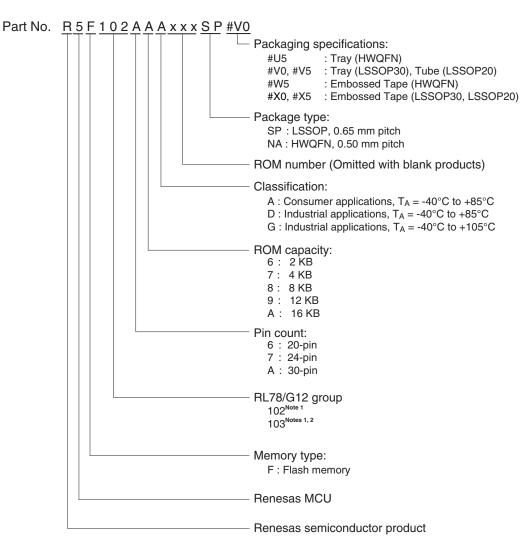


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

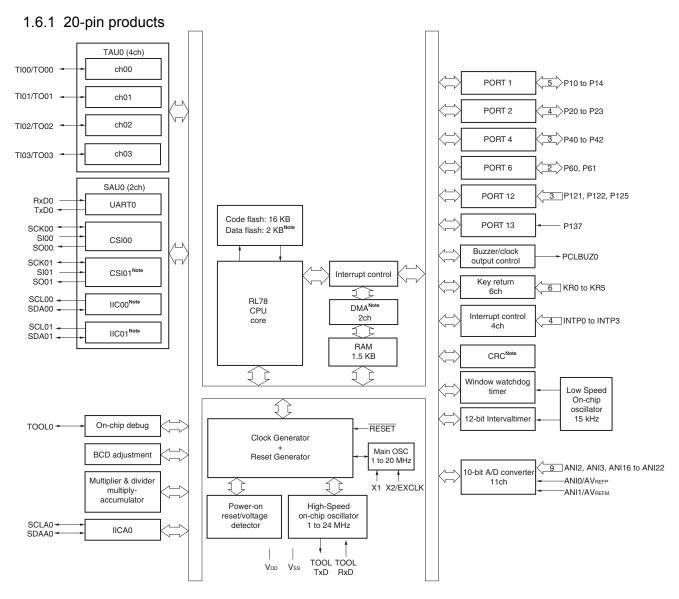

Details

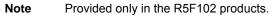
Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	14
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10269asp-x0

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

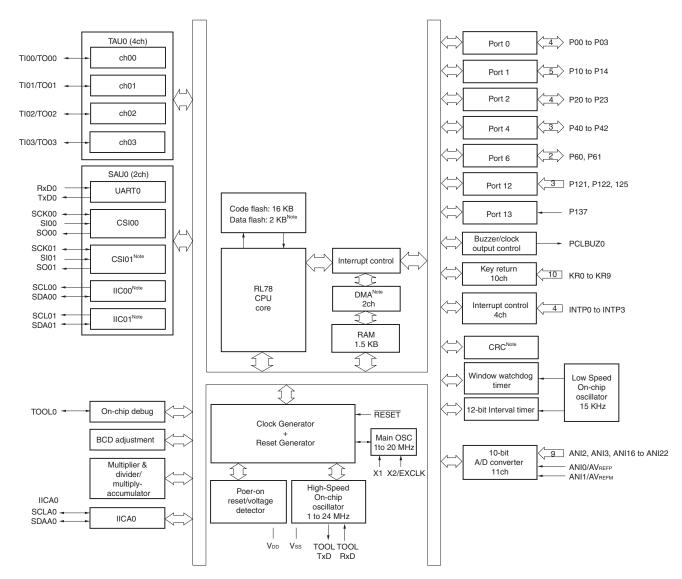
<R>

1.2 List of Part Numbers


Figure 1-1. Part Number, Memory Size, and Package of RL78/G12


Notes 1. For details about the differences between the R5F102 products and the R5F103 products of RL78/G12, see 1.1 Differences between the R5F102 Products and the R5F103 Products.

