

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	14
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1.5K × 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f1026agsp-v5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

<R>

1.2 List of Part Numbers

Figure 1-1. Part Number, Memory Size, and Package of RL78/G12

Notes 1. For details about the differences between the R5F102 products and the R5F103 products of RL78/G12, see 1.1 Differences between the R5F102 Products and the R5F103 Products.

2. Products only for "A: Consumer applications ($T_A = -40$ to $+85^{\circ}C$)" and "D: Industrial applications ($T_A = -40$ to $+85^{\circ}C$)"

1.3 Differences between the R5F102 Products and the R5F103 Products

The following are differences between the R5F102 products and the R5F103 products.

- O Whether the data flash memory is mounted or not
- O High-speed on-chip oscillator oscillation frequency accuracy
- O Number of channels in serial interface
- O Whether the DMA function is mounted or not
- O Whether a part of the safety functions are mounted or not

1.3.1 Data Flash

The data flash memory of 2 KB is mounted on the R5F102 products, but not on the R5F103 products.

Product	Data Flash
R5F102 products	2KB
R5F1026A, R5F1027A, R5F102AA,	
R5F10269, R5F10279, R5F102A9,	
R5F10268, R5F10278, R5F102A8,	
R5F10267, R5F10277, R5F102A7,	
R5F10266 Note	
R5F103 products	Not mounted
R5F1036A, R5F1037A, R5F103AA,	
R5F10369, R5F10379, R5F103A9,	
R5F10368, R5F10378 R5F103A8,	
R5F10367, R5F10377, R5F103A7,	
R5F10366	

- **Note** The RAM in the R5F10266 has capacity as small as 256 bytes. Depending on the customer's program specification, the stack area to execute the data flash library may not be kept and data may not be written to or erased from the data flash memory.
- **Caution** When the flash memory is rewritten via a user program, the code flash area and RAM area are used because each library is used. When using the library, refer to RL78 Family Flash Self Programming Library Type01 User's Manual and RL78 Family Data Flash Library Type04 User's Manual.

2.5 Peripheral Functions Characteristics

AC Timing Test Point

2.5.1 Serial array unit

LS (low-spee

(1) During communication at same potential (UART mode) ($T_A = -40$ to $+85^{\circ}$ C, 1.8 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol		Conditions HS (high-spee main) Mode		h-speed Mode	LS (low main)	Unit	
				MIN.	MAX.	MIN.	MAX.	
Transfer rate					fмск/6		fмск/6	bps
Note 1		Theoretical v fc∟к = fмск ^{Note2}	alue of the maximum transfer rate		4.0		1.3	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are: HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 5.5 V)

16 MHz (2.4 V
$$\leq$$
 VDD \leq 5.5 V)

d main) mode: 8 MHz (1.8 V
$$\leq$$
 VDD \leq 5.5 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 2), g: PIM, POM number (g = 0, 1)

2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- **Remarks 1.** R_b[Ω]: Communication line (TxDq) pull-up resistance, C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)
 - fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 - m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))
 - **4.** UART0 of the 20- and 24-pin products supports communication at different potential only when the peripheral I/O redirection function is not used.

- **Notes 1.** When DAP00 = 0 and CKP00 = 0, or DAP00 = 1 and CKP00 = 1
 - **2.** When DAP00 = 0 and CKP00 = 1, or DAP00 = 1 and CKP00 = 0.
- Caution Select the TTL input buffer for the SI00 pin and the N-ch open drain output (V_{DD} tolerance) mode for the SO00 pin and SCK00 pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b [Ω]:Communication line (SCK00, SO00) pull-up resistance, C_b [F]: Communication line (SCK00, SO00) load capacitance, V_b [V]: Communication line voltage
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register 0 (SPS0) and the CKS00 bit of serial mode register 00 (SMR00).)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3)

