

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	14
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10269gsp-v5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3 Differences between the R5F102 Products and the R5F103 Products

The following are differences between the R5F102 products and the R5F103 products.

- O Whether the data flash memory is mounted or not
- O High-speed on-chip oscillator oscillation frequency accuracy
- O Number of channels in serial interface
- O Whether the DMA function is mounted or not
- O Whether a part of the safety functions are mounted or not

1.3.1 Data Flash

The data flash memory of 2 KB is mounted on the R5F102 products, but not on the R5F103 products.

Product	Data Flash
R5F102 products	2KB
R5F1026A, R5F1027A, R5F102AA,	
R5F10269, R5F10279, R5F102A9,	
R5F10268, R5F10278, R5F102A8,	
R5F10267, R5F10277, R5F102A7,	
R5F10266 Note	
R5F103 products	Not mounted
R5F1036A, R5F1037A, R5F103AA,	
R5F10369, R5F10379, R5F103A9,	
R5F10368, R5F10378 R5F103A8,	
R5F10367, R5F10377, R5F103A7,	
R5F10366	

- **Note** The RAM in the R5F10266 has capacity as small as 256 bytes. Depending on the customer's program specification, the stack area to execute the data flash library may not be kept and data may not be written to or erased from the data flash memory.
- **Caution** When the flash memory is rewritten via a user program, the code flash area and RAM area are used because each library is used. When using the library, refer to RL78 Family Flash Self Programming Library Type01 User's Manual and RL78 Family Data Flash Library Type04 User's Manual.

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

(3/4)

					1		(0, 1)
Parameter	Symbol	Condition	S	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	Normal input buffer 20-, 24-pin products: P00 to P0 P40 to P42	03 ^{№0te 2} , P10 to P14,	0.8Vdd		Vdd	V
		30-pin products: P00, P01, P1 P40, P50, P51, P120, P147	0 to P17, P30, P31,				
	VIH2	TTL input buffer	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	2.2		VDD	V
		20-, 24-pin products: P10, P11	$3.3~V \leq V_{\text{DD}} < 4.0~V$	2.0		VDD	V
		30-pin products: P01, P10, P11, P13 to P17	$1.8~V \leq V_{\text{DD}} < 3.3~V$	1.5		Vdd	V
	Vінз	P20 to P23		0.7Vdd		VDD	v
	VIH4	P60, P61		0.7Vdd		6.0	V
	VIH5	P121, P122, P125 ^{Note 1} , P137, I	EXCLK, RESET	0.8Vdd		VDD	V
Input voltage, low	VIL1	Normal input buffer	0		0.2VDD	V	
		20-, 24-pin products: P00 to P0 P40 to P42					
		30-pin products: P00, P01, P10 P40, P50, P51, P120, P147	P01, P10 to P17, P30, P31, P147				
	VIL2	TTL input buffer	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	0		0.8	V
		20-, 24-pin products: P10, P11	$3.3~V \leq V_{\text{DD}} < 4.0~V$	0		0.5	V
		30-pin products: P01, P10, P11, P13 to P17	$1.8~V \leq V_{\text{DD}} < 3.3~V$	0		0.32	V
	VIL3	P20 to P23		0		0.3Vdd	V
	VIL4	P60, P61		0		0.3Vdd	V
	VIL5	P121, P122, P125 ^{Note 1} , P137, I	EXCLK, RESET	0		0.2V _{DD}	V
Output voltage, high	Vон1	20-, 24-pin products: P00 to P03 ^{№te 2} , P10 to P14,	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -10.0 \ mA \end{array} \end{array} \label{eq:VDD}$	Vdd-1.5			V
		P40 to P42 30-pin products:	4.0 V \leq V _{DD} \leq 5.5 V, I _{OH1} = -3.0 mA	VDD-0.7			V
		P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120,	$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -2.0 \ mA \end{array} \end{array} \label{eq:VDD}$	VDD-0.6			V
		P14/	$\begin{array}{l} 1.8 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -1.5 \ mA \end{array}$	VDD-0.5			V
	V _{OH2}	P20 to P23	Іон2 = -100 <i>µ</i> А	VDD-0.5			V

Notes 1. 20, 24-pin products only.

