

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	14
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10269gsp-x5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

<R>

<R>

<R>

- <R> 2. ELECTRICAL SPECIFICATIONS ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)
- <R> This chapter describes the following electrical specifications.
 - Target products A: Consumer applications $T_A = -40 \text{ to } +85^{\circ}\text{C}$ R5F102xxAxx, R5F103xxAxx
 - D: Industrial applications T_A = -40 to +85°C R5F102xxDxx, R5F103xxDxx
 - G: Industrial applications when $T_A = -40$ to $+105^{\circ}$ C products is used in the range of $T_A = -40$ to $+85^{\circ}$ C R5F102xxGxx
 - Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product.

2.2 Oscillator Characteristics

2.2.1 X1 oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator /	$2.7~V \leq V_{DD} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal oscillator	1.8 V ≤ V _{DD} < 2.7 V	1.0		8.0	

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator, refer to 5.4 System Clock Oscillator.

2.2.2 On-chip oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Oscillators	Parameters	Conditions		MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		24	MHz
High-speed on-chip oscillator		R5F102 products	$T_A = -20 \text{ to } +85^{\circ}\text{C}$	-1.0		+1.0	%
clock frequency accuracy			$T_A = -40 \text{ to } -20^{\circ}\text{C}$	-1.5		+1.5	%
		R5F103 products		-5.0		+5.0	%
Low-speed on-chip oscillator clock frequency	fıL				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H) and bits 0 to 2 of HOCODIV register.

2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

(2) 30-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/2)

			3 0.0 V, V33 =	/						(1/2					
Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit					
Supply	I _{DD1}	Operating	HS (High-speed	f _{IH} = 24 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		1.5		mA					
current Note 1		mode	main) mode Note 4		operation	V _{DD} = 3.0 V		1.5							
					Normal	V _{DD} = 5.0 V		3.7	5.5	mA					
				operation	V _{DD} = 3.0 V		3.7	5.5							
				f _H = 16 MHz ^{Note 3}		V _{DD} = 5.0 V		2.7	4.0	mA					
			I S // our opposed of a SAN L			V _{DD} = 3.0 V		2.7	4.0						
			LS (Low-speed	f _{IH} = 8 MHz ^{Note 3}		V _{DD} = 3.0 V		1.2	1.8	mA					
			HS (High-speed fm	main) mode Note 4			V _{DD} = 2.0 V		1.2	1.8					
						Square wave input		3.0	4.6	mA					
						Resonator connection		3.2	4.8						
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$		Square wave input		3.0	4.6	mA					
				$V_{DD} = 3.0 \text{ V}$	$V_{DD} = 3.0 \text{ V}$		Resonator connection		3.2	4.8					
				İ				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$		Square wave input		1.9	2.7	mA	
				$V_{DD} = 5.0 \text{ V}$		Resonator connection		1.9	2.7						
				$f_{MX} = 10 \text{ MHz}^{Note 2}$		Square wave input		1.9	2.7	mA					
				V _{DD} = 3.0 V		Resonator connection		1.9	2.7						
			LS (Low-speed	$f_{MX} = 8 MHz^{Note 2}$		Square wave input		1.1	1.7	mA					
			main) mode Note 4 $V_{DD} = 3.0 \text{ V}$ $f_{MX} = 8 \text{ MHz}^{Note 2},$	main) mode Note 4		$vin) mode^{Note 4} V_{DD} = 3.0 V$	V _{DD} = 3.0 V	$V_{DD} = 3.0 \text{ V}$	in) mode Note 4 $V_{DD} = 3.0 \text{ V}$		Resonator connection		1.1	1.7	
				·	f _{MX} = 8 MHz ^{Note 2} ,		Square wave input		1.1	1.7	mA				
				$V_{DD} = 2.0 \text{ V}$		Resonator connection		1.1	1.7						

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator clock is stopped.
 - 3. When high-speed system clock is stopped
 - **4.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode: $V_{DD} = 2.7 \text{ V to } 5.5 \text{ V } @ 1 \text{ MHz to } 24 \text{ MHz}$

V_{DD} = 2.4 V to 5.5 V @1 MHz to 16 MHz

LS(Low speed main) mode: $V_{DD} = 1.8 \text{ V to } 5.5 \text{ V } @ 1 \text{ MHz to } 8 \text{ MHz}$

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25$ °C.