Parameter	Symbol	Conditions		h-speed Mode	LS (low main)	v-speed Mode	Unit
			MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) ^{Note 1}	tsıĸı		81		479		ns
		$\label{eq:VD} \begin{array}{l} 2.7 \; V \leq V_{\text{DD}} < 4.0 \; V, \; 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 30 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	177		479		ns
		$\label{eq:VD} \begin{array}{l} 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V^{\text{Note 2}}, \\ C_{b} = 30 \ pF, \ R_{b} = 5.5 \ k\Omega \end{array}$	479		479		ns
SIp hold time (from SCKp↑) ^{Note 1}	tksii	$\begin{array}{l} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	19		19		ns
		$\label{eq:VD} \begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	19		19		ns
		$\label{eq:VD} \begin{array}{l} \mbox{1.8 V} \leq V_{\text{DD}} < 3.3 \ \text{V}, \ \mbox{1.6 V} \leq V_{b} \leq 2.0 \ \text{V}^{\mbox{Note 2}}, \\ \mbox{C}_{b} = 30 \ \mbox{pF}, \ \mbox{R}_{b} = 5.5 \ \mbox{k} \Omega \end{array}$	19		19		ns
Delay time from SCKp↓ to	tkso1			100		100	ns
SOp output Note 1		$\label{eq:VD} \hline 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \\ \hline$		195		195	ns
		$\label{eq:VD} \hline \begin{array}{l} \mbox{1.8 V} \leq V_{\text{DD}} < 3.3 \ \text{V}, \ 1.6 \ \text{V} \leq V_{b} \leq 2.0 \ \text{V}^{\text{Note}2}, \\ \\ \mbox{C}_{b} = 30 \ pF, \ R_{b} = 5.5 \ k\Omega \end{array}$		483		483	ns

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

2. Use it with $V_{DD} \ge V_b$.

(Cautions and Remarks are listed on the next page.)

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I ² C mode	э)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$\begin{array}{l} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; V, 2.7 \; V \leq V_{b} \leq 4.0 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 2.8 \; k\Omega \end{array}$		400 ^{Note1}		300 ^{Note1}	kHz
		$\label{eq:VD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 100 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$		400 ^{Note1}		300 ^{Note1}	kHz
		$\begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V, \\ C_{b} = 100 \ pF, \ B_{b} = 5.5 \ k\Omega \end{array}$		300 ^{Note1}		300 ^{Note1}	kHz
Hold time when SCLr = "L"	t∟ow	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 100 \ pF, \ R_b = 2.8 \ k\Omega \end{array}$	1150		1550		ns
		$\begin{array}{l} 2.7 \; V \leq V_{\text{DD}} < 4.0 \; V, 2.3 \; V \leq V_{\text{b}} \leq 2.7 \; V, \\ C_{\text{b}} = 100 \; pF, \; R_{\text{b}} = 2.7 \; k\Omega \end{array}$	1150		1550		ns
		$\label{eq:VDD} \begin{split} 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V, \\ \text{C}_{\text{b}} = 100 \ \text{pF}, \ \text{R}_{\text{b}} = 5.5 \ \text{k}\Omega \end{split}$	1550		1550		ns
Hold time when SCLr = "H"	tніgн	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{b} \leq 4.0 \ V, \\ C_{b} = 100 \ pF, \ R_{b} = 2.8 \ k\Omega \end{array}$	675		610		ns
		$\label{eq:VD} \begin{split} 2.7 \ V &\leq V_{\text{DD}} < 4.0 \ V, 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} &= 100 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{split}$	600		610		ns
		$\label{eq:VDD} \begin{split} 1.8 \ V &\leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V, \\ \\ C_{b} &= 100 \ pF, \ R_{b} = 5.5 \ k\Omega \end{split}$	610		610		ns
Data setup time (reception)	tsu:dat	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{b} \leq 4.0 \ V, \\ C_{b} = 100 \ p\text{F}, \ R_{b} = 2.8 \ \text{k}\Omega \end{array}$	1/fмск + 190 _{Note3}		1/fмск + 190 _{Note3}		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fмск + 190 _{Note3}		1/fмск + 190 _{Note3}		ns
		$\label{eq:VD} \begin{array}{l} 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V, \\ \\ C_{b} = 100 \ pF, \ R_{b} = 5.5 \ k\Omega \end{array}$	1/fмск + 190 _{Note3}		1/fмск + 190 _{Note3}		ns
Data hold time (transmission)	thd:dat	$\begin{array}{l} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; V, 2.7 \; V \leq V_{\text{b}} \leq 4.0 \; V, \\ C_{\text{b}} = 100 \; pF, \; R_{\text{b}} = 2.8 \; k\Omega \end{array}$	0	355	0	355	ns
		$ \begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array} $	0	355	0	355	ns
		$\begin{split} 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V, \\ \\ C_{\text{b}} = 100 \ pF, \ R_{\text{b}} = 5.5 \ k\Omega \end{split}$	0	405	0	405	ns

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

- $\textbf{2.} \quad Use \text{ it with } V_{\text{DD}} \geq V_{\text{b}}.$
- 3. Set $t_{SU:DAT}$ so that it will not exceed the hold time when SCLr = "L" or SCLr = "H".
- **Cautions 1.** Select the TTL input buffer and the N-ch open drain output (V_{DD} tolerance) mode for the SDAr pin and the N-ch open drain output (V_{DD} tolerance) mode for the SCLr pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
 - 2. IIC01 and IIC11 cannot communicate at different potential.

(Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b [Ω]: Communication line (SDAr, SCLr) pull-up resistance, C_b [F]: Communication line (SDAr, SCLr) load capacitance, V_b [V]: Communication line voltage
 - **2.** r: IIC Number (r = 00, 20)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number (m = 0,1), n: Channel number (n = 0))
 - 4. Simplified l^2 C mode is supported only by the R5F102 products.

2.5.2 Serial interface IICA

Parameter	Symbol	Conditions	HS (high-speed main) mode		Unit		
			LS	(low-speed	d main) m	ode	
			Standar	d Mode	Fast	Mode	
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode: fclк≥ 3.5 MHz			0	400	kHz
		Normal mode: fcLK≥ 1 MHz	0	100			kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μS
Hold time ^{Note 1}	thd:sta		4.0		0.6		μS
Hold time when SCLA0 = "L"	tLOW		4.7		1.3		μS
Hold time when SCLA0 = "H"	tніgн		4.0		0.6		μS
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission)Note 2	thd:dat		0	3.45	0	0.9	μS
Setup time of stop condition	tsu:sto		4.0		0.6		μs
Bus-free time	t BUF		4.7		1.3		μS

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

<R>

The first clock pulse is generated after this period when the start/restart condition is detected. Notes 1.

2. The maximum value (MAX.) of thD:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution Only in the 30-pin products, the values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Normal mode:	C_b = 400 pF, Rb = 2.7 k Ω
Fast mode:	C_b = 320 pF, Rb = 1.1 k Ω

IICA serial transfer timing

3.1 Absolute Maximum Ratings

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbols	Conditions		Ratings	Unit
Supply Voltage	VDD			-0.5 to + 6.5	V
REGC terminal input	VIREGC	REGC		–0.3 to +2.8	V
voltage ^{Note1}				and -0.3 to V _{DD} + 0.3 Note 2	
Input Voltage	VII	Other than P60, P	61	-0.3 to V _{DD} + 0.3 ^{Note 3}	V
	VI2	P60, P61 (N-ch or	pen drain)	–0.3 to 6.5	V
Output Voltage	Vo			-0.3 to V _{DD} + $0.3^{Note 3}$	V
Analog input voltage	VAI	20, 24-pin product	ts: ANI0 to ANI3, ANI16 to ANI22	-0.3 to V _{DD} + 0.3	V
		30-pin products: A	NIO to ANI3, ANI16 to ANI19	and –0.3 to AVREF(+)+0.3 ^{Notes 3, 4}	
Output current, high	Іон1	Per pin	Other than P20 to P23	-40	mA
		Total of all pins	All the terminals other than P20 to P23	-170	mA
			20-, 24-pin products: P40 to P42	-70	mA
			30-pin products: P00, P01, P40, P120		
			20-, 24-pin products: P00 to P03 ^{Note 5} , P10 to P14 30-pin products: P10 to P17, P30, P31,	-100	mA
			P50, P51, P147		
	Іон2	Per pin	P20 to P23	-0.5	mA
		Total of all pins		-2	mA
Output current, low	IOL1	Per pin	Other than P20 to P23	40	mA
		Total of all pins	All the terminals other than P20 to P23	170	mA
			20-, 24-pin products: P40 to P42 30-pin products: P00, P01, P40, P120	70	mA
			20-, 24-pin products: P00 to P03 ^{Note 5} , P10 to P14, P60, P61 30-pin products: P10 to P17, P30, P31, P50, P51, P60, P61, P147	100	mA
	IoL2 Per pin P20 to P23		1	mA	
		Total of all pins		5	mA
Operating ambient temperature	TA			-40 to +105	°C
Storage temperature	Tstg			-65 to +150	°C

Notes 1. 30-pin product only.

- 2. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value determines the absolute maximum rating of the REGC pin. Do not use it with voltage applied.
- 3. Must be 6.5 V or lower.
- 4. Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.
- 5. 24-pin products only.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** AVREF(+) : + side reference voltage of the A/D converter.
 - 3. Vss : Reference voltage

3.2 Oscillator Characteristics

3.2.1 X1 oscillator characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator /	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal oscillator	$2.4~V \leq V_{\text{DD}} < 2.7~V$	1.0		8.0	

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

- **Caution** Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- Remark When using the X1 oscillator, refer to 5.4 System Clock Oscillator.

