

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

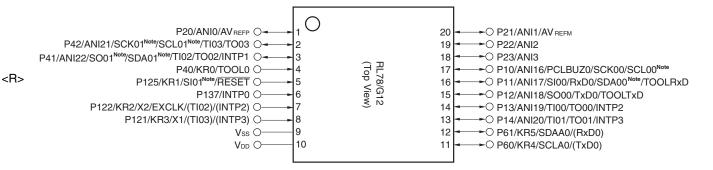
Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	14
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f1026aasp-v5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

O ROM, RAM capacities

Code flash	Data flash	RAM	20 pins	24 pins	30 pins
16 KB	2 KB	2 KB	_	_	R5F102AA
	_		_	_	R5F103AA
	2 KB	1.5 KB	R5F1026A Note 1	R5F1027A Note 1	_
	_		R5F1036A Note 1	R5F1037A Note 1	_
12 KB	2KB	1 KB	R5F10269 Note 1	R5F10279 Note 1	R5F102A9
	_		R5F10369 Note 1	R5F10379 Note 1	R5F103A9
8 KB	2 KB	768 B	R5F10268 Note 1	R5F10278 Note 1	R5F102A8
	_		R5F10368 Note 1	R5F10378 Note 1	R5F103A8
4 KB	2KB	512 B	R5F10267	R5F10277	R5F102A7
	_		R5F10367	R5F10377	R5F103A7
2 KB	2 KB	256 B	R5F10266 Note 2	_	_
	_		R5F10366 Note 2	_	_


Notes 1. This is 640 bytes when the self-programming function or data flash function is used. (For details, see CHAPTER 3 CPU ARCHITECTURE.)

2. The self-programming function cannot be used for R5F10266 and R5F10366.

Caution When the flash memory is rewritten via a user program, the code flash area and RAM area are used because each library is used. When using the library, refer to RL78 Family Flash Self Programming Library Type01 User's Manual and RL78 Family Data Flash Library Type04 User's Manual.

- 1.4 Pin Configuration (Top View)
- 1.4.1 20-pin products

• 20-pin plastic LSSOP (4.4×6.5 mm, 0.65 mm pitch)

Note Provided only in the R5F102 products.

- Remarks 1. For pin identification, see 1.5 Pin Identification.
 - 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR).

1.4.2 24-pin products

<R> • 24-pin plastic HWQFN (4 × 4 mm, 0.5 mm pitch)

Note Provided only in the R5F102 products.

Remarks 1. For pin identification, see 1.5 Pin Identification.

- 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR).
- 3. It is recommended to connect an exposed die pad to Vss.

(2/2)

Item		20-	-pin	24-	-pin	30-	-pin				
		R5F1026x	R5F1036x	R5F1027x	R5F1037x	R5F102Ax	R5F103Ax				
Clock output/buzzer ou	ıtput			1		- 1	2				
		2.44 kHz to 10	MHz: (Peripher	al hardware cloc	ck: fmain = 20 MH	z operation)					
8/10-bit resolution A/D	converter		11 ch	annels		8 cha	ınnels				
Serial interface		[R5F1026x (20-pin), R5F1027x (24-pin)]									
		CSI: 2 channels/Simplified I ² C: 2 channels/UART: 1 channel									
		[R5F102Ax (30	O-pin)]								
		CSI: 1 chann	nel/Simplified I ² C	C: 1 channel/UAF	RT: 1 channel						
		CSI: 1 chann	nel/Simplified I ² C	C: 1 channel/UAF	RT: 1 channel						
		CSI: 1 chann	nel/Simplified I ² C	C: 1 channel/UAF	RT: 1 channel						
		[R5F1036x (20)-pin), R5F1037	x (24-pin)]							
		CSI: 1 chann	nel/Simplified I ² C	C: 0 channel/UAF	RT: 1 channel						
		[R5F103Ax (30	O-pin)]								
		CSI: 1 chann	CSI: 1 channel/Simplified I ² C: 0 channel/UART: 1 channel								
	I ² C bus	1 channel									
Multiplier and divider/m	nultiply-	• 16 bits × 16 bits = 32 bits (unsigned or signed)									
accumulator		• 32 bits × 32 bits = 32 bits (unsigned)									
		• 16 bits × 16 bits + 32 bits = 32 bits (unsigned or signed)									
DMA controller	1	2 channels	_	2 channels	_	2 channels	_				
Vectored interrupt	Internal	18	16	18	16	26	19				
sources	External			5		(6				
Key interrupt		(6	1	0	_					
Reset		 Internal rese Internal rese Internal rese Internal rese Internal rese 	 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution Note Internal reset by RAM parity error Internal reset by illegal-memory access 								
Power-on-reset circuit			Power-on-reset: 1.51 V (TYP) Power-down-reset: 1.50 V (TYP)								
Voltage detector		Rising edge	• Rising edge : 1.88 to 4.06 V (12 stages)								
		• Falling edge : 1.84 to 3.98 V (12 stages)									
On-chip debug function	n	Provided									
Power supply voltage		V _{DD} = 1.8 to 5.5 V									
Operating ambient tem	perature	$T_A = -40 \text{ to } +80$ (G: Industrial a	,	er applications,	D: Industrial app	olications), T _A = -	-40 to +105°C				