2. 24-pin products only.

- Caution The maximum value of V_{IH} of pins P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24pin products, and P00, P10 to P15, P17, and P50 for 30-pin products is V_{DD} even in N-ch open-drain mode. High level is not output in the N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

AC Timing Test Point

Parameter	Symbol	C	conditions	HS (high- main) N	-speed /lode	LS (low-spe Moe	eed main) de	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkCY1	tксү1 ≥ 4/fclк	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	167		500		ns
			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	250		500		ns
			$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	_		500		ns
SCKp high-/low-level width	tкнı,	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V	tксү1/2–12		tксү1/2–50		ns
	tĸL1	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		tксү1/2-18		tксү1/2–50		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		tксү1/2-38		tксү1/2–50		ns
		$1.8~V \leq V_{\text{DD}} \leq$	5.5 V	_		tксү1/2-50		ns
SIp setup time (to SCKp↑)	tsik1	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		44		110		ns
Note 1		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		44		110		ns
		$2.4~V \leq V_{\text{DD}} \leq$	5.5 V	75		110		ns
		$1.8~V \leq V_{\text{DD}} \leq 5.5~V$		-		110		ns
SIp hold time (from SCKp↑) ^{№te 2}	tksi1			19		19		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 30 pF ^{Note4}			25		25	ns

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (T_A = -40 to +85°C, 1.8 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.
- **Caution** Select the normal input buffer for the SIp pin and the normal output mode for the SOp and SCKp pins by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).
- **Remarks 1.** p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products)
 - 2. fMCK: Serial array unit operation clock frequency
 - (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products.))

Parameter	Symbol	Cond	litions	HS (higł main)	n-speed Mode	LS (low-sp Mo	beed main) bde	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note4	t ксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	20 MHz < fмск	8/f мск		-		ns
			fмск ≤ 20 MHz	6/fмск		6/fмск		ns
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	16 MHz < fмск	8/fмск		-		ns
			fмск \leq 16 MHz	6/fмск		6/fмск		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		6/fмск		6/fмск		ns
				and 500		and 500		
		$1.8~V \leq V_{\text{DD}} \leq 5.5~V$		-		6/fмск		ns
						and 750		
SCKp high-/low-level	tкн2,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2-7		tксү2/2-7		ns
width	tĸ∟2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2-8		tксү2/2-8		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2–18		tксү2/2-18		ns
		$1.8~V \leq V_{\text{DD}} \leq 5.5~V$		-		tксү2/2-18		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsik2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск + 20		1/fмск + 30		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск + 30		1/fмск + 30		ns
		$1.8~V \leq V_{\text{DD}} \leq 5.5~V$		_		1/fмск + 30		ns
SIp hold time (from SCKp↑) ^{№te 2}	tksi2			1/f _{мск} + 31		1/fмск + 31		ns
Delay time from SCKp↓ to	tkso2	C = 30 pF ^{Note4}	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		2/fмск + 44		2/fмск + 110	ns
SOp output Note 3			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		2/fмск + 75		2/fмск + 110	ns
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		_		2/fмск + 110	ns

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) ($T_A = -40$ to $+85^{\circ}$ C, 1.8 V $\leq V_{DD} \leq 5.5$ V, Vss = 0 V)

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- **Caution** Select the normal input buffer for the SIp and SCKp pins and the normal output mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- **Remarks 1.** R_b[Ω]: Communication line (TxDq) pull-up resistance, C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)
 - fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 - m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))
 - **4.** UART0 of the 20- and 24-pin products supports communication at different potential only when the peripheral I/O redirection function is not used.

