

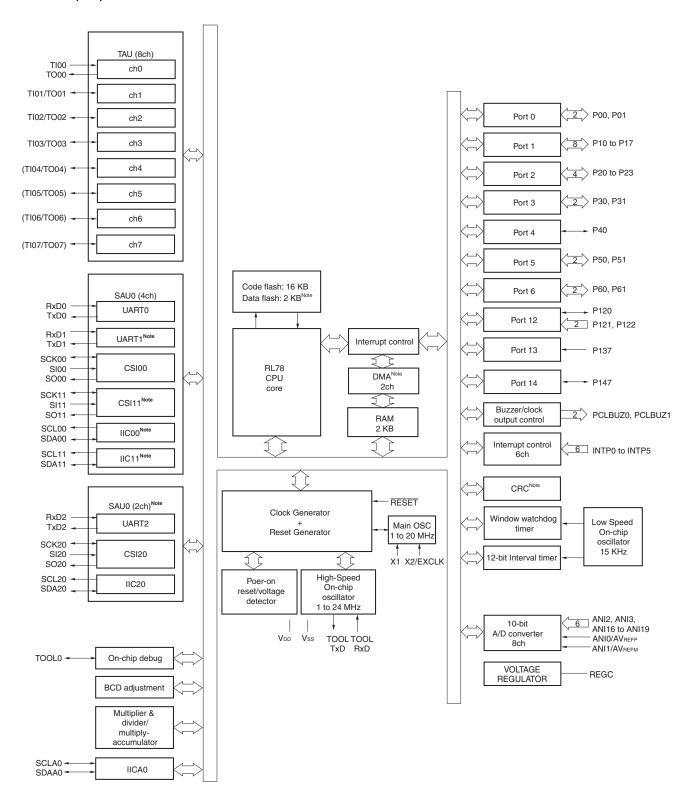


Welcome to **E-XFL.COM** 

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"


| Details                    |                                                                                 |
|----------------------------|---------------------------------------------------------------------------------|
| Product Status             | Obsolete                                                                        |
| Core Processor             | RL78                                                                            |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 24MHz                                                                           |
| Connectivity               | CSI, I <sup>2</sup> C, UART/USART                                               |
| Peripherals                | DMA, LVD, POR, PWM, WDT                                                         |
| Number of I/O              | 14                                                                              |
| Program Memory Size        | 12KB (12K x 8)                                                                  |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | 2K x 8                                                                          |
| RAM Size                   | 1K x 8                                                                          |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 5.5V                                                                     |
| Data Converters            | A/D 11x8/10b                                                                    |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 20-LSSOP (0.173", 4.40mm Width)                                                 |
| Supplier Device Package    | 20-LSSOP                                                                        |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10269asp-x5 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RL78/G12 1. OUTLINE

## 1.6.3 30-pin products



Note Provided only in the R5F102 products.

**Remark** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See **Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR)**.

RL78/G12 1. OUTLINE

(2/2)

| Item                     |                      | 20-                                                                                                                           | -pin                                                                                                                                                                                                                                                    | 24-              | -pin              | 30-                             | -pin          |  |  |  |
|--------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|---------------------------------|---------------|--|--|--|
|                          |                      | R5F1026x                                                                                                                      | R5F1036x                                                                                                                                                                                                                                                | R5F1027x         | R5F1037x          | R5F102Ax                        | R5F103Ax      |  |  |  |
| Clock output/buzzer ou   | ıtput                |                                                                                                                               |                                                                                                                                                                                                                                                         | 1                |                   | - 1                             | 2             |  |  |  |
|                          |                      | 2.44 kHz to 10                                                                                                                | MHz: (Peripher                                                                                                                                                                                                                                          | al hardware cloc | ck: fmain = 20 MH | z operation)                    |               |  |  |  |
| 8/10-bit resolution A/D  | converter            |                                                                                                                               | 11 channels 8 channels                                                                                                                                                                                                                                  |                  |                   |                                 |               |  |  |  |
| Serial interface         |                      | [R5F1026x (20-pin), R5F1027x (24-pin)]                                                                                        |                                                                                                                                                                                                                                                         |                  |                   |                                 |               |  |  |  |
|                          |                      | CSI: 2 chann                                                                                                                  | CSI: 2 channels/Simplified I <sup>2</sup> C: 2 channels/UART: 1 channel                                                                                                                                                                                 |                  |                   |                                 |               |  |  |  |
|                          |                      | [R5F102Ax (30-pin)]                                                                                                           |                                                                                                                                                                                                                                                         |                  |                   |                                 |               |  |  |  |
|                          |                      | CSI: 1 chann                                                                                                                  | nel/Simplified I <sup>2</sup> C                                                                                                                                                                                                                         | C: 1 channel/UAF | RT: 1 channel     |                                 |               |  |  |  |
|                          |                      | CSI: 1 chann                                                                                                                  | nel/Simplified I <sup>2</sup> C                                                                                                                                                                                                                         | C: 1 channel/UAF | RT: 1 channel     |                                 |               |  |  |  |
|                          |                      | CSI: 1 chann                                                                                                                  | nel/Simplified I <sup>2</sup> C                                                                                                                                                                                                                         | C: 1 channel/UAF | RT: 1 channel     |                                 |               |  |  |  |
|                          |                      | [R5F1036x (20                                                                                                                 | )-pin), R5F1037                                                                                                                                                                                                                                         | x (24-pin)]      |                   |                                 |               |  |  |  |
|                          |                      | CSI: 1 chann                                                                                                                  | nel/Simplified I <sup>2</sup> C                                                                                                                                                                                                                         | C: 0 channel/UAF | RT: 1 channel     |                                 |               |  |  |  |
|                          |                      | [R5F103Ax (30                                                                                                                 | O-pin)]                                                                                                                                                                                                                                                 |                  |                   |                                 |               |  |  |  |
|                          |                      | CSI: 1 chann                                                                                                                  | nel/Simplified I <sup>2</sup> C                                                                                                                                                                                                                         | C: 0 channel/UAF | RT: 1 channel     |                                 |               |  |  |  |
|                          | I <sup>2</sup> C bus | 1 channel                                                                                                                     |                                                                                                                                                                                                                                                         |                  |                   |                                 |               |  |  |  |
| Multiplier and divider/m | nultiply-            | • 16 bits × 16 l                                                                                                              | oits = 32 bits (ur                                                                                                                                                                                                                                      | signed or signed | d)                |                                 |               |  |  |  |
| accumulator              |                      | • 32 bits × 32 l                                                                                                              | oits = 32 bits (ur                                                                                                                                                                                                                                      | isigned)         |                   |                                 |               |  |  |  |
|                          |                      | • 16 bits × 16 l                                                                                                              | • 16 bits × 16 bits + 32 bits = 32 bits (unsigned or signed)                                                                                                                                                                                            |                  |                   |                                 |               |  |  |  |
| DMA controller           | 1                    | 2 channels                                                                                                                    | _                                                                                                                                                                                                                                                       | 2 channels       | _                 | 2 channels                      | _             |  |  |  |
| Vectored interrupt       | Internal             | 18                                                                                                                            | 16                                                                                                                                                                                                                                                      | 18               | 16                | 26                              | 19            |  |  |  |
| sources                  | External             |                                                                                                                               |                                                                                                                                                                                                                                                         | 5                |                   | (                               | 6             |  |  |  |
| Key interrupt            |                      | (                                                                                                                             | 6                                                                                                                                                                                                                                                       | 1                | 0                 | _                               |               |  |  |  |
| Reset                    |                      | <ul> <li>Internal rese</li> <li>Internal rese</li> <li>Internal rese</li> <li>Internal rese</li> <li>Internal rese</li> </ul> | Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution Note Internal reset by RAM parity error Internal reset by illegal-memory access |                  |                   |                                 |               |  |  |  |
| Power-on-reset circuit   |                      | Power-on-reset: 1.51 V (TYP)     Power-down-reset: 1.50 V (TYP)                                                               |                                                                                                                                                                                                                                                         |                  |                   |                                 |               |  |  |  |
| Voltage detector         |                      | • Rising edge : 1.88 to 4.06 V (12 stages)                                                                                    |                                                                                                                                                                                                                                                         |                  |                   |                                 |               |  |  |  |
|                          |                      | • Falling edge: 1.84 to 3.98 V (12 stages)                                                                                    |                                                                                                                                                                                                                                                         |                  |                   |                                 |               |  |  |  |
| On-chip debug function   | n                    | Provided                                                                                                                      |                                                                                                                                                                                                                                                         |                  |                   |                                 |               |  |  |  |
| Power supply voltage     |                      | V <sub>DD</sub> = 1.8 to 5.5 V                                                                                                |                                                                                                                                                                                                                                                         |                  |                   |                                 |               |  |  |  |
| Operating ambient tem    | perature             | $T_A = -40 \text{ to } +80$<br>(G: Industrial a                                                                               | ,                                                                                                                                                                                                                                                       | er applications, | D: Industrial app | olications), T <sub>A</sub> = - | -40 to +105°C |  |  |  |