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

 $(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le VDD \le 5.5 \text{ V}, Vss = 0 \text{ V})$

(3/4)

•		1					
Parameter	Symbol	Condition	s	MIN.	TYP.	MAX.	Unit
Input voltage, high	V _{IH1}	Normal input buffer		0.8V _{DD}		V _{DD}	٧
		20-, 24-pin products: P00 to P0 P40 to P42	03 ^{Note 2} , P10 to P14,				
		30-pin products: P00, P01, P1 P40, P50, P51, P120, P147	30-pin products: P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147				
	V _{IH2}	TTL input buffer	TTL input buffer 4.0 V ≤ V _{DD} ≤ 5.5 V			V _{DD}	٧
		20-, 24-pin products: P10, P11	$3.3~V \leq V_{DD} < 4.0~V$	2.0		V _{DD}	٧
		30-pin products: P01, P10, P11, P13 to P17	1.8 V ≤ V _{DD} < 3.3 V	1.5		V _{DD}	V
	VIH3	P20 to P23		0.7V _{DD}		V _{DD}	٧
	V _{IH4}	P60, P61		0.7V _{DD}		6.0	٧
	V _{IH5}	P121, P122, P125 ^{Note 1} , P137, I	EXCLK, RESET	0.8V _{DD}		V _{DD}	٧
Input voltage, low	VIL1	Normal input buffer		0		0.2V _{DD}	٧
		20-, 24-pin products: P00 to P0 P40 to P42					
		30-pin products: P00, P01, P10 P40, P50, P51, P120, P147					
	V _{IL2}	TTL input buffer	$4.0~V \leq V_{DD} \leq 5.5~V$	0		0.8	>
		20-, 24-pin products: P10, P11	$3.3~V \leq V_{DD} < 4.0~V$	0		0.5	٧
		30-pin products: P01, P10, P11, P13 to P17	$1.8~V \le V_{DD} < 3.3~V$	0		0.32	V
	V _{IL3}	P20 to P23		0		0.3V _{DD}	٧
	V _{IL4}	P60, P61		0		0.3V _{DD}	٧
	V _{IL5}	P121, P122, P125 ^{Note 1} , P137, I	EXCLK, RESET	0		0.2V _{DD}	٧
Output voltage, high	V _{OH1}	20-, 24-pin products: P00 to P03 ^{Note 2} , P10 to P14,	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -10.0 \text{ mA}$	V _{DD} -1.5			V
		P40 to P42 30-pin products:	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -3.0 \text{ mA}$	V _{DD} -0.7			V
		P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120,	$2.7~V \leq V_{DD} \leq 5.5~V,$ $I_{OH1} = -2.0~mA$	V _{DD} -0.6			V
		P147	$1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -1.5 \text{ mA}$	V _{DD} -0.5			V
	V _{OH2}	P20 to P23	Iон₂ = −100 μA	V _{DD} -0.5			V

Notes 1. 20, 24-pin products only.

2. 24-pin products only.

Caution The maximum value of V_{IH} of pins P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24-pin products, and P00, P10 to P15, P17, and P50 for 30-pin products is V_{DD} even in N-ch open-drain mode. High level is not output in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.3.2 Supply current characteristics

