

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	14
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f1026aasp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Code flash	Data flash	RAM	20 pins	24 pins	30 pins
16 KB	2 KB	2 KB	_	—	R5F102AA
	_		_	—	R5F103AA
	2 KB	1.5 KB	R5F1026A Note 1	R5F1027A ^{Note 1}	
	_		R5F1036A Note 1	R5F1037A Note 1	
12 KB	2KB	1 KB	R5F10269 Note 1	R5F10279 Note 1	R5F102A9
	_		R5F10369 Note 1	R5F10379 Note 1	R5F103A9
8 KB	2 KB	768 B	R5F10268 Note 1	R5F10278 Note 1	R5F102A8
	—		R5F10368 Note 1	R5F10378 Note 1	R5F103A8
4 KB	2KB	512 B	R5F10267	R5F10277	R5F102A7
	_		R5F10367	R5F10377	R5F103A7
2 KB	2 KB	256 B	R5F10266 Note 2		
	—		R5F10366 Note 2	—	

O ROM, RAM capacities

Notes 1. This is 640 bytes when the self-programming function or data flash function is used. (For details, see CHAPTER 3 CPU ARCHITECTURE.)

2. The self-programming function cannot be used for R5F10266 and R5F10366.

Caution When the flash memory is rewritten via a user program, the code flash area and RAM area are used because each library is used. When using the library, refer to RL78 Family Flash Self Programming Library Type01 User's Manual and RL78 Family Data Flash Library Type04 User's Manual.

Table 1-1.	List of	Ordering	Part	Numbers
------------	---------	----------	------	---------

	Pin count	Package	Data flash	Fields of Application	Part Number
<r></r>	20 pins	20-pin plastic LSSOP $(4.4 \times 6.5 \text{ mm}, 0.65 \text{ mm pitch})$	Mounted	A	R5F1026AASP#V5, R5F10269ASP#V5, R5F10268ASP#V5, R5F10267ASP#V5, R5F10266ASP#V5 R5F1026AASP#X5, R5F10269ASP#X5, R5F10268ASP#X5, R5F10267ASP#X5, R5F10266ASP#X5
				D	R5F1026ADSP#V5, R5F10269DSP#V5, R5F10268DSP#V5, R5F10267DSP#V5, R5F10266DSP#V5 R5F1026ADSP#X5, R5F10269DSP#X5, R5F10268DSP#X5, R5F10267DSP#X5, R5F10266DSP#X5
				G	R5F1026AGSP#V5, R5F10269GSP#V5, R5F10268GSP#V5, R5F10267GSP#V5, R5F10266GSP#V5 R5F1026AGSP#X5, R5F10269GSP#X5, R5F10268GSP#X5, R5F10267GSP#X5, R5F10266GSP#X5
			Not mounted	A	R5F1036AASP#V5, R5F10369ASP#V5, R5F10368ASP#V5, R5F10367ASP#V5, R5F10366ASP#V5 R5F1036AASP#X5, R5F10369ASP#X5, R5F10368ASP#X5, R5F10367ASP#X5, R5F10366ASP#X5
				D	R5F1036ADSP#V5, R5F10369DSP#V5, R5F10368DSP#V5, R5F10367DSP#V5, R5F10366DSP#V5 R5F1036ADSP#X5, R5F10369DSP#X5, R5F10368DSP#X5, R5F10367DSP#X5, R5F10366DSP#X5
<r></r>	24 24-pin plastic HWQFN (4 × 4 mm, 0.5 mm pitch)	Mounted	A	R5F1027AANA#U5, R5F10279ANA#U5, R5F10278ANA#U5, R5F10277ANA#U5 R5F1027AANA#W5, R5F10279ANA#W5, R5F10278ANA#W5, R5F10277ANA#W5	
		mm pitch)		D	R5F1027ADNA#U5, R5F10279DNA#U5, R5F10278DNA#U5, R5F10277DNA#U5 R5F1027ADNA#W5, R5F10279DNA#W5, R5F10278DNA#W5, R5F10277DNA#W5
				G	R5F1027AGNA#U5, R5F10279GNA#U5, R5F10278GNA#U5, R5F10277GNA#U5 R5F1027AGNA#W5, R5F10279GNA#W5, R5F10278GNA#W5, R5F10277GNA#W5
			Not mounted	А	R5F1037AANA#V5, R5F10379ANA#V5, R5F10378ANA#V5, R5F10377ANA#V5
					R5F1037AANA#X5, R5F10379ANA#X5, R5F10378ANA#X5, R5F10377ANA#X5
				D	R5F1037ADNA#V5, R5F10379DNA#V5, R5F10378DNA#V5, R5F10377DNA#V5 R5F1037ADNA#X5, R5F10379DNA#X5, R5F10378DNA#X5, R5F10377DNA#X5
	30 pins	30-pin plastic LSSOP	Mounted	A	R5F102AAASP#V0, R5F102A9ASP#V0, R5F102A8ASP#V0, R5F102A7ASP#V0 R5F102AAASP#X0, R5F102A9ASP#X0, R5F102A8ASP#X0, R5F102A7ASP#X0
		(7.62 mm (300), 0.65 mm		D	R5F102AADSP#V0, R5F102A9DSP#V0, R5F102A8DSP#V0, R5F102A7DSP#V0 R5F102AADSP#X0, R5F102A9DSP#X0, R5F102A8DSP#X0, R5F102A7DSP#X0
		pitch)		G	R5F102AAGSP#V0, R5F102A9GSP#V0, R5F102A8GSP#V0, R5F102AAGSP#V0 R5F102AAGSP#X0, R5F102A9GSP#X0, R5F102A8GSP#X0, R5F102A7GSP#X0
			Not mounted	А	R5F103AAASP#V0, R5F103A9ASP#V0, R5F103A8ASP#V0, R5F103A7ASP#V0 R5F103AAASP#X0, R5F103A9ASP#X0, R5F103A8ASP#X0, R5F103A7ASP#X0
				D	R5F103AADSP#V0, R5F103A9DSP#V0, R5F103A8DSP#V0, R5F103A7DSP#V0 R5F103AADSP#X0, R5F103A9DSP#X0, R5F103A8DSP#X0, R5F103A7DSP#X0