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

#### (2) 30-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$ 

(2/2)

| Parameter      | Symbol                 |                   |                                            | Conditions                                                         |                         | MIN. | TYP.                                       | MAX.              | Unit |     |     |    |
|----------------|------------------------|-------------------|--------------------------------------------|--------------------------------------------------------------------|-------------------------|------|--------------------------------------------|-------------------|------|-----|-----|----|
| Supply         | IDD2 Note 2            | HALT              | HS (High-speed                             | fin = 24 MHz <sup>Note 4</sup>                                     | V <sub>DD</sub> = 5.0 V |      | 440                                        | 1280              | μА   |     |     |    |
| current Note 1 |                        | mode              | main) mode Note 6                          |                                                                    | V <sub>DD</sub> = 3.0 V |      | 440                                        | 1280              |      |     |     |    |
|                |                        |                   |                                            | fin = 16 MHz <sup>Note 4</sup>                                     | V <sub>DD</sub> = 5.0 V |      | 400                                        | 1000              | μА   |     |     |    |
|                |                        |                   |                                            |                                                                    | V <sub>DD</sub> = 3.0 V |      | 400                                        | 1000              |      |     |     |    |
|                |                        |                   | LS (Low-speed                              | fin = 8 MHz <sup>Note 4</sup>                                      | V <sub>DD</sub> = 3.0 V |      | 260                                        | 530               | μA   |     |     |    |
|                |                        |                   | main) mode Note 6                          |                                                                    | V <sub>DD</sub> = 2.0 V |      | 260                                        | 530               |      |     |     |    |
|                |                        |                   | HS (High-speed                             | f <sub>MX</sub> = 20 MHz <sup>Note 3</sup> ,                       | Square wave input       |      | 280                                        | 1000              | μА   |     |     |    |
|                |                        | main) mode Note 6 | $V_{DD} = 5.0 \text{ V}$                   | Resonator connection                                               |                         | 450  | 1170                                       |                   |      |     |     |    |
|                |                        |                   | $f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$ | Square wave input                                                  |                         | 280  | 1000                                       | μA                |      |     |     |    |
|                |                        |                   | V <sub>DD</sub> = 3.0 V                    | Resonator connection                                               |                         | 450  | 1170                                       |                   |      |     |     |    |
|                |                        |                   |                                            | $f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$                         | Square wave input       |      | 190                                        | 600               | μА   |     |     |    |
|                |                        |                   |                                            | V <sub>DD</sub> = 5.0 V                                            | Resonator connection    |      | 260                                        | 670               |      |     |     |    |
|                |                        |                   |                                            |                                                                    |                         |      | $f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$ | Square wave input |      | 190 | 600 | μΑ |
|                |                        |                   |                                            | $V_{DD} = 3.0 \text{ V}$ $f_{MX} = 8 \text{ MHz}^{\text{Note 3}},$ | Resonator connection    |      | 260                                        | 670               |      |     |     |    |
|                |                        |                   | LS (Low-speed                              |                                                                    | Square wave input       |      | 95                                         | 330               | μΑ   |     |     |    |
|                |                        |                   | main) mode Note 6                          | V <sub>DD</sub> = 3.0 V                                            | Resonator connection    |      | 145                                        | 380               |      |     |     |    |
|                |                        |                   |                                            | fmx = 8 MHz <sup>Note 3</sup>                                      | Square wave input       |      | 95                                         | 330               | μΑ   |     |     |    |
|                |                        |                   |                                            | V <sub>DD</sub> = 2.0 V                                            | Resonator connection    |      | 145                                        | 380               |      |     |     |    |
|                | IDD3 <sup>Note 5</sup> | STOP              | $T_A = -40^{\circ}C$                       |                                                                    |                         |      | 0.18                                       | 0.50              | μА   |     |     |    |
|                |                        | mode              | T <sub>A</sub> = +25°C                     |                                                                    |                         |      | 0.23                                       | 0.50              |      |     |     |    |
|                |                        |                   | T <sub>A</sub> = +50°C                     |                                                                    |                         |      | 0.30                                       | 1.10              |      |     |     |    |
|                |                        | -                 | T <sub>A</sub> = +70°C                     |                                                                    |                         |      | 0.46                                       | 1.90              |      |     |     |    |
|                |                        |                   | T <sub>A</sub> = +85°C                     |                                                                    |                         |      | 0.75                                       | 3.30              |      |     |     |    |

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
  - 2. During HALT instruction execution by flash memory.
  - 3. When high-speed on-chip oscillator clock is stopped.
  - 4. When high-speed system clock is stopped.
  - 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.
  - **6.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS (High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz

 $V_{DD} = 2.4 \text{ V to } 5.5 \text{ V } @ 1 \text{ MHz to } 16 \text{ MHz}$ 

LS (Low speed main) mode: VDD = 1.8 V to 5.5 V @1 MHz to 8 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
  - 2. fin: high-speed on-chip oscillator clock frequency
  - 3. Except STOP mode, temperature condition of the TYP. value is  $T_A = 25$ °C.

### (3) Peripheral functions (Common to all products)

### $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

| Parameter                                               | Symbol                 |                    | Conditions                                                                          | MIN. | TYP. | MAX.  | Unit |
|---------------------------------------------------------|------------------------|--------------------|-------------------------------------------------------------------------------------|------|------|-------|------|
| Low-speed onchip oscillator operating current           | FIL Note 1             |                    |                                                                                     |      | 0.20 |       | μΑ   |
| 12-bit interval timer operating current                 | ÎTMKA<br>Notes 1, 2, 3 |                    |                                                                                     |      | 0.02 |       | μΑ   |
| Watchdog timer operating current                        | WDT<br>Notes 1, 2, 4   | fıL = 15 kHz       |                                                                                     |      | 0.22 |       | μΑ   |
| A/D converter                                           | IADC Notes 1, 5        | When conversion at | Normal mode, AVREFP = VDD = 5.0 V                                                   |      | 1.30 | 1.70  | mA   |
| operating current                                       |                        | maximum speed      | Low voltage mode, AV <sub>REFP</sub> = V <sub>DD</sub> = 3.0 V                      |      | 0.50 | 0.70  | mA   |
| A/D converter<br>reference voltage<br>operating current | ADREF Note 1           |                    |                                                                                     |      | 75.0 |       | μΑ   |
| Temperature sensor operating current                    | ITMPS Note 1           |                    |                                                                                     |      | 75.0 |       | μА   |
| LVD operating current                                   | ILVD Notes 1, 6        |                    |                                                                                     |      | 0.08 |       | μΑ   |
| Self-<br>programming<br>operating current               | FSP Notes 1, 8         |                    |                                                                                     |      | 2.00 | 12.20 | mA   |
| BGO operating current                                   | IBGO Notes 1, 7        |                    |                                                                                     |      | 2.00 | 12.20 | mA   |
| SNOOZE                                                  | ISNOZ Note 1           | ADC operation      | The mode is performed Note 9                                                        |      | 0.50 | 0.60  | mA   |
| operating current                                       |                        |                    | The A/D conversion operations are performed, Low voltage mode, AVREFP = VDD = 3.0 V |      | 1.20 | 1.44  | mA   |
|                                                         |                        | CSI/UART operation |                                                                                     |      | 0.70 | 0.84  | mA   |