(1) 20-, 24-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit													
Supply	I _{DD1}	Operating	HS(High-speed	f⊩ = 24 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		1.5		mA													
current ^{Note 1}		mode	main) mode Note 4		operation	V _{DD} = 3.0 V		1.5															
					Normal	V _{DD} = 5.0 V		3.3	5.0	mA													
				operation	V _{DD} = 3.0 V		3.3	5.0															
				f _{IH} = 16 MHz ^{Note 3}		V _{DD} = 5.0 V		2.5	3.7	mA													
						V _{DD} = 3.0 V		2.5	3.7														
			LS(Low-speed	f⊩ = 8 MHz ^{Note 3}		V _{DD} = 3.0 V		1.2	1.8	mA													
			main) mode Note 4			V _{DD} = 2.0 V		1.2	1.8														
			HS(High-speed			Square wave input		2.8	4.4	mA													
			main) mode Note4			Resonator connection		3.0	4.6														
						Square wave input		2.8	4.4	mA													
							Resonator connection		3.0	4.6													
									Square wave input		1.8	2.6	mA										
								$V_{DD} = 5.0 \text{ V}$	$V_{DD} = 5.0 \text{ V}$		Resonator connection		1.8	2.6									
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$		Square wave input		1.8	2.6	mA													
				$V_{DD} = 3.0 \text{ V}$		Resonator connection		1.8	2.6														
			LS(Low-speed		$f_{MX} = 8 \text{ MHz}^{\text{Note 2}},$	f _{MX} = 8 MHz ^{Note 2} ,	f _{MX} = 8 MHz ^{Note 2} ,	fmx = 8 MHz ^{Note 2} ,	f _{MX} = 8 MHz ^{Note 2} ,	$f_{MX} = 8 \text{ MHz}^{Note2},$	f _{MX} = 8 MHz ^{Note 2} ,	f _{MX} = 8 MHz ^{Note 2} ,	f _{MX} = 8 MHz ^{Note 2} ,	$f_{MX} = 8 \text{ MHz}^{\text{Note 2}},$	f _{MX} = 8 MHz ^{Note 2} ,	fmx = 8 MHz ^{Note 2} ,	f _{MX} = 8 MHz ^{Note 2} ,	e2 ,	Square wave input		1.1	1.7	mA
			main) mode Note 4			Resonator connection		1.1	1.7														
					f _{MX} = 8 MHz ^{Note 2} ,	f _{MX} = 8 MHz ^{Note 2} ,	f _{MX} = 8 MHz ^{Note 2} ,	f _{MX} = 8 MHz ^{Note 2} ,	f _M x = 8 MHz ^{Note 2} ,	fmx = 8 MHz ^{Note 2} ,	f _{MX} = 8 MHz ^{Note 2} ,	fmx = 8 MHz ^{Note 2} ,	f _{MX} = 8 MHz ^{Note 2} ,		Square wave input		1.1	1.7	mA				
				$V_{DD} = 2.0 \text{ V}$		Resonator connection		1.1	1.7														

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator clock is stopped.
 - 3. When high-speed system clock is stopped
 - **4.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode: $V_{DD} = 2.7 \text{ V to } 5.5 \text{ V } @ 1 \text{ MHz to } 24 \text{ MHz}$

 $V_{DD} = 2.4 \text{ V to } 5.5 \text{ V } @ 1 \text{ MHz to } 16 \text{ MHz}$

LS(Low speed main) mode: $V_{DD} = 1.8 \text{ V to } 5.5 \text{ V } @ 1 \text{ MHz to } 8 \text{ MHz}$

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fil: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25$ °C.

(1) 20-, 24-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2 Note 2	HALT	HS (High-speed	fin = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		440	1210	μΑ
current Note 1		mode	main) mode ^{Note 6}		V _{DD} = 3.0 V		440	1210	
				fih = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		400	950	μА
					V _{DD} = 3.0 V		400	950	
			LS (Low-speed	fih = 8 MHz ^{Note 4}	V _{DD} = 3.0 V		270	542	μА
			main) mode ^{Note 6}		V _{DD} = 2.0 V		270	542	
			HS (High-speed main) mode Note 6	$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$ $V_{DD} = 5.0 \text{ V}$	Square wave input		280	1000	μА
					Resonator connection		450	1170	
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		280	1000	μА
				V _{DD} = 3.0 V	Resonator connection		450	1170	
				fmx = 10 MHz ^{Note 3} ,	Square wave input		190	590	μ A
				V _{DD} = 5.0 V	Resonator connection		260	660	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		190	590	μ A
				V _{DD} = 3.0 V	Resonator connection		260	660	
			LS (Low-speed	$f_{MX} = 8 MHz^{Note 3}$	Square wave input		110	360	μ A
			main) mode Note 6	V _{DD} = 3.0 V	Resonator connection		150	416	
				$f_{MX} = 8 MHz^{Note 3}$	Square wave input		110	360	μ A
				V _{DD} = 2.0 V	Resonator connection		150	416	
	IDD3 Note 5	STOP	T _A = -40°C				0.19	0.50	μА
	mode	mode	T _A = +25°C				0.24	0.50	
		T _A = +50°C	T _A = +50°C			0.32	0.80		
			T _A = +70°C				0.48	1.20	<u> </u>
			T _A = +85°C				0.74	2.20	

