power supply fall time	2.64	2.75	2.86	V
	VLVD6	Power supply rise time	2.61	2.71	2.81	V
		Power supply fall time	2.55	2.65	2.75	V
	VLVD7	Power supply rise time	2.51	2.61	2.71	V
		Power supply fall time	2.45	2.55	2.65	V
Minimum pulse width	tıw		300			μs
Detection delay time					300	μs

Revision History

RL78/G12 Data Sheet

			Description		
Rev.	Date	Page	Summary		
1.00	Dec 10, 2012	-	First Edition issued		
2.00	Sep 06, 2013	1	Modification of 1.1 Features		
		3	Modification of 1.2 List of Part Numbers		
		4	Modification of Table 1-1. List of Ordering Part Numbers, Note, and Caution		
		7 to 9	Modification of package name in 1.4.1 to 1.4.3		
		14	Modification of tables in 1.7 Outline of Functions		
		17	Modification of description of table in 2.1 Absolute Maximum Ratings (TA = 25°C)		
		18	Modification of table, Note, and Caution in 2.2.1 X1 oscillator characteristics		
		18 19	Modification of table in 2.2.2 On-chip oscillator characteristics		
		20	Modification of Note 3 in 2.3.1 Pin characteristics (1/4)		
			Modification of Note 3 in 2.3.1 Pin characteristics (2/4)		
		23	Modification of Notes 1 and 2 in (1) 20-, 24-pin products (1/2)		
		24	Modification of Notes 1 and 3 in (1) 20-, 24-pin products (2/2)		
		25	Modification of Notes 1 and 2 in (2) 30-pin products (1/2)		
		26	Modification of Notes 1 and 3 in (2) 30-pin products (2/2)		
		27	Modification of (3) Peripheral functions (Common to all products)		
		28	Modification of table in 2.4 AC Characteristics		
		29	Addition of Minimum Instruction Execution Time during Main System Clock Operation		
		30	Modification of figures of AC Timing Test Point and External Main System Clock Timing		
		31	Modification of figure of AC Timing Test Point		
		31	Modification of description and Note 2 in (1) During communication at same potential (UART mode)		
		32	Modification of description in (2) During communication at same potential (CSI mode)		
		33	Modification of description in (3) During communication at same potential (CSI mode)		
		34	Modification of description in (4) During communication at same potential (CSI mode)		
		36	Modification of table and Note 2 in (5) During communication at same potential		
			(simplified l ² C mode)		
		38, 39	Modification of table and Notes 1 to 9 in (6) Communication at different potential		
		00,00	(1.8 V, 2.5 V, 3 V) (UART mode)		
		40	Modification of Remarks 1 to 3 in (6) Communication at different potential (1.8 V,		
		10	2.5 V, 3 V) (UART mode)		
		41	Modification of table in (7) Communication at different potential (2.5 V, 3 V) (CSI mode)		
		42	Modification of Caution in (7) Communication at different potential (2.5 V, 3 V) (CSI mode)		
		43	Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI		
		40	mode) (1/3)		
		44	Modification of table and Notes 1 and 2 in (8) Communication at different potential (1.8		
		44	V, 2.5 V, 3 V) (CSI mode) (2/3)		
		45	Modification of table, Note 1, and Caution 1 in (8) Communication at different potential		
		45	(1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)		
		47	Modification of table in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI		
		47	mode)		
		50	Modification of table, Note 1, and Caution 1 in (10) Communication at different potential		
		50	(1.8 V, 2.5 V, 3 V) (simplified I ² C mode)		
		50	Modification of Remark in 2.5.2 Serial interface IICA		
		52	Addition of table to 2.6.1 A/D converter characteristics		
		53			
		53	Modification of description in 2.6.1 (1)		
		54	Modification of Notes 3 to 5 in 2.6.1 (1)		
		54	Modification of description and Notes 2 to 4 in 2.6.1 (2)		