(2) 30-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2 Note 2	HALT	HS (High-speed	fin = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		440	1280	μА
current Note 1		mode	main) mode Note 6		V _{DD} = 3.0 V		440	1280	
				fin = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		400	1000	μА
					V _{DD} = 3.0 V		400	1000	
			LS (Low-speed	fih = 8 MHz ^{Note 4}	V _{DD} = 3.0 V		260	530	μA
		main) mode Note 6		V _{DD} = 2.0 V		260	530		
		HS (High-speed main) mode Note 6	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		280	1000	μА	
			main) mode Note 6	$V_{DD} = 5.0 \text{ V}$	Resonator connection		450	1170	
			$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		280	1000	μA	
		V _{DD} = 3.0 V	Resonator connection		450	1170			
			$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		190	600	μА	
			V _{DD} = 5.0 V	Resonator connection		260	670		
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		190	600	μΑ
				V _{DD} = 3.0 V	Resonator connection		260	670	
			LS (Low-speed	fmx = 8 MHz ^{Note 3} ,	Square wave input		95	330	μΑ
			main) mode Note 6	V _{DD} = 3.0 V	Resonator connection		145	380	
				fmx = 8 MHz ^{Note 3}	Square wave input		95	330	μΑ
				V _{DD} = 2.0 V	Resonator connection		145	380	
	IDD3 ^{Note 5}	STOP	$T_A = -40^{\circ}C$				0.18	0.50	μА
	mode	T _A = +25°C				0.23	0.50		
		T _A = +50°C				0.30	1.10		
		T _A = +70°C				0.46	1.90		
			T _A = +85°C				0.75	3.30	

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator clock is stopped.
 - 4. When high-speed system clock is stopped.
 - 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **6.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS (High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz

 $V_{DD} = 2.4 \text{ V to } 5.5 \text{ V } @ 1 \text{ MHz to } 16 \text{ MHz}$

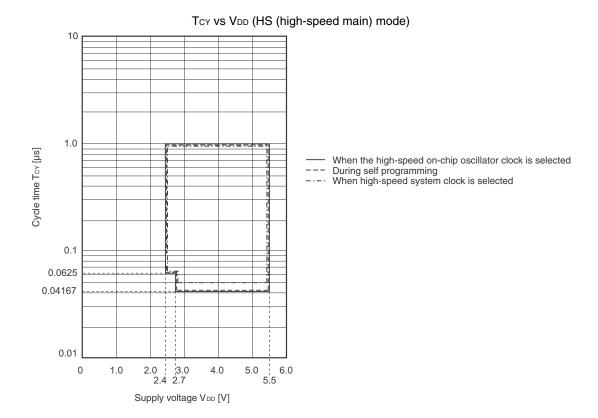
LS (Low speed main) mode: VDD = 1.8 V to 5.5 V @1 MHz to 8 MHz

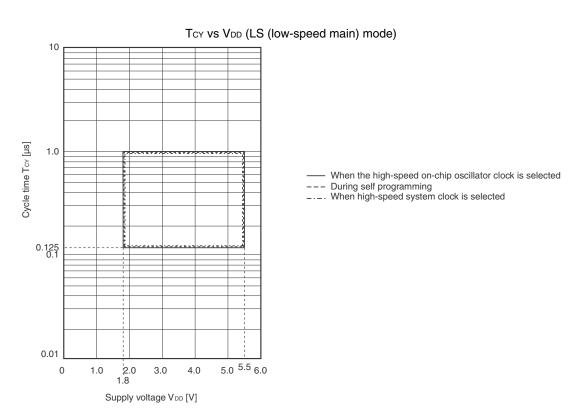
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except STOP mode, temperature condition of the TYP. value is $T_A = 25$ °C.

(3) Peripheral functions (Common to all products)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

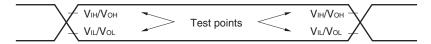
Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed onchip oscillator operating current	FIL Note 1				0.20		μΑ
12-bit interval timer operating current	ÎTMKA Notes 1, 2, 3				0.02		μΑ
Watchdog timer operating current	WDT Notes 1, 2, 4	fıL = 15 kHz			0.22		μΑ
A/D converter	IADC Notes 1, 5	When conversion at	Normal mode, AVREFP = VDD = 5.0 V		1.30	1.70	mA
operating current		maximum speed	Low voltage mode, AV _{REFP} = V _{DD} = 3.0 V		0.50	0.70	mA
A/D converter reference voltage operating current	ADREF Note 1				75.0		μΑ
Temperature sensor operating current	ITMPS Note 1				75.0		μА
LVD operating current	ILVD Notes 1, 6				0.08		μΑ
Self- programming operating current	FSP Notes 1, 8				2.00	12.20	mA
BGO operating current	IBGO Notes 1, 7				2.00	12.20	mA
SNOOZE	ISNOZ Note 1	ADC operation	The mode is performed Note 9		0.50	0.60	mA
operating current			The A/D conversion operations are performed, Low voltage mode, AVREFP = VDD = 3.0 V		1.20	1.44	mA
		CSI/UART operation			0.70	0.84	mA