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator clock is stopped.
 - 4. When high-speed system clock is stopped.
 - 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **6.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz

 V_{DD} = 2.4 V to 5.5 V @1 MHz to 16 MHz

LS(Low speed main) mode: VDD = 1.8 V to 5.5 V @1 MHz to 8 MHz

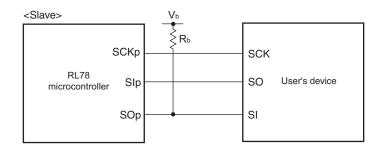
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except temperature condition of the TYP. value is $T_A = 25$ °C, other than STOP mode

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

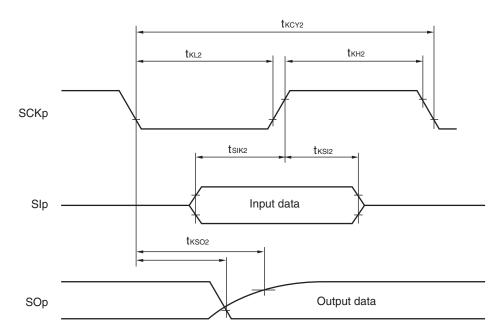
Parameter	Symbol	Co	onditions	HS (high-spe		LS (low-spe	•	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	tkcy2	$4.0~V \leq V_{DD} \leq 5.5~V,$	20 MHz < fмcк ≤ 24 MHz	12/fмск		-		ns
		$2.7~V \leq V_b \leq 4.0~V$	8 MHz < fмcк ≤ 20 MHz	10/fмск		=		ns
			4 MHz < fмcк ≤ 8 MHz	8/fмск		16/fмск		ns
			fмcк ≤ 4 MHz	6/fмск		10/fмск		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$	20 MHz < fмcк ≤ 24 MHz	16/fмск		_		ns
		$2.3~V \leq V_b \leq 2.7~V$	16 MHz < fмcк ≤ 20 MHz	14/fмск		=		ns
			8 MHz < fмск ≤ 16 MHz	12/fмск		_		ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/fмск		ns
			fмcк ≤ 4 MHz	6/fмск		10/fмск		ns
		$1.8 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$	20 MHz < fмcк ≤ 24 MHz	36/fмск		_		ns
		$1.6~V \leq V_b \leq 2.0~V$	16 MHz < fмcк ≤ 20 MHz	32/fмск		=		ns
		Note 2	8 MHz < fмск ≤ 16 MHz	26/fмск		_		ns
			4 MHz < fмcк ≤ 8 MHz	16/fмск		16/fмск		ns
			fмcк ≤ 4 MHz	10/fмск		10/fмск		ns
SCKp high-/low-level	t _{KH2} ,	$4.0~V \leq V_{DD} \leq 5.5~V,$	$2.7~V \leq V_b \leq 4.0~V$	tkcy2/2 - 12		tkcy2/2 - 50		ns
width	t _{KL2}	$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$	$2.3~V \leq V_b \leq 2.7~V$	tkcy2/2 - 18		tkcy2/2 - 50		ns
		$1.8 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$	$1.6~V \leq V_b \leq 2.0~V^{\text{Note 2}}$	tkcy2/2 - 50		tkcy2/2 - 50		ns
SIp setup time	tsik2	$4.0~V \leq V_{DD} \leq 5.5~V,$	$2.7~V \leq V_{DD} \leq 4.0~V$	1/fmck + 20		1/fмск + 30		ns
(to SCKp↑) Note 3		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$	$2.3~V \leq V_b \leq 2.7~V$	1/fmck + 20		1/fмск + 30		ns
		$1.8 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$	$1.6~V \leq V_{DD} \leq 2.0~V^{\text{ Note 2}}$	1/fmck + 30		1/fмск + 30		ns
SIp hold time (from SCKp [↑]) Note 4	tksi2			1/fмск + 31		1/fмск + 31		ns
Delay time from	tkso2	$4.0~V \leq V_{DD} \leq 5.5~V,$	$2.7 \text{ V} \le V_b \le 4.0 \text{ V},$		2/fмск +		2/fмск +	ns
SCKp↓ to SOp		C _b = 30 pF, R _b = 1.4	kΩ		120		573	
output Note 5		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$	$2.3 \text{ V} \le V_b \le 2.7 \text{ V},$		2/fмск +		2/fмск +	ns
		C _b = 30 pF, R _b = 2.7	kΩ		214		573	
		$1.8 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$	$1.6 \text{ V} \le V_b \le 2.0 \text{ V}^{\text{Note 2}},$		2/fмск +		2/fмск +	ns
	1	C _b = 30 pF, R _b = 5.5	kΩ		573		573	

Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

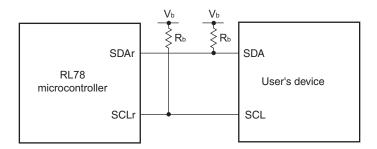

- 2. Use it with $V_{DD} \ge V_b$.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **5.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Cautions 1. Select the TTL input buffer for the SIp and SCKp pins and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1).