Note For fields of application, see Figure 1-1 Part Number, Memory Size, and Package of RL78/G12.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.4 Pin Configuration (Top View)

1.4.1 20-pin products

• 20-pin plastic LSSOP (4.4 × 6.5 mm, 0.65 mm pitch)

Note Provided only in the R5F102 products.

- Remarks 1. For pin identification, see 1.5 Pin Identification.
 - 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR).

2.2 Oscillator Characteristics

2.2.1 X1 oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator /	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal oscillator	$1.8~V \leq V_{\text{DD}} < 2.7~V$	1.0		8.0	

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- **Remark** When using the X1 oscillator, refer to **5.4 System Clock Oscillator**.

2.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Oscillators	Parameters	Conditions		MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		24	MHz
High-speed on-chip oscillatorR5F102 products $T_A = -20$ to +850		$T_A = -20 \text{ to } +85^\circ \text{C}$	-1.0		+1.0	%	
clock frequency accuracy	ency accuracy $T_A = -40 \text{ to} -200 t$		$T_A = -40$ to $-20^{\circ}C$	-1.5		+1.5	%
		R5F103 products		-5.0		+5.0	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H) and bits 0 to 2 of HOCODIV register.

2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

(3/4)

Parameter	Symbol	Condition	S	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	Normal input buffer		0.8Vpp		VDD	V
		20-, 24-pin products: P00 to P0 P40 to P42)3 ^{№te 2} , P10 to P14,				
		30-pin products: P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147					
	VIH2	TTL input buffer	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	2.2		Vdd	V
		20-, 24-pin products: P10, P11	$3.3~V \leq V_{\text{DD}} < 4.0~V$	2.0		VDD	V
		30-pin products: P01, P10, P11, P13 to P17	$1.8~V \leq V_{\text{DD}} < 3.3~V$	1.5		VDD	V
	VIH3	P20 to P23		0.7Vdd		VDD	V
	VIH4	P60, P61		0.7Vdd		6.0	V
	VIH5	P121, P122, P125 ^{Note 1} , P137, I	EXCLK, RESET	0.8VDD		VDD	V
Input voltage, low	VIL1	Normal input buffer		0		0.2VDD	V
		20-, 24-pin products: P00 to P0 P40 to P42	20-, 24-pin products: P00 to P03 ^{Note 2} , P10 to P14, P40 to P42				
		30-pin products: P00, P01, P10 P40, P50, P51, P120, P147) to P17, P30, P31,				
	VIL2	TTL input buffer	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	0		0.8	V
		20-, 24-pin products: P10, P11	$3.3~V \leq V_{\text{DD}} < 4.0~V$	0		0.5	V
		30-pin products: P01, P10, P11, P13 to P17	$1.8~V \leq V_{\text{DD}} < 3.3~V$	0		0.32	V
	VIL3	P20 to P23		0		0.3VDD	V
	VIL4	P60, P61		0		0.3VDD	V
	VIL5	P121, P122, P125 ^{Note 1} , P137, I	EXCLK, RESET	0		0.2VDD	V
Output voltage, high	V _{OH1}	20-, 24-pin products: P00 to P03 ^{№ete 2} , P10 to P14,	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -10.0 \ \text{mA} \end{array}$	VDD-1.5			V
		P40 to P42 30-pin products:	4.0 V \leq V_{DD} \leq 5.5 V, I_{OH1} = -3.0 mA	VDD-0.7			V
		P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120,	$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \text{I}_{\text{OH1}} = -2.0 \ \text{mA} \end{array}$	Vdd-0.6			V
		P147	$\begin{array}{l} 1.8 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -1.5 \ mA \end{array}$	V _{DD} -0.5			V
	V _{OH2}	P20 to P23	Іон2 = -100 <i>µ</i> А	VDD-0.5			V