Notes 1. Current flowing to the V_{DD} .


- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and IFIL and ITMKA when the 12-bit interval timer operates.
- 4. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.
- **5.** Current flowing only to the A/D converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- **6.** Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit operates.
- 7. Current flowing only during data flash rewrite.
- 8. Current flowing only during self programming.
- 9. For shift time to the SNOOZE mode, see 17.3.3 SNOOZE mode.

Remarks 1. fil: Low-speed on-chip oscillator clock frequency

2. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$


Minimum Instruction Execution Time during Main System Clock Operation

2.5 Peripheral Functions Characteristics

AC Timing Test Point

2.5.1 Serial array unit

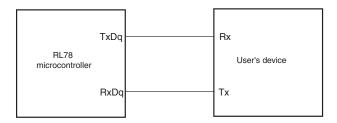
(1) During communication at same potential (UART mode)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

	,	1 = 122 = 616 1, 168 = 6 1,					
Parameter	Symbol	Conditions		h-speed Mode	,	/-speed Mode	Unit
			MIN.	MAX.	MIN.	MAX.	
Transfer rate				fмск/6		fмск/6	bps
Note 1		Theoretical value of the maximum transfer rate $f_{\text{CLK}} = f_{\text{MCK}}^{\text{Note2}}$		4.0		1.3	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:


HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 5.5 V)

16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)


LS (low-speed main) mode: $8 \text{ MHz} (1.8 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V})$

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

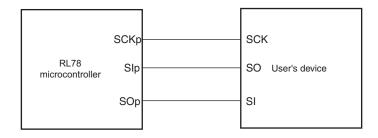
UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 2), g: PIM, POM number (g = 0, 1)

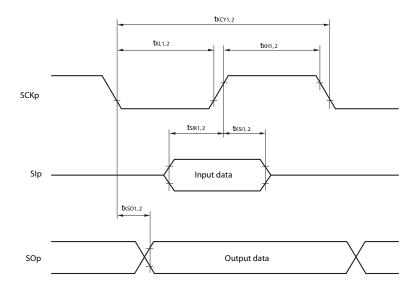
2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

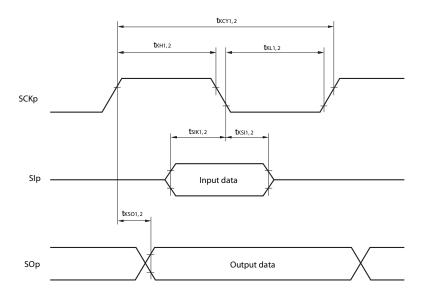
(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)


 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Cond	ditions	HS (high main) l	•	, ,	peed main) ode	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note4	tkcy2	$4.0~V \leq V_{DD} \leq 5.5~V$	20 MHz < fмск	8/fмск		-		ns
			fмcк≤20 MHz	6/fмск		6/fмск		ns
		$2.7~V \leq V_{DD} \leq 5.5~V$	16 MHz < fмск	8/fмск		_		ns
			fмcк ≤ 16 MHz	6/fмск		6/fмск		ns
		$2.4~V \leq V_{DD} \leq 5.5~V$		6/fмск		6/fмск		ns
				and 500		and 500		
		1.8 V ≤ V _{DD} ≤ 5.5 V		-		6/fмск		ns
						and 750		
SCKp high-/low-level	tĸн2,	$4.0~V \leq V_{DD} \leq 5.5~V$		tксү2/2-7		tксү2/2-7		ns
width t _{KL2}	t _{KL2}	$2.7~V \leq V_{DD} \leq 5.5~V$		tксү2/2-8		tксу2/2-8		ns
		$2.4~V \leq V_{DD} \leq 5.5~V$		tксу2/2-18		tксу2/2-18		ns
		1.8 V ≤ V _{DD} ≤ 5.5 V		-		tkcy2/2-18		ns
SIp setup time	tsık2	$2.7~V \leq V_{DD} \leq 5.5~V$		1/fмск +		1/fмск +		ns
(to SCKp↑) Note 1				20		30		
		$2.4~V \leq V_{DD} \leq 5.5~V$		1/fмск +		1/fмск +		ns
				30		30		
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		_		1/fмск + 30		ns
SIp hold time	tksi2			1/f _{MCK} +		1/fмск +		ns
(from SCKp↑) Note 2			T	31		31		
Delay time from SCKp↓ to	tkso2	C = 30 pF Note4	$2.7~V \leq V_{DD} \leq 5.5~V$		2/fмск + 44		2/fмск + 110	ns
SOp output Note 3			$2.4~V \leq V_{DD} \leq 5.5~V$		2/fмск + 75		2/fмск + 110	ns
			1.8 V ≤ V _{DD} ≤ 5.5 V		=		2/fмск + 110	ns


- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp and SCKp pins and the normal output mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).


CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

(Remarks are listed on the next page.)

(7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCK00... internal clock output, corresponding CSI00 only)

(Ta = -40 to +85°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol		Conditions	HS (high		1	/-speed Mode	Unit
				MIN.	MAX.	MIN.	MAX.	
SCK00 cycle time	tkcy1	tkcy1 ≥ 2/fcLK	$\begin{aligned} 4.0 &\ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 &\ V \leq V_b \leq 4.0 \ V, \\ C_b = 20 &\ pF, \ R_b = 1.4 \ k\Omega \end{aligned}$	200		1150		ns
		2.3 Cb	$\begin{split} 2.7 \ V &\leq V_{DD} < 4.0 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 20 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	300		1150		ns
SCK00 high-level width	t _{KH1}	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5$ $C_b = 20 \text{ pF}, R_b = 10.5$	5 V, 2.7 V \leq V _b \leq 4.0 V, : 1.4 k Ω	tксу1/2 — 50		tkcy1/2-		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0$ $C_b = 20 \text{ pF}, R_b = 0.0$	0 V, 2.3 V \leq Vb \leq 2.7 V, $: 2.7 \; k\Omega$	tксу1/2 — 120		tксү1/2 – 120		ns
SCK00 low-level width	t _{KL1}	$4.0 \text{ V} \le V_{DD} \le 5.9$ $C_b = 20 \text{ pF}, R_b = 10.9$	5 V, 2.7 V \leq V _b \leq 4.0 V, : 1.4 k Ω	tксу1/2 — 7		tксү1/2 – 50		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0$ $C_b = 20 \text{ pF}, R_b =$	0 V, 2.3 V \leq V _b \leq 2.7 V, $ = 2.7 \text{ k}\Omega $	tксу1/2 — 10		tксү1/2 – 50		ns
SI00 setup time (to SCK00↑) Note 1	tsıĸ1	$4.0 \text{ V} \le \text{V}_{DD} \le 5.8$ $C_b = 20 \text{ pF}, R_b =$	5 V, 2.7 V \leq V _b \leq 4.0 V, : 1.4 k Ω	58		479		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0$ $C_b = 20 \text{ pF}, R_b = 0.0$	0 V, 2.3 V \leq V _b \leq 2.7 V, : 2.7 k Ω	121		479		ns
SI00 hold time (from SCK00↑) Note 1	tksi1	$4.0 \text{ V} \le \text{V}_{DD} \le 5.9$ $C_b = 20 \text{ pF}, R_b = 10.0$	5 V, 2.7 V \leq V _b \leq 4.0 V, : 1.4 k Ω	10		10		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0$ $C_b = 20 \text{ pF}, R_b = 0.0$	0 V, 2.3 V \leq V _b \leq 2.7 V, 2.7 kΩ	10		10		ns
Delay time from SCK00↓ to SO00 output Note 1	tkso1	$4.0 \text{ V} \le \text{V}_{DD} \le 5.8$ $C_b = 20 \text{ pF}, R_b =$	5 V, 2.7 V \leq V _b \leq 4.0 V, : 1.4 kΩ		60		60	ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0$ $C_b = 20 \text{ pF}, R_b = 0.0$	0 V, 2.3 V \leq V _b \leq 2.7 V, : 2.7 k Ω		130		130	ns
SI00 setup time (to SCK00↓) Note 2	tsıĸı	$4.0 \text{ V} \le \text{V}_{DD} \le 5.8$ $C_b = 20 \text{ pF}, R_b =$	5 V, 2.7 V \leq V _b \leq 4.0 V, : 1.4 k Ω	23		110		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0$ $C_b = 20 \text{ pF}, R_b =$	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 k Ω	33		110		ns
SI00 hold time (from SCK00↓) Note 2	tksi1	$4.0~V \leq V_{DD} \leq 5.8$ $C_b = 20~pF,~R_b =$	5 V, 2.7 V \leq V _b \leq 4.0 V, : 1.4 k Ω	10		10		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0$ $C_b = 20 \text{ pF}, R_b = 0.0$	0 V, 2.3 V \leq V _b \leq 2.7 V, $ = 2.7 \text{ k}\Omega $	10		10		ns
Delay time from SCK00↑ to SO00 output Note 2	t _{KSO1}	$4.0 \text{ V} \le \text{V}_{DD} \le 5.8$ $C_b = 20 \text{ pF}, R_b =$	5 V, 2.7 V \leq V _b \leq 4.0 V, : 1.4 k Ω		10		10	ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0$ $C_b = 20 \text{ pF}, R_b = 0.0$	0 V, 2.3 V \leq V _b \leq 2.7 V, : 2.7 kΩ		10		10	ns