2. Products only for "A: Consumer applications ($T_A = -40$ to $+85^{\circ}C$)" and "D: Industrial applications ($T_A = -40$ to $+85^{\circ}C$)"


1.6 Block Diagram

1.6.2 24-pin products

Note Provided only in the R5F102 products.

<R> 2. ELECTRICAL SPECIFICATIONS ($T_A = -40$ to +85°C)

<r></r>	This chapter de	scribes the following electrical specifications.
	Target products	A: Consumer applications T _A = -40 to +85°C
<r></r>		R5F102xxAxx, R5F103xxAxx
_		D: Industrial applications $T_A = -40$ to $+85^{\circ}C$
<r></r>		R5F102xxDxx, R5F103xxDxx
		G: Industrial applications when $T_A = -40$ to $+105^{\circ}C$ products is used in the range of $T_A = -40$ to $+85^{\circ}C$
<r></r>		R5F102xxGxx
	Cautions 1.	he RL78 microcontrollers have an on-chip debug function, which is provided for development and

Fautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.

2. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product.

2.2 Oscillator Characteristics

2.2.1 X1 oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator /	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal oscillator	$1.8~V \leq V_{\text{DD}} < 2.7~V$	1.0		8.0	

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- **Remark** When using the X1 oscillator, refer to **5.4 System Clock Oscillator**.

2.2.2 On-chip oscillator characteristics

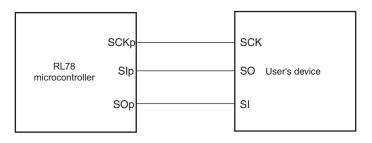
$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Oscillators	Parameters	Conditions		MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		24	MHz
High-speed on-chip oscillator		R5F102 products	$T_A = -20 \text{ to } +85^{\circ}\text{C}$	-1.0		+1.0	%
clock frequency accuracy			$T_A = -40$ to $-20^{\circ}C$	-1.5		+1.5	%
		R5F103 products		-5.0		+5.0	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

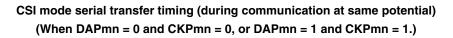
Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H) and bits 0 to 2 of HOCODIV register.

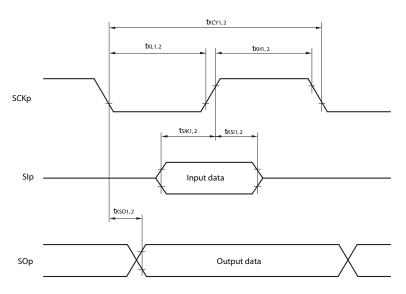
2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