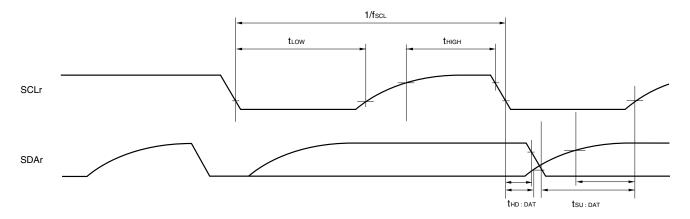
For VIH and VIL, see the DC characteristics with TTL input buffer selected.


2. CSI01 and CSI11 cannot communicate at different potential.

CSI mode connection diagram (during communication at different potential)



- **Remarks 1.** Rb $[\Omega]$: Communication line (SOp) pull-up resistance, Cb [F]: Communication line (SOp) load capacitance, Vb [V]: Communication line voltage
 - 2. p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 10))


CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** Rb $[\Omega]$: Communication line (SDAr, SCLr) pull-up resistance, Cb [F]: Communication line (SDAr, SCLr) load capacitance, Vb [V]: Communication line voltage
 - **2.** r: IIC Number (r = 00, 20)
 - fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 - m: Unit number (m = 0,1), n: Channel number (n = 0)
 - 4. Simplified I²C mode is supported only by the R5F102 products.

3.2 Oscillator Characteristics

3.2.1 X1 oscillator characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator /	$2.7~V \leq V_{DD} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal oscillator	2.4 V ≤ V _{DD} < 2.7 V	1.0		8.0	

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator, refer to **5.4 System Clock Oscillator**.

3.2.2 On-chip oscillator characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Oscillators	Parameters	Conc	litions	MIN.	TYP.	MAX.	Unit
Oscillators	Farameters	Conc	intions	IVIIIN.	HIF.	IVIAA.	Offic
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		24	MHz
High-speed on-chip oscillator		R5F102 products	T _A = -20 to +85°C	-1.0		+1.0	%
clock frequency accuracy			T _A = -40 to -20°C	-1.5		+1.5	%
			T _A = +85 to +105°C	-2.0		+2.0	%
Low-speed on-chip oscillator clock frequency	fiL				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H) and bits 0 to 2 of HOCODIV register.

2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

3.3 DC Characteristics

3.3.1 Pin characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/4)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42				-3.0 Note 2	mA
		30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147					
		20-, 24-pin products:	$4.0~V \leq V_{DD} \leq 5.5~V$			-9.0	mA
		Total of P40 to P42	$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$			-6.0	mA
		30-pin products: Total of P00, P01, P40, P120 (When duty ≤ 70% Note 3)	2.4 V ≤ V _{DD} < 2.7 V			-4.5	mA
		20-, 24-pin products:	$4.0~V \leq V_{DD} \leq 5.5~V$			-27.0	mA
		Total of P00 to P03 ^{Note 4} , P10 to P14	$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$			-18.0	mA
		30-pin products: Total of P10 to P17, P30, P31, P50, P51, P147 (When duty ≤ 70% Note 3)	2.4 V ≤ V _{DD} < 2.7 V			-10.0	mA
		Total of all pins (When duty $\leq 70\%^{\text{Note 3}}$)				-36.0	mA
	І ОН2	Per pin for P20 to P23				-0.1	mA
		Total of all pins				-0.4	mA

- **Notes 1**. value of current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin.
 - 2. However, do not exceed the total current value.
 - 3. The output current value under conditions where the duty factor ≤ 70%.
 If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).
 - Total output current of pins = $(loh \times 0.7)/(n \times 0.01)$
 - <Example> Where n = 80% and IoH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

4. 24-pin products only.