(Notes, Caution, and Remarks are listed on the next page.)

2.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{PDR} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection supply voltage	V _{LVD0}	Power supply rise time	3.98	4.06	4.14	٧
		Power supply fall time	3.90	3.98	4.06	٧
	V _{LVD1}	Power supply rise time	3.68	3.75	3.82	٧
		Power supply fall time	3.60	3.67	3.74	٧
	V _{LVD2}	Power supply rise time	3.07	3.13	3.19	٧
		Power supply fall time	3.00	3.06	3.12	٧
	V LVD3	Power supply rise time	2.96	3.02	3.08	٧
		Power supply fall time	2.90	2.96	3.02	٧
	V _{LVD4}	Power supply rise time	2.86	2.92	2.97	٧
		Power supply fall time	2.80	2.86	2.91	٧
	V _{LVD5}	Power supply rise time	2.76	2.81	2.87	٧
		Power supply fall time	2.70	2.75	2.81	٧
	V _{LVD6}	Power supply rise time	2.66	2.71	2.76	٧
		Power supply fall time	2.60	2.65	2.70	٧
	V LVD7	Power supply rise time	2.56	2.61	2.66	٧
		Power supply fall time	2.50	2.55	2.60	٧
	V _{LVD8}	Power supply rise time	2.45	2.50	2.55	٧
		Power supply fall time	2.40	2.45	2.50	٧
	V _{LVD9}	Power supply rise time	2.05	2.09	2.13	٧
		Power supply fall time	2.00	2.04	2.08	٧
	V _{LVD10}	Power supply rise time	1.94	1.98	2.02	٧
		Power supply fall time	1.90	1.94	1.98	٧
	V _{LVD11}	Power supply rise time	1.84	1.88	1.91	٧
		Power supply fall time	1.80	1.84	1.87	٧
Minimum pulse width	tLW		300			μS
Detection delay time					300	μS

3.1 Absolute Maximum Ratings

Absolute Maximum Ratings (TA = 25°C)

Parameter	Symbols		Conditions	Ratings	Unit
Supply Voltage	V _{DD}			-0.5 to + 6.5	V
REGC terminal input voltage Note1	Virego	REGC		-0.3 to +2.8 and -0.3 to V _{DD} + 0.3 _{Note 2}	V
Input Voltage	VII	Other than P60, F	² 61	-0.3 to V _{DD} + 0.3 ^{Note 3}	V
	Vı2	P60, P61 (N-ch o	pen drain)	-0.3 to 6.5	V
Output Voltage	Vo			-0.3 to V _{DD} + 0.3 ^{Note 3}	V
Analog input voltage	Val	20, 24-pin produc	ts: ANI0 to ANI3, ANI16 to ANI22	-0.3 to V _{DD} + 0.3	V
		30-pin products: A	ANIO to ANI3, ANI16 to ANI19	and -0.3 to AVREF(+)+0.3 Notes 3, 4	
Output current, high	І он1	Per pin	Other than P20 to P23	-40	mA
		Total of all pins	All the terminals other than P20 to P23	-170	mA
			20-, 24-pin products: P40 to P42	-70	mA
			30-pin products: P00, P01, P40, P120		
			20-, 24-pin products: P00 to P03 ^{Note 5} , P10 to P14 30-pin products: P10 to P17, P30, P31, P50, P51, P147	-100	mA
	10н2	Per pin	P20 to P23	-0.5	mA
		Total of all pins		-2	mA
Output current, low	lo _{L1}	Per pin	Other than P20 to P23	40	mA
		Total of all pins	All the terminals other than P20 to P23	170	mA
			20-, 24-pin products: P40 to P42 30-pin products: P00, P01, P40, P120	70	mA
			20-, 24-pin products: P00 to P03 Note 5, P10 to P14, P60, P61 30-pin products: P10 to P17, P30, P31, P50, P51, P60, P61, P147	100	mA
	I _{OL2}	Per pin	P20 to P23	1	mA
		Total of all pins		5	mA
Operating ambient temperature	Та			-40 to +105	°C
Storage temperature	T _{stg}			-65 to +150	°C