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3)

Parameter	Symbol		Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode	
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү1	$t_{KCY1} \geq 4/f_{CLK}$	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	300		1150		ns
			$2.7~V \leq V_b \leq 4.0~V,$					
			C_b = 30 pF, R_b = 1.4 k Ω					
			$2.7~V \leq V_{\text{DD}} < 4.0~V,$	500		1150		ns
			$2.3~V \leq V_b \leq 2.7~V,$					
			C_b = 30 pF, R_b = 2.7 k Ω					
			$1.8~V \leq V_{\text{DD}} < 3.3~V,$	1150		1150		ns
			$1.6~V \leq V_{b} \leq 2.0~V^{\text{ Note}},$					
			C_b = 30 pF, R_b = 5.5 k Ω					
SCKp high-level width	tкнı	$4.0~V \leq V_{\text{DD}} \leq$	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$			tксү1/2-75		ns
		$C_b = 30 \text{ pF}, \text{ F}$	lb = 1.4 kΩ					
		$2.7 \text{ V} \leq \text{V}_{\text{DD}}$ <	$4.0~V,~2.3~V \le V_b \le 2.7~V,~$	tксү1/2 –170		tксү1/2–170		ns
		$C_b = 30 \text{ pF}, \text{ R}$	$h_b = 2.7 \text{ k}\Omega$					
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} <$	3.3 V, 1.6 V \leq V $_{b}$ \leq 2.0 V $^{\text{Note}},$	tксү1/2 –458		tксү1/2-458		ns
		$C_b = 30 \text{ pF}, \text{ F}$	$h_b = 5.5 \text{ k}\Omega$					
SCKp low-level width	tĸ∟1	$4.0~V \leq V_{\text{DD}} \leq$	$5.5~V,~2.7~V \le V_b \le 4.0~V,$	tксү1/2-12		tксү1/2–50		ns
		$C_{b} = 30 \text{ pF}, \text{ R}$	lb = 1.4 kΩ					
		$2.7 \text{ V} \leq \text{V}_{\text{DD}}$ <	$4.0~V,~2.3~V \le V_b \le 2.7~V,~$	tксү1/2 –18		tксү1/2–50		ns
		C _b = 30 pF, R	$h_b = 2.7 \text{ k}\Omega$					
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} <$	$3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}^{\text{Note}},$	tксү1/2 –50		tксү1/2–50		ns
		C _b = 30 pF, R	$h_b = 5.5 \text{ k}\Omega$					

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

 $\label{eq:Note} \textbf{Note} \quad \textbf{Use it with } V_{\text{DD}} \geq V_{\text{b}}.$

- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.
- **Remarks 1.** R_b [Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b [F]: Communication line (SCKp, SOp) load capacitance, V_b [V]: Communication line voltage
 - **2.** p: CSI number (p = 00, 20)

CSI mode connection diagram (during communication at different potential)

Remarks 1. R_b [Ω]: Communication line (SOp) pull-up resistance, C_b [F]: Communication line (SOp) load capacitance, V_b [V]: Communication line voltage

2. p: CSI number (
$$p = 00, 20$$
), m: Unit number ($m = 0, 1$), n: Channel number ($n = 0$)

 fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 10))