Caution P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24-pin products, and P00, P10 to P15, P17, and P50 for 30-pin products do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(1) 20-, 24-pin products

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(2/2)

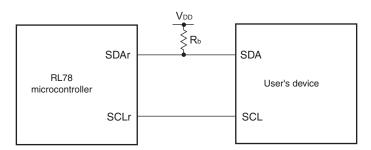
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2 Note 2	HALT	HS (High-speed	f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		440	2230	μА
current ^{Note 1}		mode	main) mode ^{Note 6}		V _{DD} = 3.0 V		440	2230	
				fih = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		400	1650	μА
					V _{DD} = 3.0 V		400	1650	
				$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$ $V_{DD} = 5.0 \text{ V}$	Square wave input		280	1900	μA
					Resonator connection		450	2000	
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		280	1900	μA
				V _{DD} = 3.0 V	Resonator connection		450	2000	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$ $V_{DD} = 5.0 \text{ V}$	Square wave input		190	1010	μА
					Resonator connection		260	1090	
				fmx = 10 MHz ^{Note 3} ,	Square wave input		190	1010	μA
				V _{DD} = 3.0 V	Resonator connection		260	1090	
	I _{DD3} Note 5	STOP	T _A = -40°C				0.19	0.50	μA
		mode	T _A = +25°C				0.24	0.50	
			$T_A = +50^{\circ}C$ $T_A = +70^{\circ}C$				0.32	0.80	
							0.48	1.20	
		T _A = +85°C				0.74	2.20		
			T _A = +105°C				1.50	10.20	

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator clock is stopped.
 - 4. When high-speed system clock is stopped.
 - 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **6.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

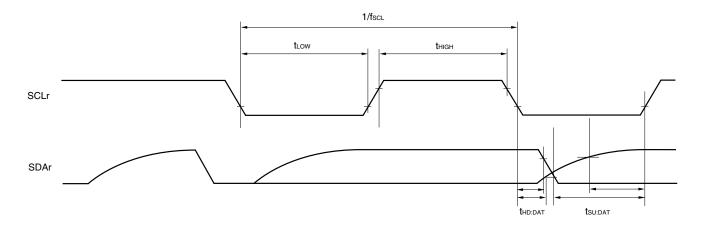
HS (High speed main) mode: $V_{DD} = 2.7 \text{ V to } 5.5 \text{ V}$ @1 MHz to 24 MHz $V_{DD} = 2.4 \text{ V to } 5.5 \text{ V}$ @1 MHz to 16 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except temperature condition of the TYP. value is $T_A = 25$ °C, other than STOP mode

(4) During communication at same potential (simplified I²C mode)

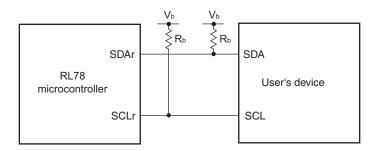

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-speed	main) Mode	Unit
			MIN.	MAX.	
SCLr clock frequency	fscL	$C_b=100~pF,~R_b=3~k\Omega$		100 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$C_b=100~pF,~R_b=3~k\Omega$	4600		ns
Hold time when SCLr = "H"	thigh	$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	4600		ns
Data setup time (reception)	tsu:dat	$C_b=100~pF,~R_b=3~k\Omega$	1/f _{MCK} + 580 Note 2		ns
Data hold time (transmission)	thd:dat	$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	0	1420	ns

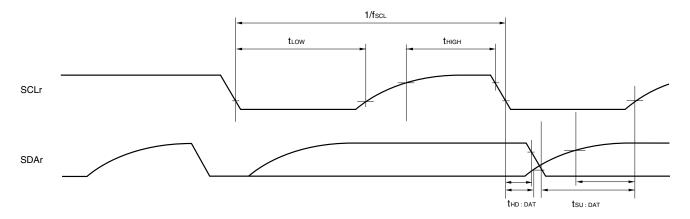

- Notes 1. The value must also be equal to or less than fmck/4.
 - 2. Set tsu:DAT so that it will not exceed the hold time when SCLr = "L" or SCLr = "H".

Caution Select the N-ch open drain output (V_{DD} tolerance) mode for SDAr by using port output mode register h (POMh).

Simplified I²C mode connection diagram (during communication at same potential)



Simplified I²C mode serial transfer timing (during communication at same potential)



- **Remarks 1.** $\mathsf{R}_\mathsf{b}\left[\Omega\right]$:Communication line (SDAr) pull-up resistance
 - Cb [F]: Communication line (SCLr, SDAr) load capacitance
 - 2. r: IIC number (r = 00, 01, 11, 20), h: = POM number (h = 0, 1, 4, 5)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 - m: Unit number (m = 0, 1), n: Channel number (0, 1, 3))

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** Rb $[\Omega]$: Communication line (SDAr, SCLr) pull-up resistance, Cb [F]: Communication line (SDAr, SCLr) load capacitance, Vb [V]: Communication line voltage
 - **2.** r: IIC Number (r = 00, 20)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