Notes 1. 30-pin product only.

- 2. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value determines the absolute maximum rating of the REGC pin. Do not use it with voltage applied.
- 3. Must be 6.5 V or lower.
- **4.** Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.
- 5. 24-pin products only.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remarks 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- **2.** AV_{REF}(+): + side reference voltage of the A/D converter.
- 3. Vss : Reference voltage

3.3 DC Characteristics

3.3.1 Pin characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/4)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42				-3.0 Note 2	mA
		30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147					
		20-, 24-pin products:	$4.0~V \leq V_{DD} \leq 5.5~V$			-9.0	mA
		Total of P40 to P42	$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$			-6.0	mA
		30-pin products: Total of P00, P01, P40, P120 (When duty ≤ 70% Note 3)	2.4 V ≤ V _{DD} < 2.7 V			-4.5	mA
		20-, 24-pin products:	$4.0~V \leq V_{DD} \leq 5.5~V$			-27.0	mA
		Total of P00 to P03 ^{Note 4} , P10 to P14	$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$			-18.0	mA
		30-pin products: Total of P10 to P17, P30, P31, P50, P51, P147 (When duty ≤ 70% Note 3)	2.4 V ≤ V _{DD} < 2.7 V			-10.0	mA
		Total of all pins (When duty $\leq 70\%^{\text{Note 3}}$)				-36.0	mA
	І ОН2	Per pin for P20 to P23				-0.1	mA
		Total of all pins				-0.4	mA

- **Notes 1**. value of current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin.
 - 2. However, do not exceed the total current value.
 - 3. The output current value under conditions where the duty factor ≤ 70%.
 If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).
 - Total output current of pins = $(loh \times 0.7)/(n \times 0.01)$
 - <Example> Where n = 80% and IoH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

4. 24-pin products only.

Caution P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24-pin products, and P00, P10 to P15, P17, and P50 for 30-pin products do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(1) 20-, 24-pin products

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply current ^{Note 1}	IDD2 Note 2	HALT mode	HS (High-speed main) mode Note 6	f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		440	2230	μА
					V _{DD} = 3.0 V		440	2230	
				fih = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		400	1650	μА
					V _{DD} = 3.0 V		400	1650	
				$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$ $V_{DD} = 5.0 \text{ V}$	Square wave input		280	1900	μA
					Resonator connection		450	2000	
				$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$ $V_{DD} = 3.0 \text{ V}$	Square wave input		280	1900	μA
					Resonator connection		450	2000	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$ $V_{DD} = 5.0 \text{ V}$	Square wave input		190	1010	μА
					Resonator connection		260	1090	
		f _{MX} = 10 MHz ^{Note 3} , Square wave input		190	1010	μA			
				V _{DD} = 3.0 V	Resonator connection		260	1090	
	IDD3 Note 5	⁵ STOP mode	T _A = -40°C				0.19	0.50	μA
			T _A = +25°C	T _A = +25°C			0.24	0.50	
			T _A = +50°C	$T_A = +50^{\circ}C$			0.32	0.80	
			$T_A = +70^{\circ}C$ $T_A = +85^{\circ}C$ $T_A = +105^{\circ}C$				0.48	1.20	
							0.74	2.20	
							1.50	10.20	