Notes 1. 20, 24-pin products only.

2. 24-pin products only.

- Caution The maximum value of V_H of pins P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24pin products, and P00, P10 to P15, P17, and P50 for 30-pin products is V_{DD} even in N-ch open-drain mode. High level is not output in the N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(1) 20-, 24-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	DD2 Note 2	HALT	HS (High-speed	$f_{IH} = 24 \text{ MHz}^{Note 4}$	$V_{DD} = 5.0 V$		440	1210	μA
current Note 1		mode	main) mode ^{Note 6}		$V_{DD} = 3.0 V$		440	1210	
				fıн = 16 MHz ^{№te 4}	$V_{DD} = 5.0 V$		400	950	μA
					$V_{DD} = 3.0 V$		400	950	
			LS (Low-speed	$f_{IH} = 8 \text{ MHz}^{Note 4}$	$V_{DD} = 3.0 V$		270	542	μA
			main) mode ^{Note 6}		V _{DD} = 2.0 V		270	542	
			HS (High-speed	$f_{MX} = 20 \text{ MHz}^{Note 3},$	Square wave input		280	1000	μA
			main) mode ^{Note 6}	$V_{DD} = 5.0 V$	Resonator connection		450	1170	
				$f_{MX} = 20 \text{ MHz}^{Note 3},$	Square wave input		280	1000	μA
		$V_{DD} = 3.0 V$	Resonator connection		450	1170			
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		190	590	μA
				$V_{DD} = 5.0 V$	Resonator connection		260	660	
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		190	590	μA
				$V_{DD} = 3.0 V$	Resonator connection		260	660	
			LS (Low-speed	$f_{MX} = 8 \text{ MHz}^{Note 3},$	Square wave input		110	360	μA
			main) mode ^{Note 6}	$V_{DD} = 3.0 V$	Resonator connection		150	416	
				$f_{MX} = 8 \text{ MHz}^{Note 3},$	Square wave input		110	360	μA
				$V_{DD} = 2.0 V$	Resonator connection		150	416	
	DD3 Note 5	STOP	$T_A = -40^{\circ}C$				0.19	0.50	μA
	mode ·	$T_A = +25^{\circ}C$	$T_{A} = +25^{\circ}C$ $T_{A} = +50^{\circ}C$			0.24	0.50		
		$T_A = +50^{\circ}C$				0.32	0.80		
			$T_A = +70^{\circ}C$				0.48	1.20	
			T _A = +85°C				0.74	2.20	

Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. During HALT instruction execution by flash memory.
- 3. When high-speed on-chip oscillator clock is stopped.
- 4. When high-speed system clock is stopped.
- 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.
- 6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz VDD = 2.4 V to 5.5 V @1 MHz to 16 MHz

LS(Low speed main) mode: VDD = 1.8 V to 5.5 V @1 MHz to 8 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except temperature condition of the TYP. value is $T_A = 25^{\circ}C$, other than STOP mode