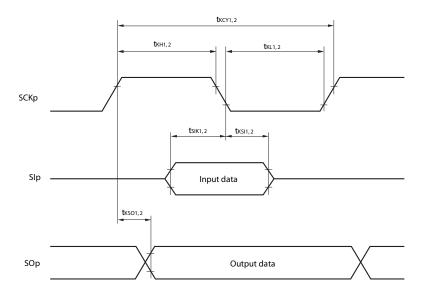
2.4 AC Characteristics


$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Items	Symbol		Condition	IS	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсч	Main system	HS (High-	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.04167		1	μS
instruction execution time)		clock (fMAIN) operation	speed main) mode	$2.4~V \leq V_{\text{DD}} < 2.7~V$	0.0625		1	μS
			LS (Low- speed main) mode	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	0.125		1	μS
		During self	HS (High-	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.04167		1	μS
		programming	speed main) mode	$2.4~V \leq V_{\text{DD}} < 2.7~V$	0.0625		1	μS
			LS (Low- speed main) mode	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	0.125		1	μS
External main system clock	fex	$2.7~V \leq V_{\text{DD}} \leq 5$.5 V		1.0		20.0	MHz
frequency		$2.4~V \leq V_{\text{DD}} < 2.7~V$			1.0		16.0	MHz
		$1.8~V \leq V_{\text{DD}} < 2$	$1.8~V \leq V_{\text{DD}} < 2.4~V$				8.0	MHz
External main system clock	texh, texl	$2.7~V \le V_{\text{DD}} \le 5.5~V$			24			ns
input high-level width, low- level width		$2.4~V \leq V_{\text{DD}} < 2.7~V$			30			ns
		$1.8~V \leq V_{\text{DD}} < 2$.4 V		60			ns
TI00 to TI07 input high-level width, low-level width	t⊓∺, t⊓∟				1/fмск + 10			ns
TO00 to TO07 output	fто	$4.0~V \leq V_{\text{DD}} \leq 5$.5 V				12	MHz
frequency		$2.7~V \leq V_{\text{DD}} < 4$.0 V				8	MHz
		$1.8~V \leq V_{\text{DD}} < 2$.7 V				4	MHz
PCLBUZ0, or PCLBUZ1	f PCL	$4.0~V \leq V_{\text{DD}} \leq 5$.5 V				16	MHz
output frequency		$2.7~V \leq V_{\text{DD}} < 4$.0 V				8	MHz
		$1.8~V \leq V_{\text{DD}} < 2$.7 V				4	MHz
INTP0 to INTP5 input high- level width, low-level width	tın⊤н, tın⊤∟				1			μS
KR0 to KR9 input available width	tкя				250			ns
RESET low-level width	tRSL				10			μs


Remark fmck: Timer array unit operation clock frequency


(Operation clock to be set by the timer clock select register 0 (TPS0) and the CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7))



CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

(Remarks are listed on the next page.)

Parameter	Symbol		Condition	ns	```	igh-speed n) Mode		w-speed) Mode	Unit
					MIN.	MAX.	MIN.	MAX.	
Transfer rate ^{№0te4}		Reception	$4.0 V \le V_{DD} \le 5.5 V$, $2.7 V \le V_b \le 4.0 V$			fмск/6 Note1		fмск/6 Note1	bps
			Theor	retical value of the maximum ier rate f _{CLK}		4.0		1.3	Mbps
			$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \\ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V \end{array}$			fмск/6 Note1		fмск/6 Note1	bps
			transf	retical value of the maximum er rate f _{CLK} ^{Note3}		4.0		1.3	Mbps
			$\label{eq:VDD} \begin{array}{l} 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \\ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V \end{array}$			fмск/6 Notes1, 2		fмск/6 Notes1, 2	bps
			transf	retical value of the maximum er rate f _{CLK} ^{Note3}		4.0		1.3	Mbps
		Transmission	$4.0 V \le V_{DD} \le 5.5 V$, $2.7 V \le V_b \le 4.0 V$			Note4		Note4	bps
			Theor transf	retical value of the maximum er rate 50 pF, $R_b = 1.4 \text{ k}\Omega$, $V_b = 2.7 \text{ V}$		2.8 Note5		2.8 Note5	Mbps
			$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \\ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \end{array}$			Note6		Note6	bps
			Theor transf	retical value of the maximum er rate 50 pF, $R_b = 2.7 \text{ k}\Omega$, $V_b = 2.3 \text{ V}$		1.2 Note7		1.2 Note7	Mbps
			$\label{eq:VDD} \begin{array}{l} 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \\ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V \end{array}$			Notes 2, 8		Notes 2, 8	bps
			transf	retical value of the maximum er rate 50 pF, $R_b = 5.5 \text{ k}\Omega$, $V_b = 1.6 \text{ V}$		0.43 Note9		0.43 Note9	Mbps

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) ($T_A = -40$ to $+85^{\circ}$ C, 1.8 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- $\textbf{2.} \quad \textbf{Use it with } V_{\text{DD}} \geq V_{\text{b}}.$
- 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are: HS (high-speed main) mode: 24 MHz (2.7 V \leq V_{DD} \leq 5.5 V)