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator clock is stopped.
 - 4. When high-speed system clock is stopped.
 - 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **6.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS (High speed main) mode: $V_{DD} = 2.7 \text{ V to } 5.5 \text{ V}$ @1 MHz to 24 MHz $V_{DD} = 2.4 \text{ V to } 5.5 \text{ V}$ @1 MHz to 16 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except temperature condition of the TYP. value is $T_A = 25$ °C, other than STOP mode

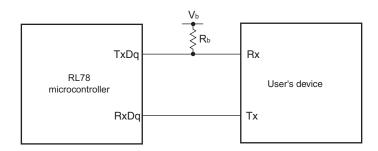
(3) Peripheral functions (Common to all products)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

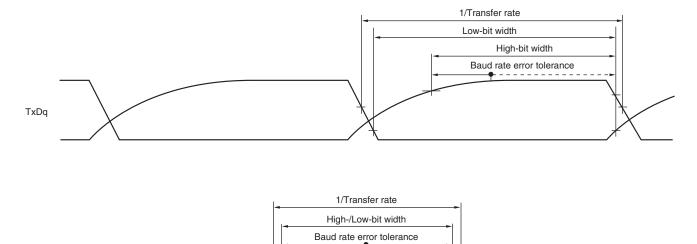
Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Low-speed onchip oscillator operating current	IFIL Note 1				0.20		μΑ
12-bit interval timer operating current	ITMKA Notes 1, 2, 3				0.02		μΑ
Watchdog timer operating current	WDT Notes 1, 2, 4	fı∟ = 15 kHz			0.22		μΑ
A/D converter	IADC	When conversion	Normal mode, AVREFP = VDD = 5.0 V		1.30	1.70	mA
operating current	Notes 1, 5	at maximum speed	Low voltage mode, AV _{REFP} = V _{DD} = 3.0 V		0.50	0.70	mA
A/D converter reference voltage operating current	ADREF Note 1				75.0		μΑ
Temperature sensor operating current	ITMPS Note 1				75.0		μА
LVD operating current	ILVD Notes 1, 6				0.08		μΑ
Self-programming operating current	FSP Notes 1, 8				2.00	12.20	mA
BGO operating current	BGO Notes 1, 7				2.00	12.20	mA
SNOOZE operating	Isnoz	ADC operation	The mode is performed Note 9		0.50	1.10	mA
current	Note 1		The A/D conversion operations are performed, Low voltage mode, AVREFP = VDD = 3.0 V		1.20	2.04	mA
		CSI/UART operation	1		0.70	1.54	mA

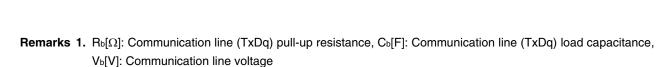
Notes 1. Current flowing to the VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and IFIL and ITMKA when the 12-bit interval timer operates.
- 4. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.
- **5.** Current flowing only to the A/D converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- **6.** Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit operates.
- 7. Current flowing only during data flash rewrite.
- 8. Current flowing only during self programming.
- 9. For shift time to the SNOOZE mode, see 17.3.3 SNOOZE mode.


Remarks 1. fil: Low-speed on-chip oscillator clock frequency

2. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$



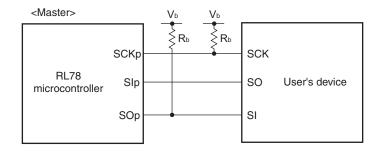

RxDq

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- 2. q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)
- 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 - m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))
- **4.** UART0 of the 20- and 24-pin products supports communication at different potential only when the peripheral I/O redirection function is not used.

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)


 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-speed	I main) Mode	Unit
			MIN.	MAX.	
SIp setup time (to SCKp↓)	tsıkı	$ 4.0~V \leq V_{DD} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V, $ $C_b = 30~pF,~R_b = 1.4~k\Omega $	88		ns
		$ \label{eq:continuous} $	88		ns
		$ \label{eq:continuous} $	220		ns
SIp hold time (from SCKp↓) Note	tksi1	$ \begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $	38		ns
		$ 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, $ $C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega $	38		ns
		$ \label{eq:continuous} $	38		ns
Delay time from SCKp↑ to SOp output Note	tkso1	$ \begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $		50	ns
		$ 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, $ $C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega $		50	ns
		$ 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, $ $C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega $		50	ns