## Notes 1. Current flowing to the $V_{\text{DD}}$ .

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and IFIL and ITMKA when the 12-bit interval timer operates.
- 4. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.
- **5.** Current flowing only to the A/D converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- **6.** Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit operates.
- 7. Current flowing only during data flash rewrite.
- 8. Current flowing only during self programming.
- 9. For shift time to the SNOOZE mode, see 17.3.3 SNOOZE mode.

#### Remarks 1. fil: Low-speed on-chip oscillator clock frequency

2. Temperature condition of the TYP. value is  $T_A = 25^{\circ}C$ 

### 2.4 AC Characteristics

# $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

| Items                                                      | Symbol       |                                                | Conditions                      |                                                               |                |     | MAX. | Unit |
|------------------------------------------------------------|--------------|------------------------------------------------|---------------------------------|---------------------------------------------------------------|----------------|-----|------|------|
| Instruction cycle (minimum                                 | Tcy          | Main system                                    | HS (High-                       | $2.7~V \leq V_{DD} \leq 5.5~V$                                | 0.04167        |     | 1    | μS   |
| instruction execution time)                                |              | clock (fMAIN)<br>operation                     | speed main)<br>mode             | $2.4~\textrm{V} \leq \textrm{V}_\textrm{DD} < 2.7~\textrm{V}$ | 0.0625         |     | 1    | μS   |
|                                                            |              |                                                | LS (Low-<br>speed main)<br>mode | $1.8~V \le V_{DD} \le 5.5~V$                                  | 0.125          |     | 1    | μs   |
|                                                            |              | During self                                    | HS (High-                       | $2.7~V \leq V_{DD} \leq 5.5~V$                                | 0.04167        |     | 1    | μS   |
|                                                            |              | programming                                    | speed main)<br>mode             | $2.4~V \leq V_{DD} < 2.7~V$                                   | 0.0625         |     | 1    | μS   |
|                                                            |              |                                                | LS (Low-<br>speed main)<br>mode | $1.8~V \le V_{DD} \le 5.5~V$                                  | 0.125          |     | 1    | μs   |
| External main system clock                                 | fex          | $2.7~V \leq V_{DD} \leq 5$                     | .5 V                            |                                                               | 1.0            |     | 20.0 | MHz  |
| frequency                                                  |              | $2.4~V \leq V_{DD} < 2$                        | 1.0                             |                                                               | 16.0           | MHz |      |      |
|                                                            |              | $1.8~V \leq V_{DD} < 2$                        | .4 V                            |                                                               | 1.0            |     | 8.0  | MHz  |
| External main system clock                                 | texh, texl   | $2.7 \text{ V} \leq V_{DD} \leq 5.5 \text{ V}$ |                                 |                                                               |                |     |      | ns   |
| input high-level width, low-level width                    |              | $2.4~V \leq V_{DD} < 2.7~V$                    |                                 |                                                               | 30             |     |      | ns   |
| level width                                                |              | $1.8~V \leq V_{DD} < 2$                        | .4 V                            | 60                                                            |                |     | ns   |      |
| TI00 to TI07 input high-level width, low-level width       | тпн, тп∟     |                                                |                                 |                                                               | 1/fмск +<br>10 |     |      | ns   |
| TO00 to TO07 output                                        | fто          | 4.0 V ≤ V <sub>DD</sub> ≤ 5                    | .5 V                            |                                                               |                |     | 12   | MHz  |
| frequency                                                  |              | $2.7~V \leq V_{DD} < 4$                        | .0 V                            |                                                               |                |     | 8    | MHz  |
|                                                            |              | 1.8 V ≤ V <sub>DD</sub> < 2                    | .7 V                            |                                                               |                |     | 4    | MHz  |
| PCLBUZ0, or PCLBUZ1                                        | <b>f</b> PCL | 4.0 V ≤ V <sub>DD</sub> ≤ 5                    | .5 V                            |                                                               |                |     | 16   | MHz  |
| output frequency                                           |              | $2.7~V \leq V_{DD} < 4$                        | .0 V                            |                                                               |                |     | 8    | MHz  |
|                                                            |              | 1.8 V ≤ V <sub>DD</sub> < 2                    | .7 V                            |                                                               |                |     | 4    | MHz  |
| INTP0 to INTP5 input high-<br>level width, low-level width | tinth, tintl |                                                |                                 |                                                               | 1              |     |      | μS   |
| KR0 to KR9 input available width                           | tĸĸ          |                                                |                                 |                                                               | 250            |     |      | ns   |
| RESET low-level width                                      | trsl         |                                                |                                 |                                                               | 10             |     |      | μS   |

### Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the timer clock select register 0 (TPS0) and the CKS0n bit of timer mode register 0 (TMR0n). n: Channel number (n = 0 to 7))

- Remarks 1. p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products.)
  - 2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products.))

#### (5) During communication at same potential (simplified I<sup>2</sup>C mode)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$ 

| Parameter                     | Symbol  | Conditions                                           | HS (high-speed      | main) Mode | Unit |
|-------------------------------|---------|------------------------------------------------------|---------------------|------------|------|
|                               |         |                                                      | LS (low-speed       | main) Mode |      |
|                               |         |                                                      | MIN.                | MAX.       |      |
| SCLr clock frequency          | fscL    | $1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V},$        |                     | 400 Note 1 | kHz  |
|                               |         | $C_b=100~pF,~R_b=3~k\Omega$                          |                     |            |      |
|                               |         | $1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V},$   |                     | 300 Note 1 | kHz  |
|                               |         | $C_b=100~pF,~R_b=5~k\Omega$                          |                     |            |      |
| Hold time when SCLr = "L"     | tLOW    | $1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V},$        | 1150                |            | ns   |
|                               |         | $C_b=100~pF,~R_b=3~k\Omega$                          |                     |            |      |
|                               |         | $1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V},$   | 1550                |            | ns   |
|                               |         | $C_b=100~pF,~R_b=5~k\Omega$                          |                     |            |      |
| Hold time when SCLr = "H"     | tніgн   | $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ | 1150                |            | ns   |
|                               |         | $C_b=100~pF,~R_b=3~k\Omega$                          |                     |            |      |
|                               |         | $1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V},$   | 1550                |            | ns   |
|                               |         | $C_b=100~pF,~R_b=5~k\Omega$                          |                     |            |      |
| Data setup time (reception)   | tsu:dat | $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ | 1/fмск + 145 Note 2 |            | ns   |
|                               |         | $C_b=100~pF,~R_b=3~k\Omega$                          |                     |            |      |
|                               |         | $1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V},$   | 1/fмск + 230 Note 2 |            | ns   |
|                               |         | $C_b=100~pF,~R_b=5~k\Omega$                          |                     |            |      |
| Data hold time (transmission) | thd:dat | $1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V},$        | 0                   | 355        | ns   |
|                               |         | $C_b=100~pF,~R_b=3~k\Omega$                          |                     |            |      |
|                               |         | $1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V},$   | 0                   | 405        | ns   |
|                               |         | $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$      |                     |            |      |

- Notes 1. The value must also be equal to or less than fmck/4.
  - 2. Set tsu:DAT so that it will not exceed the hold time when SCLr = "L" or SCLr = "H".