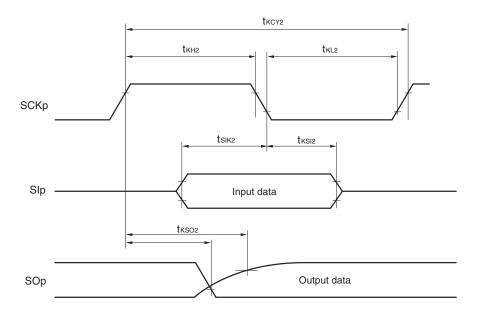
16 MHz (2.4 V
$$\leq$$
 V_{DD} \leq 5.5 V)

LS (low-speed main) mode: 8 MHz (1.8 V \leq V_DD \leq 5.5 V)

4. The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq V_DD \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =


$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =

 $\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}$ $(\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits} \times 100 [\%]$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Input channel		Reference Voltage	
	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = VDD Reference voltage (-) = Vss	Reference voltage (+) = VBGR Reference voltage (-) = AVREFM
ANI0 to ANI3	Refer to 28.6.1 (1).	Refer to 28.6.1 (3) .	Refer to 28.6.1 (4).
ANI16 to ANI22	Refer to 28.6.1 (2) .		
Internal reference voltage	Refer to 28.6.1 (1).		-
Temperature sensor output voltage			

(1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI2, ANI3, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{VDD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{AV}_{\text{REFP}}, \text{ Reference voltage (-)} = \text{AV}_{\text{REFM}} = 0 \text{ V})$

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution			1.2	±3.5	LSB
		$AV_{REFP} = V_{DD}{}^{Note 3}$			1.2	$\pm 7.0^{\text{Note 4}}$	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V\text{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI2, ANI3	$2.7~V \leq V \text{dd} \leq 5.5~V$	3.1875		39	μS
			$1.8~V \leq V \text{DD} \leq 5.5~V$	17		39	μS
				57		95	μS
		10-bit resolution	$3.6~V \leq V\text{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: Internal	$2.7~V \leq V\text{DD} \leq 5.5~V$	3.5625		39	μS
		reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution AVREFP = VDD Note 3				±0.25 ±0.50 ^{Note 4}	%FSR
Full-scale error ^{Notes 1, 2}	EFS	10-bit resolution					%FSR
Full-scale error	EFS	$AV_{REFP} = V_{DD}^{Note 3}$				±0.25 ±0.50 ^{Note 4}	%FSR %FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution				±0.50 ±2.5	LSB
		$AV_{REFP} = V_{DD}^{Note 3}$				$\pm 5.0^{\text{Note 4}}$	LSB
Differential linearity error	DLE	10-bit resolution				±1.5	LSB
Note 1		$AV_{REFP} = V_{DD}^{Note 3}$				$\pm 2.0^{\text{Note 4}}$	LSB
Analog input voltage	VAIN	ANI2, ANI3		0		AVREFP	V
		Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, HS	e (high-speed main) mode)		VBGR ^{Note 5}		V
		Temperature sensor outp (2.4 V \leq VDD \leq 5.5 V, HS	out voltage (high-speed main) mode)		VTMPS25 Note :	5	V

(Notes are listed on the next page.)

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When AV_{REFP} < V_{DD}, the MAX. values are as follows. Overall error: Add ±1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.05%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.
- 4. Values when the conversion time is set to 57 μs (min.) and 95 μs (max.).
- 5. Refer to 28.6.2 Temperature sensor/internal reference voltage characteristics.
- (2) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI22