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode	э)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$\begin{array}{l} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; V, 2.7 \; V \leq V_{b} \leq 4.0 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 2.8 \; k\Omega \end{array}$		400 ^{Note1}		300 ^{Note1}	kHz
		$\label{eq:VD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 100 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$		400 ^{Note1}		300 ^{Note1}	kHz
		$\begin{array}{l} 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V, \\ C_{\text{b}} = 100 \ \text{pF}, \ B_{\text{b}} = 5.5 \ \text{k}\Omega \end{array}$		300 ^{Note1}		300 ^{Note1}	kHz
Hold time when SCLr = "L"	t∟ow	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 100 \ pF, \ R_b = 2.8 \ k\Omega \end{array}$	1150		1550		ns
		$\label{eq:VD} \begin{split} 2.7 \; V &\leq V_{\text{DD}} < 4.0 \; \text{V}, 2.3 \; \text{V} \leq V_{\text{b}} \leq 2.7 \; \text{V}, \\ C_{\text{b}} &= 100 \; \text{pF}, \; \text{R}_{\text{b}} = 2.7 \; \text{k} \Omega \end{split}$	1150		1550		ns
		$\label{eq:VDD} \begin{split} 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V, \\ \text{C}_{\text{b}} = 100 \ \text{pF}, \ \text{R}_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$	1550		1550		ns
Hold time when SCLr = "H"	tніgн	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{b} \leq 4.0 \ V, \\ C_{b} = 100 \ pF, \ R_{b} = 2.8 \ k\Omega \end{array}$	675		610		ns
		$\label{eq:VD} \begin{split} 2.7 \ V &\leq V_{\text{DD}} < 4.0 \ V, 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} &= 100 \ p\text{F}, \ R_{\text{b}} = 2.7 \ \text{k}\Omega \end{split}$	600		610		ns
		$\label{eq:VDD} \begin{split} 1.8 \ V &\leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V, \\ \\ C_{b} &= 100 \ pF, \ R_{b} = 5.5 \ k\Omega \end{split}$	610		610		ns
Data setup time (reception)	tsu:dat	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{b} \leq 4.0 \ V, \\ C_{b} = 100 \ pF, \ R_{b} = 2.8 \ k\Omega \end{array}$	1/fмск + 190 _{Note3}		1/fмск + 190 _{Note3}		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fмск + 190 _{Note3}		1/fмск + 190 _{Note3}		ns
		$\label{eq:VD} \begin{array}{l} 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V, \\ \\ C_{b} = 100 \ pF, \ R_{b} = 5.5 \ k\Omega \end{array}$	1/fмск + 190 _{Note3}		1/fмск + 190 _{Note3}		ns
Data hold time (transmission)	thd:dat	$\begin{array}{l} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; V, 2.7 \; V \leq V_{\text{b}} \leq 4.0 \; V, \\ C_{\text{b}} = 100 \; pF, \; R_{\text{b}} = 2.8 \; k\Omega \end{array}$	0	355	0	355	ns
		$ \begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array} $	0	355	0	355	ns
		$\label{eq:VDD} \begin{split} 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V, \\ \\ C_{\text{b}} = 100 \ pF, \ R_{\text{b}} = 5.5 \ k\Omega \end{split}$	0	405	0	405	ns

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

- $\textbf{2.} \quad Use \text{ it with } V_{\text{DD}} \geq V_{\text{b}}.$
- 3. Set $t_{SU:DAT}$ so that it will not exceed the hold time when SCLr = "L" or SCLr = "H".
- **Cautions 1.** Select the TTL input buffer and the N-ch open drain output (V_{DD} tolerance) mode for the SDAr pin and the N-ch open drain output (V_{DD} tolerance) mode for the SCLr pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
 - 2. IIC01 and IIC11 cannot communicate at different potential.

(Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b [Ω]: Communication line (SDAr, SCLr) pull-up resistance, C_b [F]: Communication line (SDAr, SCLr) load capacitance, V_b [V]: Communication line voltage
 - **2.** r: IIC Number (r = 00, 20)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number (m = 0,1), n: Channel number (n = 0))
 - 4. Simplified l^2 C mode is supported only by the R5F102 products.

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When AV_{REFP} < V_{DD}, the MAX. values are as follows. Overall error: Add ±1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.05%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.
- 4. Values when the conversion time is set to 57 μs (min.) and 95 μs (max.).
- 5. Refer to 28.6.2 Temperature sensor/internal reference voltage characteristics.
- (2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI22

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{AV}_{REFP}, \text{ Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error Note 1	AINL	10-bit resolution			1.2	±5.0	LSB
		$AV_{REFP} = V_{DD}^{Note 3}$	$V_{\text{REFP}} = V_{\text{DD}}^{\text{Note 3}}$		1.2	$\pm 8.5^{\text{Note 4}}$	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μS
		Target ANI pin: ANI16 to ANI22	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μs
			$1.8~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
				57		95	μs
Zero-scale error Notes 1, 2	EZS	10-bit resolution	10-bit resolution			±0.35	%FSR
		$AV_{REFP} = V_{DD}^{Note 3}$				$\pm 0.60^{\text{Note 4}}$	%FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution				±0.35	%FSR
		$AV_{REFP} = V_{DD}^{Note 3}$				$\pm 0.60^{\text{Note 4}}$	%FSR
Integral linearity error Note 1	ILE	10-bit resolution				±3.5	LSB
		$AV_{REFP} = V_{DD}^{Note 3}$				$\pm 6.0^{\text{Note 4}}$	LSB
Differential linearity	DLE	10-bit resolution				±2.0	LSB
error ^{Note 1}		$AV_{REFP} = V_{DD}^{Note 3}$				±2.5 ^{Note 4}	LSB
Analog input voltage	VAIN	ANI16 to ANI22		0		AVREFP and VDD	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- **3.** When AV_{REFP} \leq V_{DD}, the MAX. values are as follows. Overall error: Add ±4.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.20%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.
- 4. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).