**Caution** Select the N-ch open drain output (V<sub>DD</sub> tolerance) mode for SDAr by using port output mode register h (POMh).

(Remarks are listed on the next page.)

#### (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$ 

| Parameter           | Symbol                                                                                                            |                                                                                                 | Conditions                                                                                                           | ,               | nigh-speed<br>in) Mode |                 | ow-speed<br>n) Mode | Unit |
|---------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------|------------------------|-----------------|---------------------|------|
|                     |                                                                                                                   |                                                                                                 |                                                                                                                      | MIN.            | MAX.                   | MIN.            | MAX.                |      |
| Transfer rate Note4 |                                                                                                                   | Reception                                                                                       | $\begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_{b} \leq 4.0 \ V \end{aligned}$               |                 | fMCK/6<br>Note1        |                 | fMCK/6<br>Note1     | bps  |
|                     |                                                                                                                   | Theoretical value of the maximum transfer rate $f_{\text{MCK}} = f_{\text{CLK}}$                |                                                                                                                      |                 | 4.0                    |                 | 1.3                 | Mbps |
|                     |                                                                                                                   | $\begin{split} 2.7 \ V &\leq V_{DD} < 4.0 \ V, \\ 2.3 \ V &\leq V_{b} \leq 2.7 \ V \end{split}$ |                                                                                                                      | fмск/6<br>Note1 |                        | fmck/6<br>Note1 | bps                 |      |
|                     |                                                                                                                   |                                                                                                 | Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note3}$                                           |                 | 4.0                    |                 | 1.3                 | Mbps |
|                     | $\begin{aligned} 1.8 \ V &\leq V_{\text{DD}} < 3.3 \ V, \\ 1.6 \ V &\leq V_{\text{b}} \leq 2.0 \ V \end{aligned}$ |                                                                                                 | fMCK/6<br>Notes1, 2                                                                                                  |                 | fMCK/6<br>Notes1, 2    | bps             |                     |      |
|                     |                                                                                                                   | Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note3}$                      |                                                                                                                      | 4.0             |                        | 1.3             | Mbps                |      |
|                     |                                                                                                                   | Transmission                                                                                    | $4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$<br>$2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V}$           |                 | Note4                  |                 | Note4               | bps  |
|                     |                                                                                                                   |                                                                                                 | Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, V_b = 2.7 \text{ V}$ |                 | 2.8<br>Note5           |                 | 2.8<br>Note5        | Mbps |
|                     |                                                                                                                   |                                                                                                 | $\begin{aligned} 2.7 \ V &\leq V_{DD} < 4.0 \ V, \\ 2.3 \ V &\leq V_{b} \leq 2.7 \ V, \end{aligned}$                 |                 | Note6                  |                 | Note6               | bps  |
|                     |                                                                                                                   |                                                                                                 | Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$ |                 | 1.2<br>Note7           |                 | 1.2<br>Note7        | Mbps |
|                     |                                                                                                                   |                                                                                                 | $1.8 \ V \le V_{DD} < 3.3 \ V,$ $1.6 \ V \le V_{b} \le 2.0 \ V$                                                      |                 | Notes<br>2, 8          |                 | Notes<br>2, 8       | bps  |
|                     |                                                                                                                   |                                                                                                 | Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$ |                 | 0.43<br>Note9          |                 | 0.43<br>Note9       | Mbps |

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- 2. Use it with  $V_{DD} \ge V_b$ .
- 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V  $\leq$  V<sub>DD</sub>  $\leq$  5.5 V)

16 MHz (2.4 V 
$$\leq$$
 V<sub>DD</sub>  $\leq$  5.5 V)

LS (low-speed main) mode:  $8 \text{ MHz} (1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V})$ 

**4.** The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V  $\leq$  V<sub>DD</sub>  $\leq$  5.5 V and 2.7 V  $\leq$  V<sub>b</sub>  $\leq$  4.0 V

$$\label{eq:maximum transfer rate} \text{Maximum transfer rate} = \frac{1}{\left\{-C_b \times R_b \times \text{ln } (1-\frac{2.2}{V_b})\right\} \times 3} \quad \text{[bps]}$$

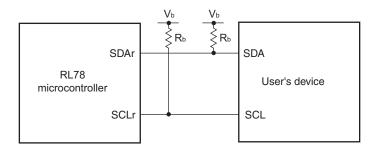
Baud rate error (theoretical value) = 
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-\text{Cb} \times \text{Rb} \times \text{ln} (1 - \frac{2.2}{\text{Vb}})\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

<sup>\*</sup> This value is the theoretical value of the relative difference between the transmission and reception sides.

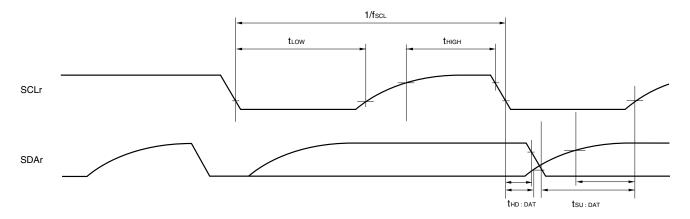
# (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$ 

| Parameter                                     | Symbol | Conditions                                                                                                                                                  |      | h-speed<br>Mode | LS (low-speed main) Mode |      | Unit |
|-----------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------|--------------------------|------|------|
|                                               |        |                                                                                                                                                             | MIN. | MAX.            | MIN.                     | MAX. |      |
| SIp setup time (to SCKp <sup>↑</sup> ) Note 1 | tsıĸı  | $4.0~V \leq V_{DD} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$ $C_b = 30~pF,~R_b = 1.4~k\Omega$                                                                 | 81   |                 | 479                      |      | ns   |
|                                               |        | $ 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, $ $ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega $                                        | 177  |                 | 479                      |      | ns   |
|                                               |        | $ \begin{aligned} 1.8 \ V &\leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ C_b &= 30 \ pF, \ R_b = 5.5 \ k\Omega \end{aligned} $ |      |                 | 479                      |      | ns   |
| SIp hold time<br>(from SCKp↑) Note 1          | tksi1  | $ 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, $ $ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega $                                     | 19   |                 | 19                       |      | ns   |
|                                               |        | $ 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, $ $ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega $                                        | 19   |                 | 19                       |      | ns   |
|                                               |        | $\begin{split} 1.8 \ V & \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ C_b & = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$     | 19   |                 | 19                       |      | ns   |
| Delay time from SCKp↓ to                      | tkso1  | $ 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, $ $ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega $                                     |      | 100             |                          | 100  | ns   |
| SOp output Note 1                             |        | $2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V,$ $C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega$                                            |      | 195             |                          | 195  | ns   |
|                                               |        | $ \begin{aligned} 1.8 \ V &\leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ C_b &= 30 \ pF, \ R_b = 5.5 \ k\Omega \end{aligned} $ |      | 483             |                          | 483  | ns   |


Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

2. Use it with  $V_{DD} \ge V_b$ .


(Cautions and Remarks are listed on the next page.)



### Simplified I<sup>2</sup>C mode connection diagram (during communication at different potential)



#### Simplified I<sup>2</sup>C mode serial transfer timing (during communication at different potential)



- **Remarks 1.** Rb  $[\Omega]$ : Communication line (SDAr, SCLr) pull-up resistance, Cb [F]: Communication line (SDAr, SCLr) load capacitance, Vb [V]: Communication line voltage
  - **2.** r: IIC Number (r = 00, 20)
  - fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
    - m: Unit number (m = 0,1), n: Channel number (n = 0)
  - 4. Simplified I<sup>2</sup>C mode is supported only by the R5F102 products.