Note When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

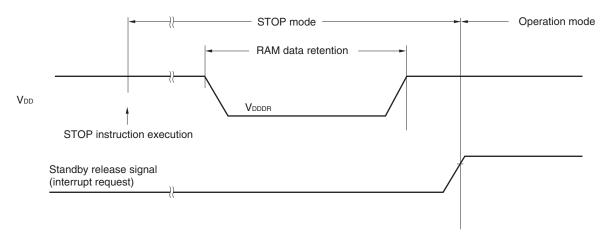
- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.
- **Remarks 1.** Rb $[\Omega]$: Communication line (SCKp, SOp) pull-up resistance, Cb [F]: Communication line (SCKp, SOp) load capacitance, Vb [V]: Communication line voltage
 - 2. p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

CSI mode connection diagram (during communication at different potential)

3.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(Ta = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection supply voltage	V _{LVD0}	Power supply rise time	3.90	4.06	4.22	٧
		Power supply fall time	3.83	3.98	4.13	٧
	V _{LVD1}	Power supply rise time	3.60	3.75	3.90	٧
		Power supply fall time	3.53	3.67	3.81	٧
	V _{LVD2}	Power supply rise time	3.01	3.13	3.25	٧
		Power supply fall time	2.94	3.06	3.18	٧
	V LVD3	Power supply rise time	2.90	3.02	3.14	٧
		Power supply fall time	2.85	2.96	3.07	٧
	V _{LVD4}	Power supply rise time	2.81	2.92	3.03	٧
		Power supply fall time	2.75	2.86	2.97	٧
	V LVD5	Power supply rise time	2.70	2.81	2.92	٧
		Power supply fall time	2.64	2.75	2.86	٧
	V _{LVD6}	Power supply rise time	2.61	2.71	2.81	٧
		Power supply fall time	2.55	2.65	2.75	٧
	V LVD7	Power supply rise time	2.51	2.61	2.71	٧
		Power supply fall time	2.45	2.55	2.65	٧
Minimum pulse width	tuw		300			μs
Detection delay time					300	μS

<R> 3.7 RAM Data Retention Characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	V _{DDDR}		1.44 Note		5.5	V

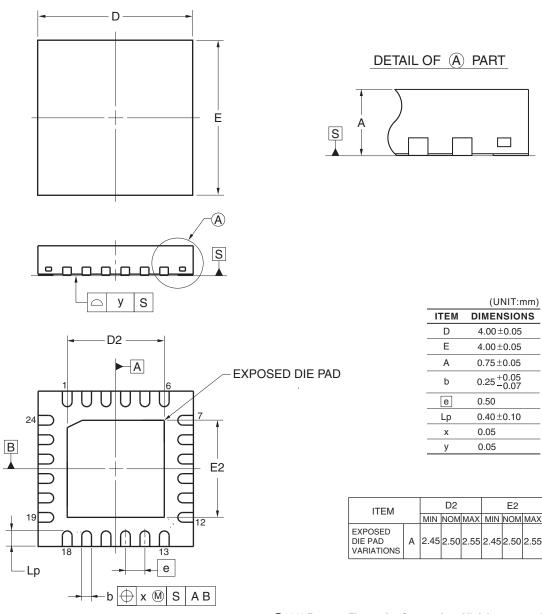
<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

3.8 Flash Memory Programming Characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}. 2.4 \text{ V} < V_{DD} < 5.5 \text{ V}. \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclk		1		24	MHz
Code flash memory rewritable times	Cerwr	Retained for 20 years TA = 85°C Notes 4	1,000			Times
Data flash memory rewritable times		Retained for 1 year TA = 25°C Notes 4		1,000,000		
		Retained for 5 years TA = 85°C Notes 4	100,000			
		Retained for 20 years TA = 85°C Notes 4	10,000			

- **Notes 1.** 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
 - 2. When using flash memory programmer and Renesas Electronics self programming library
 - **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.
 - 4. This temperature is the average value at which data are retained.



<R>

4.2 24-pin products

R5F1027AANA, R5F10279ANA, R5F10278ANA, R5F10277ANA R5F1037AANA, R5F10379ANA, R5F10378ANA, R5F10377ANA R5F1027ADNA, R5F10279DNA, R5F10278DNA, R5F10277DNA R5F1037ADNA, R5F10379DNA, R5F10378DNA, R5F10377DNA R5F1027AGNA, R5F10279GNA, R5F10278GNA, R5F10277GNA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-HWQFN24-4x4-0.50	PWQN0024KE-A	P24K8-50-CAB-1	0.04

 \bigcirc 2012 Renesas Electronics Corporation. All rights reserved.