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{AV}_{REFP}, \text{ Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error Note 1	AINL	10-bit resolution			1.2	±5.0	LSB
		$AV_{REFP} = V_{DD}^{Note 3}$			1.2	$\pm 8.5^{\text{Note 4}}$	LSB
Conversion time	tCONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μS
		Target ANI pin: ANI16 to ANI22	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μS
			$1.8~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
				57		95	μS
Zero-scale error Notes 1, 2	EZS	10-bit resolution				±0.35	%FSR
		$AV_{REFP} = V_{DD}^{Note 3}$				$\pm 0.60^{\text{Note 4}}$	%FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution				±0.35	%FSR
		$AV_{REFP} = V_{DD}^{Note 3}$				$\pm 0.60^{\text{Note 4}}$	%FSR
Integral linearity error Note 1	ILE	10-bit resolution				±3.5	LSB
		$AV_{REFP} = V_{DD}^{Note 3}$				$\pm 6.0^{\text{Note 4}}$	LSB
Differential linearity	DLE	10-bit resolution				±2.0	LSB
error ^{Note 1}		$AV_{REFP} = V_{DD}^{Note 3}$				±2.5 ^{Note 4}	LSB
Analog input voltage	VAIN	ANI16 to ANI22		0		AVREFP	V
						and VDD	

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- **3.** When AV_{REFP} \leq V_{DD}, the MAX. values are as follows. Overall error: Add ±4.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.20%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.
- 4. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).

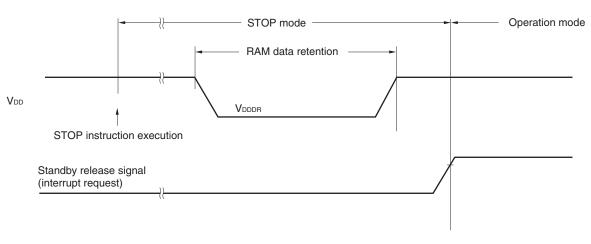
LVD detection voltage of interrupt & reset mode
$(T_A = -40 \text{ to } +85^{\circ}\text{C} \text{ V}_{PDR} < \text{V}_{DD} < 5.5 \text{ V} \text{ V}_{SS} = 0.\text{ V})$

Parameter	Symbol		Con	MIN.	TYP.	MAX.	Unit	
Interrupt and reset	VLVDB0	VPOC2,	VPOC1, VPOC0 = 0, 0, 1, fa	ling reset voltage	1.80	1.84	1.87	V
mode	VLVDB1		LVIS1, LVIS0 = 1, 0	Rising reset release voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB2		LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
	V LVDB3		LVIS1, LVIS0 = 0, 0	Rising reset release voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDC0	VPOC2,	VPOC2, VPOC1, VPOC0 = 0, 1, 0, falling reset voltage		2.40	2.45	2.50	V
N	VLVDC1		LVIS1, LVIS0 = 1, 0	Rising reset release voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDC3		LVIS1, LVIS0 = 0, 0	Rising reset release voltage	3.68	3.75	3.82	V
				Falling interrupt voltage	3.60	3.67	3.74	V
	VLVDD0	VPOC2,	VPOC1, VPOC1 = 0, 1, 1, fa	ling reset voltage	2.70	2.75	2.81	V
	VLVDD1		LVIS1, LVIS0 = 1, 0	Rising reset release voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2		LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V
	V LVDD3		LVIS1, LVIS0 = 0, 0	Rising reset release voltage	3.98	4.06	4.14	V
				Falling interrupt voltage	3.90	3.98	4.06	V

2.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms


Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 28.4 AC Characteristics.

<R> 2.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$						
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vdddr		1.46 ^{Note}		5.5	V

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

2.8 Flash Memory Programming Characteristics

<r></r>	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	System clock frequency	fclĸ		1		24	MHz
	Code flash memory rewritable times	Cerwr	Retained for 20 years	1,000			Times
	Notes 1, 2, 3		$T_A = 85^{\circ}C$				
	Data flash memory rewritable times		Retained for 1 year		1,000,000		
	Notes 1, 2, 3		$T_A = 25^{\circ}C$				
			Retained for 5 years	100,000			
			$T_A = 85^{\circ}C$				
			Retained for 20 years	10,000			
			$T_A = 85^{\circ}C$				