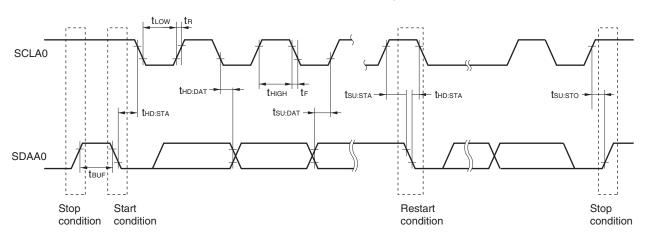
m: Unit number (m = 0,1), n: Channel number (n = 0)

3.5.2 Serial interface IICA

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS	HS (high-speed main) mode		node	Unit
			Standa	rd Mode	Fast	Mode	
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode: fclk≥ 3.5 MHz			0	400	kHz
		Normal mode: fclk≥ 1 MHz	0	100			kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μS
Hold time ^{Note 1}	thd:STA		4.0		0.6		μS
Hold time when SCLA0 = "L"	tLOW		4.7		1.3		μS
Hold time when SCLA0 = "H"	thigh		4.0		0.6		μS
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission) ^{Note 2}	thd:dat		0	3.45	0	0.9	μS
Setup time of stop condition	tsu:sto		4.0		0.6		μS
Bus-free time	t BUF		4.7		1.3		μS

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.


2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution Only in the 30-pin products, the values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IoH1, IoL1, VoH1, VoL1) must satisfy the values in the redirect destination.

Remark The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Normal mode: $C_b = 400 \text{ pF}, \text{ Rb} = 2.7 \text{ k}\Omega$ Fast mode: $C_b = 320 \text{ pF}, \text{ Rb} = 1.1 \text{ k}\Omega$

IICA serial transfer timing

<R>

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - **3.** When $AV_{REFP} < V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.05\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.

4. Refer to 29.6.2 Temperature sensor/internal reference voltage characteristics.

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI22

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution AV _{REFP} = V _{DD} Note 3		1.2	±5.0	LSB	
Conversion time	nversion time t_{CONV} 10-bit resolution $3.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$		2.125		39	μS	
		Target ANI pin: ANI16 to ANI22	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μS
Zero-scale error Notes 1, 2	EZS	10-bit resolution AVREFP = VDD Note 3			±0.35	%FSR	
Full-scale error Notes 1, 2	EFS	10-bit resolution AVREFP = VDD Note 3				±0.35	%FSR
Integral linearity error Note 1	ILE	10-bit resolution AVREFP = VDD Note 3				±3.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution AV _{REFP} = V _{DD} Note 3				±2.0	LSB
Analog input voltage	Vain	ANI16 to ANI22		0		AV _{REFP}	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

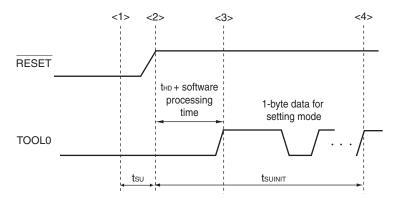
- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- **3.** When $AV_{REFP} \leq V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 4.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.20\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AVREFP = VDD.

3.9 Dedicated Flash Memory Programmer Communication (UART)


$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

3.10 Timing of Entry to Flash Memory Programming Modes

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

1 11 1, = = 1 1,						
Parameter		Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset are released before external release			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset are released before external release	10			μS
Time to hold the TOOL0 pin at the low level after the external reset is released	thd	POR and LVD reset are released before external release	1			ms
(excluding the processing time of the firmware to control the flash memory)						

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.

tsu: Time to release the external reset after the TOOL0 pin is set to the low level

thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

RL78/G12 Data Sheet

		Description			
Rev.	Date	Page	Summary		
1.00	Dec 10, 2012	-	First Edition issued		
2.00	Sep 06, 2013	1	Modification of 1.1 Features		
		3	Modification of 1.2 List of Part Numbers		
		4	Modification of Table 1-1. List of Ordering Part Numbers, Note, and Caution		
		7 to 9	Modification of package name in 1.4.1 to 1.4.3		
		14	Modification of tables in 1.7 Outline of Functions		
		17	Modification of description of table in 2.1 Absolute Maximum Ratings (TA = 25°C)		
		18	Modification of table, Note, and Caution in 2.2.1 X1 oscillator characteristics		
		18	Modification of table in 2.2.2 On-chip oscillator characteristics		
		19	Modification of Note 3 in 2.3.1 Pin characteristics (1/4)		
		20	Modification of Note 3 in 2.3.1 Pin characteristics (2/4)		
		23	Modification of Notes 1 and 2 in (1) 20-, 24-pin products (1/2)		
		24	Modification of Notes 1 and 3 in (1) 20-, 24-pin products (2/2)		
		25	Modification of Notes 1 and 2 in (2) 30-pin products (1/2)		
		26	Modification of Notes 1 and 3 in (2) 30-pin products (2/2)		
		27	Modification of (3) Peripheral functions (Common to all products)		
		28	Modification of table in 2.4 AC Characteristics		
		29	Addition of Minimum Instruction Execution Time during Main System Clock Operation		
		30	Modification of figures of AC Timing Test Point and External Main System Clock Timing		
		31	Modification of figure of AC Timing Test Point		
		31	Modification of description and Note 2 in (1) During communication at same potential		
		31	(UART mode)		
		00	Modification of description in (2) During communication at same potential (CSI mode)		
		32			
		33	Modification of description in (3) During communication at same potential (CSI mode)		
		34	Modification of description in (4) During communication at same potential (CSI mode)		
		36	Modification of table and Note 2 in (5) During communication at same potential		
			(simplified I ² C mode)		
		38, 39	Modification of table and Notes 1 to 9 in (6) Communication at different potential		
			(1.8 V, 2.5 V, 3 V) (UART mode)		
		40	Modification of Remarks 1 to 3 in (6) Communication at different potential (1.8 V,		
			2.5 V, 3 V) (UART mode)		
		41	Modification of table in (7) Communication at different potential (2.5 V, 3 V) (CSI mode)		
		42	Modification of Caution in (7) Communication at different potential (2.5 V, 3 V) (CSI mode)		
		43	Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI		
			mode) (1/3)		
		44	Modification of table and Notes 1 and 2 in (8) Communication at different potential (1.8		
			V, 2.5 V, 3 V) (CSI mode) (2/3)		
		45	Modification of table, Note 1, and Caution 1 in (8) Communication at different potential		
			(1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)		
		47	Modification of table in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI		
			mode)		
		50	Modification of table, Note 1, and Caution 1 in (10) Communication at different potential		
			(1.8 V, 2.5 V, 3 V) (simplified I ² C mode)		
		52	Modification of Remark in 2.5.2 Serial interface IICA		
		53	Addition of table to 2.6.1 A/D converter characteristics		
		53	Modification of description in 2.6.1 (1)		
			Modification of Notes 3 to 5 in 2.6.1 (1)		
		54	· ·		
		54	Modification of description and Notes 2 to 4 in 2.6.1 (2)		

		Description		
Rev.	Date	Page	Summary	
2.00	2.00 Sep 06, 2013		Modification of description and Notes 3 and 4 in 2.6.1 (3)	
		56	Modification of description and Notes 3 and 4 in 2.6.1 (4)	
		57	Modification of table in 2.6.2 Temperature sensor/internal reference voltage characteristics	
		57	Modification of table and Note in 2.6.3 POR circuit characteristics	
		58	Modification of table in 2.6.4 LVD circuit characteristics	
		59	Modification of table of LVD detection voltage of interrupt & reset mode	
		59	Modification of number and title to 2.6.5 Power supply voltage rising slope characteristics	
		61	Modification of table, figure, and Remark in 2.10 Timing of Entry to Flash Memory	
			Programming Modes	
		62 to 103	Addition of products of industrial applications (G: Ta = -40 to +105°C)	
		104 to 106	Addition of products of industrial applications (G: $TA = -40 \text{ to } +105^{\circ}\text{C}$)	
2.10	Mar 25, 2016	6	Modification of Figure 1-1 Part Number, Memory Size, and Package of RL78/G12	
		7	Modification of Table 1-1 List of Ordering Part Numbers	
		8	Addition of product name (RL78/G12) and description (Top View) in 1.4.1 20-pin products	
		9	Addition of product name (RL78/G12) and description (Top View) in 1.4.2 24-pin products	
		10	Addition of product name (RL78/G12) and description (Top View) in 1.4.3 30-pin products	
		15	Modification of description in 1.7 Outline of Functions	
		16	Modification of description, and addition of target products	
		52	Modification of note 2 in 2.5.2 Serial interface IICA	
		60	Modification of title and note, and addition of caution in 2.7 RAM Data Retention Characteristics	
		60	Modification of conditions in 2.8 Flash Memory Programming Characteristics	
		62	Modification of description, and addition of target products and remark	
		94	Modification of note 2 in 3.5.2 Serial interface IICA	
		102	Modification of title and note in 3.7 RAM Data Retention Characteristics	
		102	Modification of conditions in 3.8 Flash Memory Programming Characteristics	
		104 to 106	Addition of package name	

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.