(3) When reference voltage (+) = V<sub>DD</sub> (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V<sub>SS</sub> (ADREFM = 0), target pin: ANI0 to ANI3, ANI16 to ANI22, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ Reference voltage (+)} = V_{DD}, \text{ Reference voltage (-)} = V_{SS})$ 

| Parameter                                  | Symbol                                                                      | Condition                                                                        | ns                                                 | MIN.                    | TYP.           | MAX.              | Unit |
|--------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------|-------------------------|----------------|-------------------|------|
| Resolution                                 | Res                                                                         |                                                                                  | 8                                                  |                         | 10             | bit               |      |
| Overall error <sup>Note 1</sup>            | AINL                                                                        | 10-bit resolution                                                                |                                                    |                         | 1.2            | ±7.0              | LSB  |
|                                            |                                                                             |                                                                                  |                                                    |                         | 1.2            | $\pm 10.5$ Note 3 | LSB  |
| Conversion time                            | tconv                                                                       | 10-bit resolution                                                                | $3.6~V \leq V_{DD} \leq 5.5~V$                     | 2.125                   |                | 39                | μs   |
|                                            |                                                                             | Target pin: ANIO to ANI3,                                                        | $2.7~V \leq V_{DD} \leq 5.5~V$                     | 3.1875                  |                | 39                | μS   |
|                                            |                                                                             | ANI16 to ANI22                                                                   | $1.8~V \leq V_{DD} \leq 5.5~V$                     | 17                      |                | 39                | μs   |
|                                            |                                                                             |                                                                                  |                                                    | 57                      |                | 95                | μS   |
| Conversion time                            | tconv                                                                       |                                                                                  |                                                    | 2.375                   |                | 39                | μS   |
|                                            |                                                                             | Target pin: internal reference                                                   | $2.7 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$ | 3.5625                  |                | 39                | μS   |
|                                            |                                                                             | voltage, and temperature<br>sensor output voltage (HS<br>(high-speed main) mode) | $2.4~V \leq V_{DD} \leq 5.5~V$                     | 17                      |                | 39                | μS   |
| Zero-scale error <sup>Notes 1, 2</sup>     | EZS                                                                         | 10-bit resolution                                                                |                                                    |                         |                | ±0.60             | %FSR |
|                                            |                                                                             |                                                                                  |                                                    |                         |                | ±0.85             | %FSR |
| Full-scale errorNotes 1, 2                 | EFS                                                                         | 10-bit resolution                                                                |                                                    |                         |                | ±0.60             | %FSR |
|                                            |                                                                             |                                                                                  |                                                    |                         |                | ±0.85             | %FSR |
| Integral linearity error <sup>Note 1</sup> | ILE                                                                         | 10-bit resolution                                                                |                                                    |                         |                | ±4.0              | LSB  |
|                                            |                                                                             |                                                                                  |                                                    |                         |                | ±6.5 Note 3       | LSB  |
| Differential linearity error Note 1        | DLE                                                                         | 10-bit resolution                                                                |                                                    |                         |                | ±2.0              | LSB  |
|                                            |                                                                             |                                                                                  |                                                    |                         |                | ±2.5 Note 3       | LSB  |
| Analog input voltage                       | VAIN                                                                        | ANI0 to ANI3, ANI16 to ANI2                                                      | 2                                                  | 0                       |                | V <sub>DD</sub>   | V    |
|                                            | Internal reference voltage (2.4 V ≤ VDD ≤ 5.5 V, HS (high-speed main) mode) |                                                                                  |                                                    | V <sub>BGR</sub> Note 4 |                |                   | V    |
|                                            |                                                                             | Temperature sensor output v (2.4 V $\leq$ VDD $\leq$ 5.5 V, HS (high             | •                                                  |                         | VTMPS25 Note 4 | 1                 | V    |

Notes 1. Excludes quantization error (±1/2 LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- **3.** When the conversion time is set to 57  $\mu$ s (min.) and 95  $\mu$ s (max.).
- 4. Refer to 28.6.2 Temperature sensor/internal reference voltage characteristics.

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$ 

(3/4)

| Parameter            | Symbol           | Condition                                                           | S                                                                                | MIN.                 | TYP.               | MAX.               | Unit |
|----------------------|------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------|--------------------|--------------------|------|
| Input voltage, high  | V <sub>IH1</sub> | Normal input buffer                                                 | <u>-                                      </u>                                   | 0.8V <sub>DD</sub>   |                    | V <sub>DD</sub>    | V    |
|                      |                  | 20-, 24-pin products: P00 to P0<br>P40 to P42                       | 03 <sup>Note 2</sup> , P10 to P14,                                               |                      |                    |                    |      |
|                      |                  | 30-pin products: P00, P01, P1<br>P40, P50, P51, P120, P147          |                                                                                  |                      |                    |                    |      |
|                      | V <sub>IH2</sub> | TTL input buffer                                                    | $4.0~V \leq V_{\text{DD}} \leq 5.5~V$                                            | 2.2                  |                    | V <sub>DD</sub>    | ٧    |
|                      |                  | 20-, 24-pin products: P10, P11                                      | $3.3 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$                        | 2.0                  |                    | V <sub>DD</sub>    | ٧    |
|                      |                  | 30-pin products: P01, P10,<br>P11, P13 to P17                       | 2.4 V ≤ V <sub>DD</sub> < 3.3 V                                                  | 1.5                  |                    | V <sub>DD</sub>    | V    |
|                      | V <sub>IH3</sub> | Normal input buffer P20 to P23                                      | 0.7V <sub>DD</sub>                                                               |                      | V <sub>DD</sub>    | V                  |      |
|                      | V <sub>IH4</sub> | P60, P61                                                            | 0.7V <sub>DD</sub>                                                               |                      | 6.0                | V                  |      |
|                      | V <sub>IH5</sub> | P121, P122, P125 <sup>Note 1</sup> , P137, I                        | 0.8V <sub>DD</sub>                                                               |                      | V <sub>DD</sub>    | V                  |      |
| Input voltage, low   | V <sub>IL1</sub> | Normal input buffer                                                 | 0                                                                                |                      | 0.2V <sub>DD</sub> | V                  |      |
|                      |                  | 20-, 24-pin products: P00 to P0<br>P40 to P42                       | 03 <sup>Note 2</sup> , P10 to P14,                                               |                      |                    |                    |      |
|                      |                  | 30-pin products: P00, P01, P10<br>P40, P50, P51, P120, P147         |                                                                                  |                      |                    |                    |      |
|                      | V <sub>IL2</sub> | TTL input buffer                                                    | $4.0~V \leq V_{\text{DD}} \leq 5.5~V$                                            | 0                    |                    | 0.8                | ٧    |
|                      |                  | 20-, 24-pin products: P10, P11                                      | $3.3 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$                        | 0                    |                    | 0.5                | ٧    |
|                      |                  | 30-pin products: P01, P10,<br>P11, P13 to P17                       |                                                                                  | 0                    |                    | 0.32               | V    |
|                      | V <sub>IL3</sub> | P20 to P23                                                          |                                                                                  | 0                    |                    | 0.3V <sub>DD</sub> | ٧    |
|                      | V <sub>IL4</sub> | P60, P61                                                            |                                                                                  | 0                    |                    | 0.3V <sub>DD</sub> | ٧    |
|                      | V <sub>IL5</sub> | P121, P122, P125 <sup>Note 1</sup> , P137, I                        | EXCLK, RESET                                                                     | 0                    |                    | 0.2V <sub>DD</sub> | V    |
| Output voltage, high | V <sub>OH1</sub> | 20-, 24-pin products:<br>P00 to P03 <sup>Note 2</sup> , P10 to P14, | $4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ Iон1 = -3.0 mA              | V <sub>DD</sub> -0.7 |                    |                    | V    |
|                      |                  | P40 to P42<br>30-pin products:                                      | $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -2.0 \text{ mA}$ | V <sub>DD</sub> -0.6 |                    |                    | V    |
|                      |                  | P00, P01, P10 to P17, P30,<br>P31, P40, P50, P51, P120,<br>P147     | $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -1.5 \text{ mA}$ | V <sub>DD</sub> -0.5 |                    |                    | V    |
|                      | V <sub>OH2</sub> | P20 to P23                                                          | Іон2 = -100 μΑ                                                                   | V <sub>DD</sub> -0.5 |                    |                    | V    |

Notes 1. 20, 24-pin products only.