(3) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V_{ss} (ADREFM = 0), target pin: ANI0 to ANI3, ANI16 to ANI22, internal reference voltage, and temperature sensor output voltage

Parameter	Symbol	Condition	ns	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution			1.2	±7.0	LSB
					1.2	$\pm 10.5^{\text{Note 3}}$	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V\text{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI0 to ANI3,	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μs
		ANI16 to ANI22	$1.8~V \leq V \text{DD} \leq 5.5~V$	17		39	μS
				57		95	μS
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: internal reference 2 voltage, and temperature 2 sensor output voltage (HS 2 (high-speed main) mode) 2	$2.7 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	3.5625		39	μS
			$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μS
Zero-scale error ^{Notes 1, 2}	FZS	10-bit resolution				+0.60	%ESB
						±0.85	%FSR
Full-scale error ^{Notes 1, 2}	EFS	10-bit resolution				±0.60	%FSR
						±0.85 Note 3	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution				±4.0	LSB
						±6.5 Note 3	LSB
Differential linearity error Note 1	DLE	10-bit resolution				±2.0	LSB
						±2.5 Note 3	LSB
Analog input voltage	VAIN	ANI0 to ANI3, ANI16 to ANI2	2	0		VDD	V
		Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)			VBGR Note 4		V
		Temperature sensor output voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed main) mode)		VTMPS25 ^{Note 4}			V

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C})$	$18V < V_{DD} < 55V$	$V_{SS} = 0 V$ Reference	voltage (+) = Vpp	Reference voltage (-) = Vss)
(1A = -40 10 + 05 C,		$, v_{33} = 0 v, neielence$	$=$ voltage (\pm) = vol,	nelelence vollage (_j – v ssj

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When the conversion time is set to 57 μs (min.) and 95 μs (max.).
- 4. Refer to 28.6.2 Temperature sensor/internal reference voltage characteristics.

2.6.2 Temperature sensor/internal reference voltage characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.50	V
Temperature coefficient	Fvtmps	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

(T_A = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, HS (high-speed main) mode

2.6.3 POR circuit characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	V _{POR} Power supply rise time		1.47	1.51	1.55	V
	VPDR	Power supply fall time	1.46	1.50	1.54	V
Minimum pulse width Note	Tpw		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

(2) 30-pin products

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS}$	s = 0 V)
---	----------

(T _A = -40 to	+105°C,	$2.4 V \leq V_D$	D ≤ 5.5 V, V ss =	= 0 V)						(1/2)
Parameter	Symbol		Conditions						MAX.	Unit
Supply	Idd1	Operating	HS (High-speed	$f_{H} = 24 \text{ MHz}^{Note 3}$	Basic	V _{DD} = 5.0 V		1.5		mA
current ^{Note 1}	current ^{Note 1} mode main) mode ^{Note 4} $f_{IH} = 16 \text{ MHz}^{Note 3}$ $f_{MX} = 20 \text{ MHz}^{Note 2}$, $V_{DD} = 5.0 \text{ V}$ $f_{MX} = 20 \text{ MHz}^{Note 2}$,		operation $V_{DD} = 3.0 \text{ V}$ Normal $V_{DD} = 5.0 \text{ V}$ operation $V_{DD} = 3.0 \text{ V}$	V _{DD} = 3.0 V		1.5				
				V _{DD} = 5.0 V		3.7	5.8	mA		
				V _{DD} = 3.0 V		3.7	5.8			
		$f_{IH} = 16 \; MHz^{Note3}$		V _{DD} = 5.0 V		2.7	4.2	mA		
			$V_{DD} = 3.$	V _{DD} = 3.0 V		2.7	4.2			
		$f_{MX}=20\ MHz^{Note2},$		Square wave input		3.0	4.9	mA		
		$V_{DD} = 5.0 \text{ V}$		Resonator connection		3.2	5.0			
		$f_{MX}=20\ MHz^{Note2},$		Square wave input		3.0	4.9	mA		
	V _{DD} = 3.0 V	Resonator connection		3.2	5.0					
	f _{MX} = 10 MHz ^{Note}	$f_{MX}=10\ MHz^{Note2},$		Square wave input		1.9	2.9	mA		
				$V_{DD} = 5.0 V$		Resonator connection		1.9	2.9	
				$f_{MX} = 10 \ MHz^{Note 2},$		Square wave input		1.9	2.9	mA
				$V_{DD} = 3.0 V$		Resonator connection		1.9	2.9	

Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. When high-speed on-chip oscillator clock is stopped.
- 3. When high-speed system clock is stopped
- 4. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz VDD = 2.4 V to 5.5 V @1 MHz to 16 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$.

(3) Peripheral functions (Common to all products)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed onchip oscillator operating current	IFIL Note 1				0.20		μA
12-bit interval timer operating current	ITMKA Notes 1, 2, 3				0.02		μA
Watchdog timer operating current	WDT Notes 1, 2, 4	fı∟ = 15 kHz	fı∟ = 15 kHz				μA
A/D converter		When conversion	Normal mode, $AV_{REFP} = V_{DD} = 5.0 V$		1.30	1.70	mA
operating current	Notes 1, 5 at maximum speed		Low voltage mode, AV _{REFP} = V _{DD} = 3.0 V		0.50	0.70	mA
A/D converter reference voltage operating current	IADREF Note 1				75.0		μA
Temperature sensor operating current	ITMPS Note 1				75.0		μA
LVD operating current	LVD Notes 1, 6				0.08		μA
Self-programming operating current	FSP Notes 1, 8				2.00	12.20	mA
BGO operating current	BGO Notes 1, 7				2.00	12.20	mA
SNOOZE operating	Isnoz	ADC operation	The mode is performed Note 9		0.50	1.10	mA
current	Note 1		The A/D conversion operations are performed, Low voltage mode, AV _{REFP} = $V_{DD} = 3.0 \text{ V}$		1.20	2.04	mA
		CSI/UART operation	1		0.70	1.54	mA

Notes 1. Current flowing to the VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and IFIL and ITMKA when the 12-bit interval timer operates.
- 4. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.
- 5. Current flowing only to the A/D converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 6. Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit operates.
- 7. Current flowing only during data flash rewrite.
- 8. Current flowing only during self programming.
- 9. For shift time to the SNOOZE mode, see 17.3.3 SNOOZE mode.

Remarks 1. fil: Low-speed on-chip oscillator clock frequency

2. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

3.4 AC Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Items	Symbol		Condition	S	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Тсү	Main system clock (fMAIN) operation	HS (High- $2.7 \text{ V} \leq V_{\text{DD}} \leq 5.5$	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.04167		1	μS
			speed main) mode	$2.4~V \leq V_{\text{DD}} < 2.7~V$	0.0625		1	μS
		During self	HS (High-	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.04167		1	μS
		programming	speed main) mode	$2.4~V \leq V_{\text{DD}} < 2.7~V$	0.0625		1	μS
External main system clock	fex	$2.7~V \leq V_{\text{DD}} \leq 5.4$	$1.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$				20.0	MHz
frequency		$2.4~V \leq V_{\text{DD}} < 2$.7 V		1.0		16.0	MHz
External main system clock	texн, texL	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			24			ns
input high-level width, low- level width		$2.4~V \leq V_{\text{DD}} < 2.7~V$			30			ns
TI00 to TI07 input high-level width, low-level width	t⊓∺, t⊤∟				1/fмск + 10			ns
TO00 to TO07 output	f _{TO}	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$					12	MHz
frequency		$2.7~V \leq V_{\text{DD}} < 4.$			8	MHz		
		$2.4~V \leq V_{\text{DD}} < 2$			4	MHz		
PCLBUZ0, or PCLBUZ1	f PCL	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$					16	MHz
output frequency		$2.7~V \leq V_{\text{DD}} < 4.0~V$					8	MHz
		$2.4~V \leq V_{\text{DD}} < 2$			4	MHz		
INTP0 to INTP5 input high- level width, low-level width	tinth, tintl				1			μS
KR0 to KR9 input available width	t KR				250			ns
RESET low-level width	trsL				10			μS