(2) 30-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	DD2 Note 2	HALT	HS (High-speed	$f_{IH} = 24 \text{ MHz}^{Note 4}$	V _{DD} = 5.0 V		440	1280	μA
current Note 1		mode	main) mode ^{Note6}		V _{DD} = 3.0 V		440	1280	
				$f_{IH} = 16 \text{ MHz}^{Note 4}$	$V_{DD} = 5.0 V$		400	1000	μA
					$V_{DD} = 3.0 V$		400	1000	
			LS (Low-speed	$f_{\text{IH}} = 8 \text{ MHz}^{\text{Note 4}}$	$V_{DD} = 3.0 V$		260	530	μA
			main) mode ^{№066}		$V_{DD} = 2.0 V$		260	530	
			HS (High-speed	$f_{MX} = 20 \text{ MHz}^{Note 3}$,	Square wave input		280	1000	μA
			main) mode ^{Note6}	$V_{DD} = 5.0 V$	Resonator connection		450	1170	
				$f_{MX} = 20 \text{ MHz}^{Note 3}$,	Square wave input		280	1000	μA
				$V_{DD} = 3.0 V$	Resonator connection		450	1170	
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		190	600	μA
				$V_{DD} = 5.0 V$	Resonator connection		260	670	
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		190	600	μA
				$V_{DD} = 3.0 V$	Resonator connection		260	670	
			LS (Low-speed	$f_{MX} = 8 MHz^{Note 3}$,	Square wave input		95	330	μA
			main) mode ^{Note 6}	$V_{DD} = 3.0 V$	Resonator connection		145	380	
				$f_{MX} = 8 MHz^{Note 3}$	Square wave input		95	330	μA
				$V_{DD} = 2.0 V$	Resonator connection		145	380	
		STOP	$T_{\text{A}} = -40^{\circ}C$				0.18	0.50	μA
	mode	$T_A = +25^{\circ}C$	25°C			0.23	0.50		
		$T_A = +50^{\circ}C$				0.30	1.10		
			$T_A = +70^{\circ}C$				0.46	1.90	
			T _A = +85°C				0.75	3.30	

Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. During HALT instruction execution by flash memory.
- 3. When high-speed on-chip oscillator clock is stopped.
- 4. When high-speed system clock is stopped.
- 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.
- 6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS (High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz

VDD = 2.4 V to 5.5 V @1 MHz to 16 MHz

LS (Low speed main) mode: VDD = 1.8 V to 5.5 V @1 MHz to 8 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except STOP mode, temperature condition of the TYP. value is TA = 25°C.

2.4 AC Characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Items	Symbol		Condition	IS	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсч	Main system	HS (High-	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.04167		1	μS
instruction execution time)		clock (fMAIN) operation	speed main) mode	$2.4~V \leq V_{\text{DD}} < 2.7~V$	0.0625		1	μS
			LS (Low- speed main) mode	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	0.125		1	μS
		During self programming	HS (High-	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.04167		1	μS
			speed main) mode	$2.4~V \leq V_{\text{DD}} < 2.7~V$	0.0625		1	μS
			LS (Low- speed main) mode	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	0.125		1	μS
External main system clock	fex	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			1.0		20.0	MHz
frequency		$2.4~V \leq V_{\text{DD}} < 2.7~V$			1.0		16.0	MHz
		$1.8~V \leq V_{\text{DD}} < 2$.4 V		1.0		8.0	MHz
External main system clock	texh, texl	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			24			ns
input high-level width, low- level width		$2.4~V \leq V_{\text{DD}} < 2.7~V$			30			ns
		$1.8~V \leq V_{\text{DD}} < 2.4~V$						ns
TI00 to TI07 input high-level width, low-level width	t⊓∺, t⊓∟				1/fмск + 10			ns
TO00 to TO07 output	fто	$4.0~V \leq V_{\text{DD}} \leq 5$.5 V				12	MHz
frequency		$2.7~V \leq V_{\text{DD}} < 4$.0 V				8	MHz
		$1.8 \text{ V} \leq V_{\text{DD}} < 2.7 \text{ V}$					4	MHz
PCLBUZ0, or PCLBUZ1	f PCL	$4.0~V \leq V_{\text{DD}} \leq 5$.5 V				16	MHz
output frequency		$2.7~V \leq V_{\text{DD}} < 4$.0 V				8	MHz
		$1.8~V \leq V_{\text{DD}} < 2$.7 V				4	MHz
INTP0 to INTP5 input high- level width, low-level width	tın⊤н, tın⊤∟				1			μS
KR0 to KR9 input available width	tкя				250			ns
RESET low-level width	tRSL				10			μs

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the timer clock select register 0 (TPS0) and the CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7))

2.5 Peripheral Functions Characteristics

AC Timing Test Point

2.5.1 Serial array unit

(1) During communication at same potential (UART mode) ($T_A = -40$ to $+85^{\circ}$ C, 1.8 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

`									
Parameter	Symbol	Conditions		abol Conditions HS (high- main) M		•	•	/-speed Mode	Unit
			MIN.	MAX.	MIN.	MAX.			
Transfer rate				fмск/6		fмск/6	bps		
Note 1		Theoretical value of the maximum transfer rate $f_{\text{CLK}} = f_{\text{MCK}}{}^{\text{Note2}}$		4.0		1.3	Mbps		