2. 24-pin products only.

Caution The maximum value of V<sub>IH</sub> of pins P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24-pin products, and P00, P10 to P15, P17, and P50 for 30-pin products is V<sub>DD</sub> even in N-ch open-drain mode. High level is not output in the N-ch open-drain mode.

**Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

 $(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le VDD \le 5.5 \text{ V}, Vss = 0 \text{ V})$ 

(4/4)

| Parameter                   | Symbol           |                                                                                                                                           | Conditio                                                               | ns                                                                                              | MIN. | TYP. | MAX. | Unit |
|-----------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------|------|------|------|
| Output voltage, low         | V <sub>OL1</sub> |                                                                                                                                           | 20-, 24-pin products: 4<br>P00 to P03 <sup>Note</sup> , P10 to P14, lc |                                                                                                 |      |      | 0.7  | V    |
|                             |                  | 30-pin products: P00, P01,<br>P10 to P17, P30, P31, P40,<br>P50, P51, P120, P147 $\begin{vmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $ |                                                                        | $2.7~V \leq V_{DD} \leq 5.5~V,$ $I_{OL1} = 3.0~mA$                                              |      |      | 0.6  | V    |
|                             |                  |                                                                                                                                           |                                                                        | $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $\text{IoL1} = 1.5 \text{ mA}$      |      |      | 0.4  | V    |
|                             |                  |                                                                                                                                           |                                                                        | $2.4~V \leq V_{DD} \leq 5.5~V,$ $I_{OL1} = 0.6~mA$                                              |      |      | 0.4  | ٧    |
|                             | V <sub>OL2</sub> | P20 to P23                                                                                                                                |                                                                        | Ιοι2 = 400 μΑ                                                                                   |      |      | 0.4  | V    |
|                             | Vol3             | P60, P61                                                                                                                                  |                                                                        | $4.0~V \leq V_{DD} \leq 5.5~V,$ $I_{OL1} = 15.0~mA$                                             |      |      | 2.0  | V    |
|                             |                  | 2                                                                                                                                         |                                                                        | $4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$<br>$I_{OL1} = 5.0 \text{ mA}$              |      |      | 0.4  | V    |
|                             |                  |                                                                                                                                           |                                                                        | $2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ $I_{\text{OL1}} = 3.0 \text{ mA}$ |      |      | 0.4  | V    |
|                             |                  |                                                                                                                                           |                                                                        | $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$<br>$I_{OL1} = 2.0 \text{ mA}$              |      |      | 0.4  | V    |
| Input leakage current, high | Ішн1             | Other than P121, V <sub>I</sub> = V <sub>DD</sub> P122                                                                                    |                                                                        |                                                                                                 |      |      | 1    | μА   |
|                             | ILIH2            | P121, P122<br>(X1, X2/EXCLK)                                                                                                              | VI = VDD                                                               | Input port or external clock input                                                              |      |      | 1    | μА   |
|                             |                  |                                                                                                                                           |                                                                        | When resonator connected                                                                        |      |      | 10   | μΑ   |
| Input leakage current, low  | ILIL1            | Other than P121,<br>P122                                                                                                                  | Vı = Vss                                                               |                                                                                                 |      |      | -1   | μΑ   |
|                             | ILIL2            | P121, P122<br>(X1, X2/EXCLK)                                                                                                              | Vı = Vss                                                               | Input port or external clock input                                                              |      |      | -1   | μΑ   |
|                             |                  |                                                                                                                                           |                                                                        | When resonator connected                                                                        |      |      | -10  | μΑ   |
| On-chip pull-up resistance  | Rυ               | 20-, 24-pin product<br>P00 to P03 <sup>Note</sup> , P10<br>P40 to P42, P125,                                                              | ) to P14,                                                              | V <sub>I</sub> = V <sub>SS</sub> , input port                                                   | 10   | 20   | 100  | kΩ   |
|                             |                  | 30-pin products: P00, P01,<br>P10 to P17, P30, P31, P40,<br>P50, P51, P120, P147                                                          |                                                                        |                                                                                                 |      |      |      |      |

Note 24-pin products only.

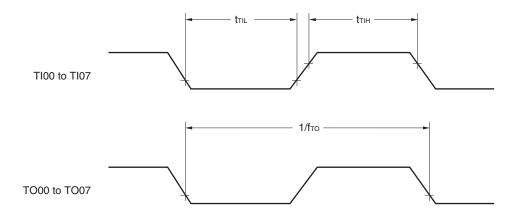
**Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

## 3.3.2 Supply current characteristics

### (1) 20-, 24-pin products

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$ 

(1/2)


| Parameter                 | Symbol                  |           | Conditions                                                         |                                            |                   |                          |                          |                          | MAX.                    | Unit |                      |  |     |     |  |
|---------------------------|-------------------------|-----------|--------------------------------------------------------------------|--------------------------------------------|-------------------|--------------------------|--------------------------|--------------------------|-------------------------|------|----------------------|--|-----|-----|--|
| Supply                    | I <sub>DD1</sub>        | Operating | HS (High-speed                                                     | f⊪ = 24 MHz <sup>Note 3</sup>              | Basic             | V <sub>DD</sub> = 5.0 V  |                          | 1.5                      |                         | mA   |                      |  |     |     |  |
| current <sup>Note 1</sup> |                         | mode      | main) mode Note 4                                                  |                                            | operation         | V <sub>DD</sub> = 3.0 V  |                          | 1.5                      |                         |      |                      |  |     |     |  |
|                           |                         |           |                                                                    |                                            | Normal            | V <sub>DD</sub> = 5.0 V  |                          | 3.3                      | 5.3                     | mA   |                      |  |     |     |  |
|                           |                         |           |                                                                    |                                            | operation         | V <sub>DD</sub> = 3.0 V  |                          | 3.3                      | 5.3                     |      |                      |  |     |     |  |
|                           |                         |           |                                                                    | f⊪ = 16 MHz <sup>Note 3</sup>              |                   | V <sub>DD</sub> = 5.0 V  |                          | 2.5                      | 3.9                     | mA   |                      |  |     |     |  |
|                           |                         |           |                                                                    |                                            |                   | V <sub>DD</sub> = 3.0 V  |                          | 2.5                      | 3.9                     |      |                      |  |     |     |  |
|                           |                         |           | $f_{MX} = 20 \text{ MHz}^{\text{Note 2}}$ $V_{DD} = 5.0 \text{ V}$ |                                            | Square wave input |                          | 2.8                      | 4.7                      | mA                      |      |                      |  |     |     |  |
|                           |                         |           |                                                                    | $V_{DD} = 5.0 \text{ V}$                   |                   | Resonator connection     |                          | 3.0                      | 4.8                     |      |                      |  |     |     |  |
|                           |                         |           |                                                                    | $f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$ |                   | Square wave input        |                          | 2.8                      | 4.7                     | mA   |                      |  |     |     |  |
|                           | V <sub>DD</sub> = 3.0 V |           |                                                                    |                                            |                   | $V_{DD} = 3.0 \text{ V}$ | $V_{DD} = 3.0 \text{ V}$ | $V_{DD} = 3.0 \text{ V}$ | V <sub>DD</sub> = 3.0 V |      | Resonator connection |  | 3.0 | 4.8 |  |
|                           |                         |           |                                                                    | fmx = 10 MHz <sup>Note 2</sup> ,           |                   | Square wave input        |                          | 1.8                      | 2.8                     | mA   |                      |  |     |     |  |
|                           |                         |           |                                                                    | $V_{DD} = 5.0 \text{ V}$                   |                   | Resonator connection     |                          | 1.8                      | 2.8                     |      |                      |  |     |     |  |
|                           |                         |           |                                                                    | fmx = 10 MHz <sup>Note 2</sup> ,           |                   | Square wave input        |                          | 1.8                      | 2.8                     | mA   |                      |  |     |     |  |
|                           |                         |           |                                                                    | $V_{DD} = 3.0 \text{ V}$                   |                   | Resonator connection     |                          | 1.8                      | 2.8                     |      |                      |  |     |     |  |