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the timer clock select register 0 (TPS0) and the CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7))

Minimum Instruction Execution Time during Main System Clock Operation

AC Timing Test Point

External Main System Clock Timing

TI/TO Timing

Interrupt Request Input Timing

Key Interrupt Input Timing

RESET Input Timing

(7)	Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp external clock input)
(TA	= –40 to +105°C, 2.4 V ≤ V _{DD} ≤ 5.5 V, V _{SS} = 0 V)

Parameter Symbol		(HS (high-speed main) Mode		Unit	
				MIN.	MAX.	
SCKp cycle time Note 1	t ксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	20 MHz < fмск ≤ 24 MHz	24/f мск		ns
		$2.7~V \leq V_b \leq 4.0~V$	$8 \text{ MHz} < f_{MCK} \le 20 \text{ MHz}$	20/f мск		ns
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	16/f мск		ns
			fмск ≤4 MHz	12/fмск		ns
		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	20 MHz < fмск ≤ 24 MHz	32/fмск		ns
		$2.3~V \leq V_b \leq 2.7~V$	16 MHz < fмск ≤ 20 MHz	28/f мск		ns
			8 MHz < fмск \leq 16 MHz	24/f мск		ns
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	16/f мск		ns
			fмск ≤4 MHz	12/fмск		ns
		$2.4~V \leq V_{\text{DD}} < 3.3~V,$	20 MHz < fмск ≤ 24 MHz	72/f мск		ns
		$1.6~V \leq V_b \leq 2.0~V$	16 MHz < fмск ≤ 20 MHz	64/f мск		ns
			8 MHz < fмск \leq 16 MHz	52/f мск		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	32/f мск		ns
			fмск ≤4 MHz	20/f мск		ns
SCKp high-/low-level	tкн2, tк∟2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,2.7$	tксү2/2 – 24		ns	
width		$2.7 \; V \leq V_{\text{DD}} < 4.0 \; V, 2.3$	tkcy2/2 – 36		ns	
		$2.4 \ V \le V_{\text{DD}} < 3.3 \ V, \ 1.6$	tксү2/2 – 100		ns	
SIp setup time	tsik2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,~2.7~V \leq V_{\text{DD}} \leq 4.0~V$		1/fмск + 40		ns
(to SCKp↑) ^{Note 2}		$2.7 \ V \le V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \le V_{\text{b}} \le 2.7 \ V$		1/fмск + 40		ns
		$2.4 \ V \le V_{\text{DD}} < 3.3 \ V, \ 1.6$	1/fмск + 60		ns	
SIp hold time (from SCKp↑) ^{№ote 3}	tksi2			1/fмск + 62		ns
Delay time from SCKp \downarrow to	tkso2	$4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{b} \leq 4.0 \ V,$			2/fмск +	ns
SOp output Note 4		$C_{\text{b}}=30 \text{ pF}, \text{R}_{\text{b}}=1.4 \text{k}\Omega$		240		
		$2.7 \; V \leq V_{\text{DD}} < 4.0 \; V, 2.3$		2/fмск +	ns	
		C_b = 30 pF, R_b = 2.7 k Ω			428	
		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V}, 1.6$	$V \leq V_b \leq 2.0 V$,		2/fмск +	ns
		$C_b = 30 \text{ pF}, \text{ R}_b = 5.5 \text{ k}\Omega$		1146		

Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Cautions 1. Select the TTL input buffer for the SIp and SCKp pins and the N-ch open drain output (Vbb tolerance) mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.