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are: HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 5.5 V)

16 MHz (2.4 V
$$\leq$$
 VDD \leq 5.5 V)

LS (low-speed main) mode: 8 MHz (1.8 V
$$\leq$$
 VDD \leq 5.5 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 2), g: PIM, POM number (g = 0, 1)

2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

(2) During communication at same potential (CSI mode) (master mode, SCK00... internal clock output, corresponding CSI00 only)

Parameter	Symbol			ol Conditions HS (high-speed main Mode					
			MIN.	MAX.	MIN.	MAX.			
SCK00 cycle time	tксү1	tκcγ1 ≥ 2/fc∟κ	83.3		250		ns		
SCK00 high-/low- level width	tкнı,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	tксү1/ 2 –7		tксү1/2–50		ns		
	tĸ∟ı	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	tксү1/2–10		tксү1/2–50		ns		
SI00 setup time	tsik1	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	23		110		ns		
(to SCK00↑) ^{Note 1}		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	33		110		ns		
SI00 hold time (from SCK00↑) ^{Note2}	tksi1		10		10		ns		
Delay time from SCK00↓ to SO00 output ^{Note 3}	tkso1	C = 20 pF ^{Note 4}		10		10	ns		

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- **Notes 1.** When DAP00 = 0 and CKP00 = 0, or DAP00 = 1 and CKP00 = 1. The SI00 setup time becomes "to $SCK00\downarrow$ " when DAP00 = 0 and CKP00 = 1, or DAP00 = 1 and CKP00 = 0.
 - 2. When DAP00 = 0 and CKP00 = 0, or DAP00 = 1 and CKP00 = 1. The SI00 hold time becomes "from SCK00↓" when DAP00 = 0 and CKP00 = 1, or DAP00 = 1 and CKP00 = 0.
 - **3.** When DAP00 = 0 and CKP00 = 0, or DAP00 = 1 and CKP00 = 1. The delay time to SO00 output becomes "from SCK00∱" when DAP00 = 0 and CKP00 = 1, or DAP00 = 1 and CKP00 = 0.
 - 4. C is the load capacitance of the SCK00 and SO00 output lines.
- **Caution** Select the normal input buffer for the SI00 pin and the normal output mode for the SO00 and SCK00 pins by using port input mode register 1 (PIM1) and port output mode register 1 (POM1).
- Remarks 1. This specification is valid only when CSI00's peripheral I/O redirect function is not used.
 - 2. fMCK: Serial array unit operation clock frequency
 - (Operation clock to be set by the serial clock select register 0 (SPS0) and the CKS00 bit of serial mode register 00 (SMR00).)

Parameter	Symbol	Conditions		HS (high- main) M		LS (low-spe Mod	-	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tKCY1	tксү1 ≥ 4/fc∟к	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	167		500		ns
			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	250		500		ns
			$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	-		500		ns
SCKp high-/low-level width	tкнı,			tксү1/2–12		tксү1/2-50		ns
	tĸ∟1			tксү1/2–18		tксү1/2-50		ns
	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		5.5 V	tксү1/2–38		tксү1/2–50		ns
		$1.8~V \leq V_{\text{DD}} \leq$	5.5 V	-		tксү1/2-50		ns
SIp setup time (to SCKp↑)	tsik1	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V	44		110		ns
Note 1		$2.7~V \leq V_{\text{DD}} \leq$	5.5 V	44		110		ns
		$2.4~V \leq V_{\text{DD}} \leq$	5.5 V	75		110		ns
		$1.8~V \leq V_{\text{DD}} \leq$	5.5 V	-		110		ns
SIp hold time (from SCKp↑) ^{№te 2}	tksi1			19		19		ns
Delay time from SCKp↓ to SOp output ^{№te 3}	tkso1	$C = 30 \text{ pF}^{Note4}$			25		25	ns

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (T_A = -40 to +85°C, 1.8 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.
- **Caution** Select the normal input buffer for the SIp pin and the normal output mode for the SOp and SCKp pins by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).
- **Remarks 1.** p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products)
 - 2. fMCK: Serial array unit operation clock frequency
 - (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products.))

- 5. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
- 6. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq V_DD < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-Cb \times Rb \times ln (1 - \frac{2.0}{Vb})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =

 $\begin{array}{c} \displaystyle \frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \\ \hline \\ \displaystyle (\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits} \end{array} \times 100 \ [\%]$ * This value is the theoretical value of the relative difference between the transmission and reception sides.