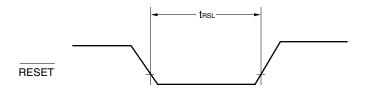
- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
  - 2. When high-speed on-chip oscillator clock is stopped.
  - 3. When high-speed system clock is stopped
  - **4.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode:  $V_{DD} = 2.7 \text{ V to } 5.5 \text{ V } @ 1 \text{ MHz to } 24 \text{ MHz}$  $V_{DD} = 2.4 \text{ V to } 5.5 \text{ V } @ 1 \text{ MHz to } 16 \text{ MHz}$ 

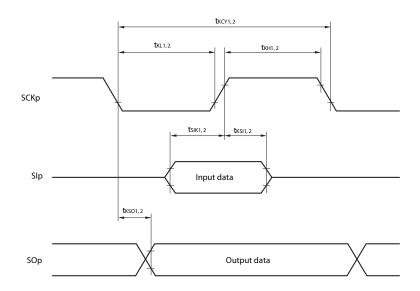
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
  - 2. fin: high-speed on-chip oscillator clock frequency
  - **3.** Temperature condition of the TYP. value is  $T_A = 25^{\circ}C$ .

# **TI/TO Timing**

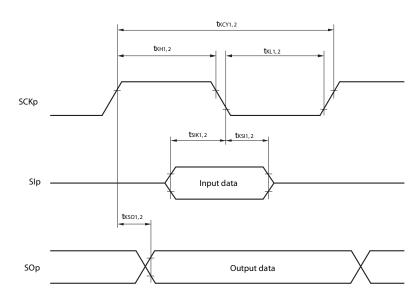



# **Interrupt Request Input Timing**




### **Key Interrupt Input Timing**




# **RESET Input Timing**



# CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)



# CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)



**Remarks 1.** p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3)

2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0,1), n: Channel number (n = 0, 1, 3))

Baud rate error (theoretical value) = 
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- \* This value is the theoretical value of the relative difference between the transmission and reception sides.
- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 3** above to calculate the maximum transfer rate under conditions of the customer.
- 5. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V  $\leq$  V<sub>DD</sub> < 4.0 V and 2.3 V  $\leq$  V<sub>b</sub>  $\leq$  2.7 V

$$\label{eq:maximum transfer rate} \text{Maximum transfer rate} = \frac{1}{\{-C_b \times R_b \times \ln{(1-\frac{2.0}{V_b})}\} \times 3} \text{ [bps]}$$

Baud rate error (theoretical value) = 
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\}}{\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- \* This value is the theoretical value of the relative difference between the transmission and reception sides.
- **6.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 5** above to calculate the maximum transfer rate under conditions of the customer.
- 7. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.4 V  $\leq$  VDD < 3.3 V, 1.6 V  $\leq$  Vb  $\leq$  2.0 V

Maximum transfer rate = 
$$\frac{1}{\{-C_b \times R_b \times ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = 
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- \* This value is the theoretical value of the relative difference between the transmission and reception sides.
- **8.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 7** above to calculate the maximum transfer rate under conditions of the customer.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

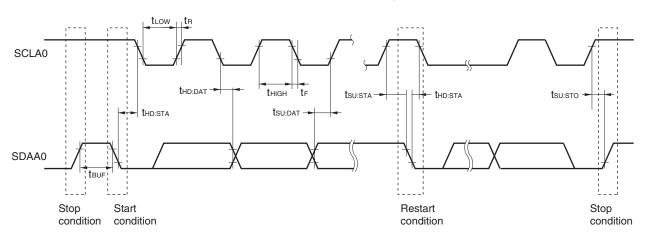


#### 3.5.2 Serial interface IICA

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$ 

| Parameter                                       | Symbol       | Conditions HS (high-speed main) mode |        |         | node      | Unit |     |
|-------------------------------------------------|--------------|--------------------------------------|--------|---------|-----------|------|-----|
|                                                 |              |                                      | Standa | rd Mode | Fast Mode |      |     |
|                                                 |              |                                      | MIN.   | MAX.    | MIN.      | MAX. |     |
| SCLA0 clock frequency                           | fscL         | Fast mode: fclk≥ 3.5 MHz             |        |         | 0         | 400  | kHz |
|                                                 |              | Normal mode: fclk≥ 1 MHz             | 0      | 100     |           |      | kHz |
| Setup time of restart condition                 | tsu:sta      |                                      | 4.7    |         | 0.6       |      | μS  |
| Hold time <sup>Note 1</sup>                     | thd:sta      |                                      | 4.0    |         | 0.6       |      | μS  |
| Hold time when SCLA0 = "L"                      | tLOW         |                                      | 4.7    |         | 1.3       |      | μS  |
| Hold time when SCLA0 = "H"                      | thigh        |                                      | 4.0    |         | 0.6       |      | μS  |
| Data setup time (reception)                     | tsu:dat      |                                      | 250    |         | 100       |      | ns  |
| Data hold time (transmission) <sup>Note 2</sup> | thd:dat      |                                      | 0      | 3.45    | 0         | 0.9  | μS  |
| Setup time of stop condition                    | tsu:sto      |                                      | 4.0    |         | 0.6       |      | μS  |
| Bus-free time                                   | <b>t</b> BUF |                                      | 4.7    |         | 1.3       |      | μS  |

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.


2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution Only in the 30-pin products, the values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IoH1, IoL1, VoH1, VoL1) must satisfy the values in the redirect destination.

**Remark** The maximum value of C<sub>b</sub> (communication line capacitance) and the value of R<sub>b</sub> (communication line pull-up resistor) at that time in each mode are as follows.