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

$(Ta = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$								
Parameter	Symbol	Conditions			TYP.	MAX.	Unit	
Output current, low ^{Note 1}	Iol1	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42 30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147				8.5 Note 2	mA	
		Per pin for P60, P61				15.0 Note 2	mA	
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			25.5	mA	
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			9.0	mA	
		30-pin products: Total of P00, P01, P40, P120 (When duty $\leq 70\%^{\text{Note 3}}$)	$2.4~V \leq V_{\text{DD}} < 2.7~V$			1.8	mA	
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			40.0	mA	
	Іога	Total of P00 to P03 ^{№te 4} , P10 to P14, P60, P61	$2.7~V \leq V_{\text{DD}} < 4.0~V$			27.0	mA	
		30-pin products: Total of P10 to P17, P30, P31, P50, P51, P60, P61, P147 (When duty \leq 70% ^{Note 3})	$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			5.4	mA	
		Total of all pins (When duty $\leq 70\%^{Note 3}$)				65.5	mA	
		Per pin for P20 to P23				0.4	mA	
		Total of all pins				1.6	mA	

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.

2. However, do not exceed the total current value.

3. The output current value under conditions where the duty factor \leq 70%.

If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).

• Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and I_{OL} = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \cong 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

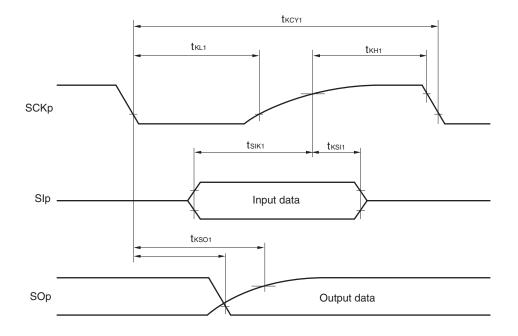
- **4.** 24-pin products only.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(0/4)

(2) 30-pin products

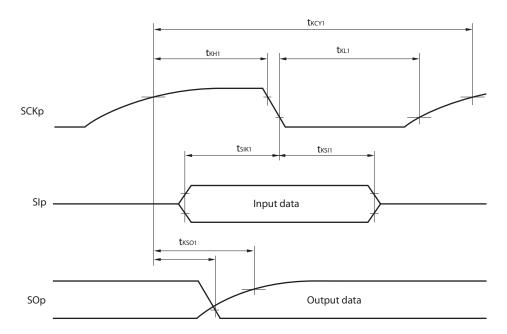
$A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = 0^{-1}$	V)
--	----

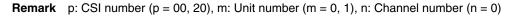
(T _A = -40 to	+105°C,	$2.4 V \leq V_D$	□ ≤ 5.5 V, V ss =	= 0 V)						(1/2)
Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply		Operating	HS (High-speed	$f_{IH} = 24 \ MHz^{Note 3}$	Basic	VDD = 5.0 V		1.5		mA
current ^{Note 1}		mode	main) mode ^{№084}		operation	VDD = 3.0 V		1.5		
					Normal	V _{DD} = 5.0 V		3.7	5.8	mA
					operation	VDD = 3.0 V		3.7	5.8	
				$f_{IH} = 16 \text{ MHz}^{Note 3}$		V _{DD} = 5.0 V		2.7	4.2	mA
						VDD = 3.0 V		2.7	4.2	
				$f_{MX} = 20 \text{ MHz}^{Note 2},$		Square wave input		3.0	4.9	mA
				$V_{DD} = 5.0 \text{ V}$		Resonator connection		3.2	5.0	
				$f_{MX} = 20 \text{ MHz}^{Note 2},$		Square wave input		3.0	4.9	mA
				$V_{\text{DD}} = 3.0 \text{ V}$		Resonator connection		3.2	5.0	
				$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		1.9	2.9	mA
				$V_{DD} = 5.0 \text{ V}$		Resonator connection		1.9	2.9	
				$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		1.9	2.9	mA
				$V_{DD} = 3.0 \text{ V}$		Resonator connection		1.9	2.9	


Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. When high-speed on-chip oscillator clock is stopped.
- 3. When high-speed system clock is stopped
- 4. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz VDD = 2.4 V to 5.5 V @1 MHz to 16 MHz


- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$.



CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
 - 3. When AV_{REFP} < V_{DD}, the MAX. values are as follows. Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add $\pm 0.05\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.
 - 4. Refer to 29.6.2 Temperature sensor/internal reference voltage characteristics.
- (2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI22

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{\text{REFP}}, \text{Reference voltage (-)} = 100^{\circ}\text{C}, 1$	
AVREFM = 0 V)	

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	Res					10	bit
Overall error Note 1	AINL	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}		1.2	±5.0	LSB	
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μS
		Target ANI pin: ANI16 to ANI22	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μS
			$2.4~V \le V \text{DD} \le 5.5~V$	17		39	μs
Zero-scale error Notes 1, 2	EZS	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}			±0.35	%FSR	
Full-scale error Notes 1, 2	EFS	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±0.35	%FSR
Integral linearity error Note 1	ILE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±3.5	LSB
Differential linearity error ^{Note 1}	DLE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±2.0	LSB
Analog input voltage	VAIN	ANI16 to ANI22		0		AVREFP and VDD	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. When $AV_{REFP} \leq V_{DD}$, the MAX. values are as follows.

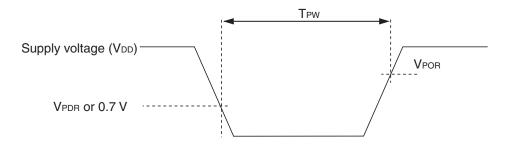
Overall error: Add ± 4.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.20\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ± 2.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

3.6.2 Temperature sensor/internal reference voltage characteristics

		/ \ 				
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.50	V
Temperature coefficient	Fvtmps	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tамр		5			μs

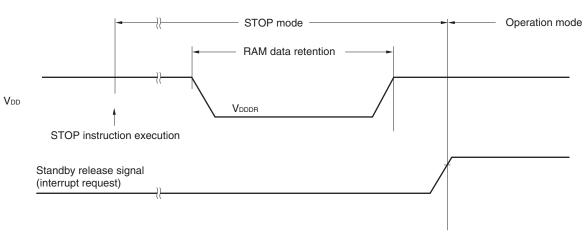

(T_A = -40 to $+105^{\circ}$ C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, HS (high-speed main) mode

3.6.3 POR circuit characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.45	1.51	1.57	V
	VPDR	Power supply fall time	1.44	1.50	1.56	V
Minimum pulse width Note	TPW		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).


<R>

<R> 3.7 RAM Data Retention Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vdddr		1.44 ^{Note}		5.5	V

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

3.8 Flash Memory Programming Characteristics

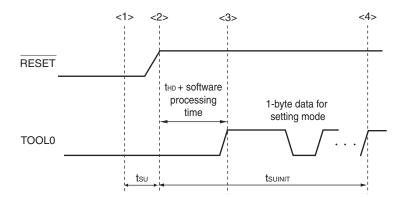
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fськ		1		24	MHz
Code flash memory rewritable times Notes 1, 2, 3	Cerwr	Retained for 20 years $T_A = 85^{\circ}C^{Notes 4}$	1,000			Times
Data flash memory rewritable times Notes 1, 2, 3		Retained for 1 year $T_A = 25^{\circ}C^{Notes 4}$		1,000,000		
		Retained for 5 years $T_A = 85^{\circ}C^{Notes 4}$	100,000			
		Retained for 20 years $T_A = 85^{\circ}C^{Notes 4}$	10,000			

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.
- 4. This temperature is the average value at which data are retained.

3.9 Dedicated Flash Memory Programmer Communication (UART)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit					
Transfer rate		During serial programming	115,200		1,000,000	bps					

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

3.10 Timing of Entry to Flash Memory Programming Modes

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset are released before external release			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset are released before external release	10			μS
Time to hold the TOOL0 pin at the low level after the external reset is released	tнo	POR and LVD reset are released before external release	1			ms
(excluding the processing time of the firmware to control the flash memory)						

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - $t_{\text{su:}}$ Time to release the external reset after the TOOL0 pin is set to the low level
 - the: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