- 7. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.
- 8. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq V_DD < 3.3 V, 1.6 V \leq V_b \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =

$$\frac{1}{\text{ransfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\}$$

$$\frac{1}{(1 - \frac{1.5}{V_b})} \times 100 \,[\%]$$
Transfer rate

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- 9. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 8 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDg pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and V_{IL}, see the DC characteristics with TTL input buffer selected.

19

25

25

25

19

25

25

25

ns

ns

ns

ns

Delay time from

SOp output Note 1

SCKp↑ to

tkso1

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$ Parameter Symbol Conditions HS (high-speed LS (low-speed Unit main) Mode main) Mode MIN. MAX. MIN. MAX. SIp setup time $4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$ 44 tsik1 110 ns (to SCKp↓) Note 1 $C_{\text{b}}=30 \text{ pF}, \text{ R}_{\text{b}}=1.4 \text{ k}\Omega$ $2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ 44 110 ns $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ 1.8 V \leq V_{DD} < 3.3 V, 1.6 V \leq V_b \leq 2.0 V $^{\text{Note 2}},$ 110 110 ns $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$ Slp hold time 4.0 V \leq V_{DD} \leq 5.5 V, 2.7 V \leq V_b \leq 4.0 V, 19 tksi1 19 ns (from SCKp \downarrow) ^{Note 1} $C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$ $2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ 19 19 ns $C_b = 30 \text{ pF}, \text{ } \text{R}_b = 2.7 \text{ } \text{k}\Omega$

 $1.8 \text{ V} \le V_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le V_{\text{b}} \le 2.0 \text{ V}^{\text{Note 2}},$

 $4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$

 $2.7~V \leq V_{\text{DD}} < 4.0~V,\, 2.3~V \leq V_{\text{b}} \leq 2.7~V,$

 $1.8 \text{ V} \le V_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le V_{b} \le 2.0 \text{ V}^{\text{Note 2}},$

 $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$

 $C_b = 30 \text{ pF}, R_b = 1.4 \text{ } \text{k}\Omega$

 $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$

 $C_{\text{b}}=30 \text{ pF}, \text{ } \text{R}_{\text{b}}=5.5 \text{ } \text{k}\Omega$

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock

output) (3/3) (T_ = $40 \pm 25\%$ 1.8 V < V = 55% V V = 0.0%

- **Notes 1.** When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. **2.** Use it with $V_{DD} \ge V_b$.
- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.
 - **Remarks 1.** R_b [Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b [F]: Communication line (SCKp, SOp) load capacitance, V_b [V]: Communication line voltage
 - **2.** p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

CSI mode connection diagram (during communication at different potential)

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When AV_{REFP} < V_{DD}, the MAX. values are as follows. Overall error: Add ±1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.05%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.
- 4. Values when the conversion time is set to 57 μs (min.) and 95 μs (max.).
- 5. Refer to 28.6.2 Temperature sensor/internal reference voltage characteristics.
- (2) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI22

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{AV}_{REFP}, \text{ Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error Note 1	AINL	10-bit resolution	10-bit resolution		1.2	±5.0	LSB
		$AV_{REFP} = V_{DD}^{Note 3}$			1.2	$\pm 8.5^{\text{Note 4}}$	LSB
Conversion time	t CONV	Target ANI pin: ANI16 to ANI22 2.7 V \leq V	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μS
			$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μs
			$1.8~V \le V \text{DD} \le 5.5~V$	17		39	μS
				57		95	μS
Zero-scale error Notes 1, 2	EZS	10-bit resolution	10-bit resolution			±0.35	%FSR
		$AV_{REFP} = V_{DD}^{Note 3}$				$\pm 0.60^{\text{Note}4}$	%FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution	10-bit resolution			±0.35	%FSR
		$AV_{REFP} = V_{DD}^{Note 3}$				$\pm 0.60^{\text{Note 4}}$	%FSR
Integral linearity error Note 1	ILE	10-bit resolution				±3.5	LSB
		$AV_{REFP} = V_{DD}^{Note 3}$	$AV_{REFP} = V_{DD}^{Note 3}$			$\pm 6.0^{\text{Note 4}}$	LSB
Differential linearity	DLE	10-bit resolution				±2.0	LSB
error ^{Note 1}		$AV_{REFP} = V_{DD}^{Note 3}$				±2.5 ^{Note 4}	LSB
Analog input voltage	VAIN	ANI16 to ANI22		0		AVREFP and VDD	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- **3.** When AV_{REFP} \leq V_{DD}, the MAX. values are as follows. Overall error: Add ±4.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.20%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.
- 4. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).