Normal mode:  $C_b = 400 \text{ pF}, \text{ Rb} = 2.7 \text{ k}\Omega$ Fast mode:  $C_b = 320 \text{ pF}, \text{ Rb} = 1.1 \text{ k}\Omega$ 

#### IICA serial transfer timing



<R>



# 3.6 Analog Characteristics

#### 3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

| Input channel                     | Reference Voltage                                                |                                                            |                                                                |  |  |
|-----------------------------------|------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|--|--|
|                                   | Reference voltage (+) = AVREFP<br>Reference voltage (-) = AVREFM | Reference voltage (+) = VDD<br>Reference voltage (-) = Vss | Reference voltage (+) = VBGR<br>Reference voltage (-) = AVREFM |  |  |
| ANI0 to ANI3                      | Refer to <b>29.6.1 (1)</b> .                                     | Refer to 29.6.1 (3).                                       | Refer to 29.6.1 (4).                                           |  |  |
| ANI16 to ANI22                    | Refer to 29.6.1 (2).                                             |                                                            |                                                                |  |  |
| Internal reference voltage        | Refer to <b>29.6.1 (1)</b> .                                     |                                                            | =                                                              |  |  |
| Temperature sensor output voltage |                                                                  |                                                            |                                                                |  |  |

(1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI2, ANI3, internal reference voltage, and temperature sensor output voltage

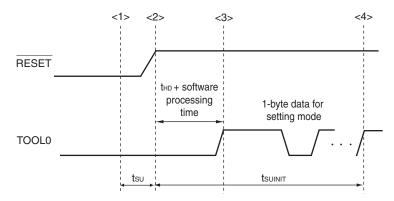
(TA = -40 to +105°C, 2.4 V  $\leq$  AVREFP  $\leq$  VDD  $\leq$  5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

| Parameter                                  | Symbol | Cor                                                                                                                         | MIN.                           | TYP.                       | MAX.                    | Unit   |      |
|--------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------|-------------------------|--------|------|
| Resolution                                 | RES    |                                                                                                                             |                                | 8                          |                         | 10     | bit  |
| Overall error <sup>Note 1</sup>            | AINL   | 10-bit resolution AVREFP = VDD Note 3                                                                                       |                                |                            | 1.2                     | ±3.5   | LSB  |
| Conversion time                            | tconv  | 10-bit resolution<br>Target pin: ANI2, ANI3                                                                                 | $3.6~V \leq V_{DD} \leq 5.5~V$ | 2.125                      |                         | 39     | μS   |
|                                            |        |                                                                                                                             | $2.7~V \leq V_{DD} \leq 5.5~V$ | 3.1875                     |                         | 39     | μS   |
|                                            |        |                                                                                                                             | $2.4~V \leq V_{DD} \leq 5.5~V$ | 17                         |                         | 39     | μS   |
|                                            |        | 10-bit resolution Target pin: Internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode) | $3.6~V \leq V_{DD} \leq 5.5~V$ | 2.375                      |                         | 39     | μS   |
|                                            |        |                                                                                                                             | $2.7~V \leq V_{DD} \leq 5.5~V$ | 3.5625                     |                         | 39     | μS   |
|                                            |        |                                                                                                                             | $2.4~V \leq V_{DD} \leq 5.5~V$ | 17                         |                         | 39     | μs   |
| Zero-scale error <sup>Notes 1, 2</sup>     | EZS    | 10-bit resolution AVREFP = VDD Note 3                                                                                       |                                |                            |                         | ±0.25  | %FSR |
| Full-scale error <sup>Notes 1, 2</sup>     | EFS    | 10-bit resolution AVREFP = VDD Note 3                                                                                       |                                |                            | ±0.25                   | %FSR   |      |
| Integral linearity error <sup>Note 1</sup> | ILE    | 10-bit resolution AVREFP = VDD Note 3                                                                                       |                                |                            | ±2.5                    | LSB    |      |
| Differential linearity error               | DLE    | 10-bit resolution<br>AV <sub>REFP</sub> = V <sub>DD</sub> Note 3                                                            |                                |                            |                         | ±1.5   | LSB  |
| Analog input voltage                       | Vain   | ANI2, ANI3                                                                                                                  |                                | 0                          |                         | AVREFP | V    |
|                                            |        | Internal reference voltage<br>(HS (high-speed main) m                                                                       |                                |                            | V <sub>BGR</sub> Note 4 |        | V    |
|                                            |        | Temperature sensor outp                                                                                                     | · ·                            | V <sub>TMPS25</sub> Note 4 |                         | V      |      |

(Notes are listed on the next page.)



# 3.9 Dedicated Flash Memory Programmer Communication (UART)


## $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

| Parameter     | Symbol | Conditions                | MIN.    | TYP. | MAX.      | Unit |
|---------------|--------|---------------------------|---------|------|-----------|------|
| Transfer rate |        | During serial programming | 115,200 |      | 1,000,000 | bps  |

### 3.10 Timing of Entry to Flash Memory Programming Modes

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$ 

| 1 11 1, = = 1 1,                                                                                |         |                                                        |      |      |      |      |
|-------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------|------|------|------|------|
| Parameter                                                                                       | Symbol  | Conditions                                             | MIN. | TYP. | MAX. | Unit |
| Time to complete the communication for the initial setting after the external reset is released | tsuinit | POR and LVD reset are released before external release |      |      | 100  | ms   |
| Time to release the external reset after the TOOL0 pin is set to the low level                  | tsu     | POR and LVD reset are released before external release | 10   |      |      | μS   |
| Time to hold the TOOL0 pin at the low level after the external reset is released                | thd     | POR and LVD reset are released before external release | 1    |      |      | ms   |
| (excluding the processing time of the firmware to control the flash memory)                     |         |                                                        |      |      |      |      |



- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.

tsu: Time to release the external reset after the TOOL0 pin is set to the low level

thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)



|      |              | Description |                                                                                                   |  |  |
|------|--------------|-------------|---------------------------------------------------------------------------------------------------|--|--|
| Rev. | Date         | Page        | Summary                                                                                           |  |  |
| 2.00 | Sep 06, 2013 | 55          | Modification of description and Notes 3 and 4 in 2.6.1 (3)                                        |  |  |
|      |              | 56          | Modification of description and Notes 3 and 4 in 2.6.1 (4)                                        |  |  |
|      |              | 57          | Modification of table in 2.6.2 Temperature sensor/internal reference voltage characteristics      |  |  |
|      |              | 57          | Modification of table and Note in 2.6.3 POR circuit characteristics                               |  |  |
|      |              | 58          | Modification of table in 2.6.4 LVD circuit characteristics                                        |  |  |
|      |              | 59          | Modification of table of LVD detection voltage of interrupt & reset mode                          |  |  |
|      |              | 59          | Modification of number and title to 2.6.5 Power supply voltage rising slope characteristics       |  |  |
|      |              | 61          | Modification of table, figure, and Remark in 2.10 Timing of Entry to Flash Memory                 |  |  |
|      |              |             | Programming Modes                                                                                 |  |  |
|      |              | 62 to 103   | Addition of products of industrial applications (G: Ta = -40 to +105°C)                           |  |  |
|      |              | 104 to 106  | Addition of products of industrial applications (G: $TA = -40 \text{ to } +105^{\circ}\text{C}$ ) |  |  |
| 2.10 | Mar 25, 2016 | 6           | Modification of Figure 1-1 Part Number, Memory Size, and Package of RL78/G12                      |  |  |
|      |              | 7           | Modification of Table 1-1 List of Ordering Part Numbers                                           |  |  |
|      |              | 8           | Addition of product name (RL78/G12) and description (Top View) in 1.4.1 20-pin products           |  |  |
|      |              | 9           | Addition of product name (RL78/G12) and description (Top View) in 1.4.2 24-pin products           |  |  |
|      |              | 10          | Addition of product name (RL78/G12) and description (Top View) in 1.4.3 30-pin products           |  |  |
|      |              | 15          | Modification of description in 1.7 Outline of Functions                                           |  |  |
|      |              | 16          | Modification of description, and addition of target products                                      |  |  |
|      |              | 52          | Modification of note 2 in 2.5.2 Serial interface IICA                                             |  |  |
|      |              | 60          | Modification of title and note, and addition of caution in 2.7 RAM Data Retention Characteristics |  |  |
|      |              | 60          | Modification of conditions in 2.8 Flash Memory Programming Characteristics                        |  |  |
|      |              | 62          | Modification of description, and addition of target products and remark                           |  |  |
|      |              | 94          | Modification of note 2 in 3.5.2 Serial interface IICA                                             |  |  |
|      |              | 102         | Modification of title and note in 3.7 RAM Data Retention Characteristics                          |  |  |
|      |              | 102         | Modification of conditions in 3.8 Flash Memory Programming Characteristics                        |  |  |
|      |              | 104 to 106  | Addition of package name                                                                          |  |  |

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.