3.3 DC Characteristics

3.3.1 Pin characteristics

Γ _A = –40 to +105°C,	2.4 V ≤	$V_{DD} \leq 5.5 V, V_{SS} = 0 V$				(1/4)	
Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Output current, high ^{Note 1}	Юнт	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42 30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147				-3.0 Note 2	mA
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-9.0	mA
		Total of P40 to P42	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-6.0	mA
		30-pin products: Total of P00, P01, P40, P120 (When duty $\leq 70\%^{\text{Note 3}}$)	$2.4~V \leq V_{DD} < 2.7~V$			-4.5	mA
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-27.0	mA
		Total of P00 to P03 ^{Note 4} , P10 to P14	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-18.0	mA
		30-pin products: Total of P10 to P17, P30, P31, P50, P51, P147 (When duty \leq 70% ^{Note 3})	$2.4~V \leq V_{\text{DD}} < 2.7~V$			-10.0	mA
		Total of all pins (When duty $\leq 70\%^{Note 3}$)				-36.0	mA
	Іон2	Per pin for P20 to P23				-0.1	mA
		Total of all pins				-0.4	mA

Notes 1. value of current at which the device operation is guaranteed even if the current flows from the VDD pin to an output pin.

- 2. However, do not exceed the total current value.
- 3. The output current value under conditions where the duty factor \leq 70%. If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).
 - Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$ <Example> Where n = 80% and $I_{OH} = -10.0$ mA
 - Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

- 4. 24-pin products only.
- Caution P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24-pin products, and P00, P10 to P15, P17, and P50 for 30-pin products do not output high level in N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Baud rate error (theoretical value) =

$$) = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \,[\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- 4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
- 5. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq VDD < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =

 $\begin{array}{c} \displaystyle \frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \\ \hline \\ \displaystyle (\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits} \end{array} \times 100 \ [\%]$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- 6. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 5** above to calculate the maximum transfer rate under conditions of the customer.
- 7. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.4 V \leq V_DD < 3.3 V, 1.6 V \leq V_b \leq 2.0 V

Maximum transfer rate =

$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = $\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \,[\%]$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 7 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3)

Symbol		Conditions		HS (high-speed main) Mode		
				MAX.		
tkcy1	$t_{KCY1} \geq 4/f_{CLK}$	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	600		ns	
		$2.7~V \leq V_{b} \leq 4.0~V,$				
		C_b = 30 pF, R_b = 1.4 k Ω				
		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	1000		ns	
		$2.3~V \leq V_{b} \leq 2.7~V,$				
		C_b = 30 pF, R_b = 2.7 k Ω				
		$2.4~V \leq V_{\text{DD}} < 3.3~V,$	2300		ns	
		$1.6 V \le V_b \le 2.0 V$,				
		C_b = 30 pF, R_b = 5.5 k Ω				
tкнı	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$		tксү1/2 –150		ns	
	$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$					
	$2.7 \text{ V} \le V_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \le V_{\text{b}} \le 2.7 \text{ V},$		tĸcy1/2 –340		ns	
	$C_b = 30 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$					
	$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V},$		tксү1/2 –916		ns	
tĸ∟1	$4.0 V \le V_{DD} \le$	5.5 V, 2.7 V \leq V _b \leq 4.0 V,	tксү1/2 –24		ns	
			tксү1/2 –36		ns	
			tkcy1/2 -100		ns	
		, , ,				
	tксу1 tксу1 tкн1 tкн1	tkcy1 tkcy1 ≥ 4/fcLk tkcy1 tkcy1 ≥ 4/fcLk tkH1 4.0 V ≤ VDD ≤ Cb = 30 pF, Ri 2.7 V ≤ VDD <	$\begin{tabular}{ c c c c c c c } t κ CY1 & t t κ CY1 & t t κ CY1 & t t k CY1 & t t t k CY1 & t t t t t t t t t $$	$\begin{tabular}{ c c c c } \hline trcy1 & trcy1 \ge 4/f_{GLK} & 4.0 \ V \le V_{DD} \le 5.5 \ V, & 600 \\ \hline trcy1 & trcy1 \ge 4/f_{GLK} & 4.0 \ V \le V_{DD} \le 5.5 \ V, & 600 \\ \hline 2.7 \ V \le V_b \le 4.0 \ V, & 2.7 \ V \le V_b \le 4.0 \ V, & 2.7 \ V \le V_{DD} < 4.0 \ V, & 2.7 \ V \le V_{DD} < 4.0 \ V, & 1000 \\ \hline 2.3 \ V \le V_{DD} < 4.0 \ V, & 2.7 \ V \le V_{DD} < 4.0 \ V, & 2.3 \ V \le 2.7 \ V, & 2300 \\ \hline 1.6 \ V \le V_{DD} < 3.3 \ V, & 1.6 \ V \le 2.0 \ V, & 1000 \\ \hline C_b = 30 \ pF, \ R_b = 1.4 \ R\Omega & 2000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 5.5 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 1.4 \ R\Omega & 2000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 1.4 \ R\Omega & 2000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 2.7 \ R\Omega & 2000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 2.7 \ R\Omega & 2.4 \ V \le V_{DD} < 4.0 \ V, \ 2.3 \ V \le V_b \le 2.0 \ V, & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 5.5 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 5.5 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 5.5 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 1.4 \ R\Omega & 2000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 5.5 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 5.5 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 1.4 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 1.4 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 1.4 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 1.4 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 1.4 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 1.4 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 1.4 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 1.4 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ PF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ PF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ PF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ PF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ PF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline T_{Cb} = 300 \ PF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline T_{Cb} = 300 \ PF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline T_{Cb} = 300 \ PF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline T_{Cb} = 300 \ PF, \ R_b = 2.7 \ R\Omega$	$ \begin{array}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.
- **Remarks 1.** R_b [Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b [F]: Communication line (SCKp, SOp) load capacitance, V_b [V]: Communication line voltage
 - **2.** p: CSI number (p = 00, 20)

3.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode (T_A = -40 to +105°C, V_{PDR} \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection supply voltage	VLVDO	Power supply rise time	3.90	4.06	4.22	V
		Power supply fall time	3.83	3.98	4.13	V
	VLVD1	Power supply rise time	3.60	3.75	3.90	V
		Power supply fall time	3.53	3.67	3.81	V
	VLVD2	Power supply rise time	3.01	3.13	3.25	V
		Power supply fall time	2.94	3.06	3.18	V
	V _{LVD3}	Power supply rise time	2.90	3.02	3.14	V
		Power supply fall time	2.85	2.96	3.07	V
	VLVD4	Power supply rise time	2.81	2.92	3.03	V
		Power supply fall time	2.75	2.86	2.97	V
	VLVD5	Power supply rise time	2.70	2.81	2.92	V
		Power supply fall time	2.64	2.75	2.86	V
	VLVD6	Power supply rise time	2.61	2.71	2.81	V
		Power supply fall time	2.55	2.65	2.75	V
	VLVD7	Power supply rise time	2.51	2.61	2.71	V
		Power supply fall time	2.45	2.55	2.65	V
Minimum pulse width	tıw		300			μs
Detection delay time					300	μs

3.9 Dedicated Flash Memory Programmer Communication (UART)

Parameter	Symbol	cymbol Conditions		TYP.	MAX.	Unit	
Transfer rate		During serial programming	115,200		1,000,000	bps	

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

3.10 Timing of Entry to Flash Memory Programming Modes

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset are released before external release			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset are released before external release	10			μS
Time to hold the TOOL0 pin at the low level after the external reset is released	tно	POR and LVD reset are released before external release	1			ms
(excluding the processing time of the firmware to control the flash memory)						

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - $t_{\text{su:}}$ Time to release the external reset after the TOOL0 pin is set to the low level
 - the: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

<R>

4.3 30-pin products

R5F102AAASP, R5F102A9ASP, R5F102A8ASP, R5F102A7ASP R5F103AAASP, R5F103A9ASP, R5F103A8ASP, R5F103A7ASP R5F102AADSP, R5F102A9DSP, R5F102A8DSP, R5F102A7DSP R5F103AADSP, R5F103A9DSP, R5F103A8DSP, R5F103A7DSP R5F102AAGSP, R5F102A9GSP, R5F102A8GSP, R5F102A7GSP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP30-0300-0.65	PLSP0030JB-B	S30MC-65-5A4-3	0.18

NOTE

DI⊕

MM

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
А	9.85±0.15
В	0.45 MAX.
С	0.65 (T.P.)
D	$0.24^{+0.08}_{-0.07}$
E	0.1±0.05
F	1.3±0.1
G	1.2
Н	8.1±0.2
I	6.1±0.2
J	1.0±0.2
К	0.17±0.03
L	0.5
М	0.13
Ν	0.10
Р	3° ^{+5°} -3°
Т	0.25
U	0.6±0.15

J

©2012 Renesas Electronics Corporation. All rights reserved.

Κ