3.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Oscillators	Parameters	Cond	litions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		24	MHz
High-speed on-chip oscillator		R5F102 products	T _A = -20 to +85°C	-1.0		+1.0	%
clock frequency accuracy			$T_A = -40$ to $-20^{\circ}C$	-1.5		+1.5	%
			T _A = +85 to +105°C	-2.0		+2.0	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H) and bits 0 to 2 of HOCODIV register.

2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

(1) 20-, 24-pin products

$(T_{A} = -40 \text{ to } +105^{\circ}\text{C}.$	$2.4 V \le V_{DD} \le 5.5 V$, Vss = 0 V)
(17 - 40.0 + 100 0)	, 2.4 1 3 100 3 0.0 1, 100 - 0 1)

$(14 - 40 10 + 105 0; 2.4 4 \le 400 \le 5.5 4; 435 - 0 4) $									
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	DD2 Note 2	HALT	HS (High-speed	$f_{IH} = 24 \text{ MHz}^{Note 4}$	$V_{DD} = 5.0 V$		440	2230	μA
current ^{Note 1}	urrent ^{Note 1} mod	mode	main) mode ^{Note 6}		V _{DD} = 3.0 V		440	2230	
				$f_{IH} = 16 \text{ MHz}^{Note 4}$	Vdd = 5.0 V		400	1650	μA
					V _{DD} = 3.0 V		400	1650	
				$f_{MX} = 20 \text{ MHz}^{Note 3}$,	Square wave input		280	1900	μA
				$V_{DD} = 5.0 V$	Resonator connection		450	2000	
				$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$ $V_{\text{DD}} = 3.0 \text{ V}$	Square wave input		280	1900	μA
					Resonator connection		450	2000	
				$\label{eq:main_state} \begin{split} f_{\text{MX}} &= 10 \ \text{MHz}^{\text{Note 3}}, \\ V_{\text{DD}} &= 5.0 \ \text{V} \end{split}$	Square wave input		190	1010	μA
					Resonator connection		260	1090	
				$\label{eq:MX} \begin{split} f_{\text{MX}} &= 10 \text{ MHz}^{\text{Note 3}}, \\ V_{\text{DD}} &= 3.0 \text{ V} \end{split}$	Square wave input		190	1010	μA
					Resonator connection		260	1090	
	DD3 Note 5	⁵ STOP mode	$T_{\text{A}} = -40^{\circ}C$	$T_A = -40^{\circ}C$			0.19	0.50	μA
			$T_A = +25^{\circ}C$				0.24	0.50	
			$T_A = +50^{\circ}C$				0.32	0.80	
			$T_A = +70^{\circ}C$				0.48	1.20	
			T _A = +85°C				0.74	2.20	
			$T_A = +105^{\circ}C$				1.50	10.20	

Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- **2.** During HALT instruction execution by flash memory.
- **3.** When high-speed on-chip oscillator clock is stopped.
- 4. When high-speed system clock is stopped.
- 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.
- 6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS (High speed main) mode: $V_{DD} = 2.7$ V to 5.5 V @1 MHz to 24 MHz $V_{DD} = 2.4$ V to 5.5 V @1 MHz to 16 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except temperature condition of the TYP. value is $T_A = 25^{\circ}C$, other than STOP mode

(2/2)

(2) 30-pin products

$(T_A = -40 \text{ to } +105^{\circ}\text{C}.$	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$. $\text{V}_{\text{SS}} = 0 \text{ V}$
(17 - 40.0 + 100 0)	, 2.4 • 3 • 66 3 6.6 • , • 66 = 6 • 7

(T _A = -40 to	+105°C,	2.4 V ≤ V	DD \leq 5.5 V, Vss =	= 0 V)					(2/2)
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	DD2 Note 2	HALT	HS (High-speed main) mode ^{Note6}	$f_{IH} = 24 \text{ MHz}^{Note 4}$	V _{DD} = 5.0 V		440	2300	μA
current Note 1		mode			V _{DD} = 3.0 V		440	2300	
				$f_{IH} = 16 \text{ MHz}^{Note 4}$	V _{DD} = 5.0 V		400	1700	μA
					V _{DD} = 3.0 V		400	1700	
				$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$ $V_{DD} = 5.0 \text{ V}$	Square wave input		280	1900	μA
					Resonator connection		450	2000	
				$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$ $V_{\text{DD}} = 3.0 \text{ V}$	Square wave input		280	1900	μA
					Resonator connection		450	2000	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$ $V_{\text{DD}} = 5.0 \text{ V}$	Square wave input		190	1020	μA
					Resonator connection		260	1100	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$ $V_{\text{DD}} = 3.0 \text{ V}$	Square wave input		190	1020	μA
					Resonator connection		260	1100	
	DD3 Note 5	Note 5 STOP mode	$T_A = -40^{\circ}C$				0.18	0.50	μA
			T _A = +25°C				0.23	0.50	
			$T_A = +50^{\circ}C$				0.30	1.10	
			T _A = +70°C				0.46	1.90	
			T _A = +85°C				0.75	3.30	
			$T_A = +105^{\circ}C$				2.94	15.30	

Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. During HALT instruction execution by flash memory.
- 3. When high-speed on-chip oscillator clock is stopped.
- 4. When high-speed system clock is stopped.
- Not including the current flowing into the 12-bit interval timer and watchdog timer. 5.
- 6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS (High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz VDD = 2.4 V to 5.5 V @1 MHz to 16 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except STOP mode, temperature condition of the TYP. value is TA = 25°C.

	,	/			
Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
SCLr clock frequency	fsc∟	C_b = 100 pF, R_b = 3 k Ω		100 Note 1	kHz
Hold time when SCLr = "L"	tLOW	C_b = 100 pF, R_b = 3 k Ω	4600		ns
Hold time when SCLr = "H"	tніgн	C_b = 100 pF, R_b = 3 k Ω	4600		ns
Data setup time (reception)	tsu:dat	C_b = 100 pF, R_b = 3 k Ω	1/fмск + 580 ^{Note 2}		ns
Data hold time (transmission)	thd:dat	$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	0	1420	ns

(4) During communication at same potential (simplified I²C mode)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. The value must also be equal to or less than fmck/4.

- Set tsu:DAT so that it will not exceed the hold time when SCLr = "L" or SCLr = "H". 2.
- Caution Select the N-ch open drain output (VDD tolerance) mode for SDAr by using port output mode register h (POMh).

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b [Ω]:Communication line (SDAr) pull-up resistance Cb [F]: Communication line (SCLr, SDAr) load capacitance
 - 2. r: IIC number (r = 00, 01, 11, 20), h: = POM number (h = 0, 1, 4, 5)

3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number (m = 0, 1), n: Channel number (0, 1, 3)

Parameter	Symbol		Cor	nditions	HS (high-s Mc	peed main) ode	Unit
					MIN.	MAX.	
Transfer rate Note4		Reception	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5 \\ 2.7 \ V \leq V_b \leq 4.0 \end{array}$.5 V,) V		f _{MCK} /12 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		2.0	Mbps
			$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4 \\ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \end{array}$.0 V, 7 V		fмск/12 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		2.0	Mbps
			$2.4 \text{ V} \leq V_{DD} < 3$ $1.6 \text{ V} \leq V_b \leq 2.0$.3 V,) V		fмск/12 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		2.0	Mbps
		Transmission	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5 \\ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \end{array}$.5 V,) V		Note 3	bps
				Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, V_b = 2.7 \text{ V}$		2.0 Note 4	Mbps
		l	$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$			Note 5	bps
				Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, \text{R}_b = 2.7 \text{k} \Omega, \text{V}_b = 2.3 \text{ V}$		1.2 Note 6	Mbps
			$\label{eq:VD} \hline 2.4 \ V \le V_{DD} < 3.3 \ V, \\ 1.6 \ V \le V_b \le 2.0 \ V \\ \hline$			Notes 2, 7	bps
				Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$		0.43 Note 8	Mbps

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

 $(T_A = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq V_{DD} \leq 5.5 V) 16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)

3. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq V_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =

$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =

$$) = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \,[\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- 4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
- 5. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq VDD < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =

 $\begin{array}{c} \displaystyle \frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \\ \hline \\ \displaystyle (\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits} \end{array} \times 100 \ [\%]$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- 6. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 5** above to calculate the maximum transfer rate under conditions of the customer.
- 7. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.4 V \leq V_DD < 3.3 V, 1.6 V \leq V_b \leq 2.0 V

Maximum transfer rate =

$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = $\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \,[\%]$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 7 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3)

Parameter	Symbol	Conditions	HS (high-spee	ed main) Mode	Unit
			MIN.	MAX.	
SIp setup time (to SCKp↑)	tsikı	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 1.4 \ k\Omega \end{array}$	162		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$	354		ns
		$\begin{array}{l} 2.4 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 5.5 \ k\Omega \end{array}$	958		ns
SIp hold time (from SCKp↑) ^{№te}	tksii	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 1.4 \ k\Omega \end{array}$	38		ns
		$\label{eq:VDD} \begin{array}{l} \mbox{2.7 V} \le V_{\text{DD}} < 4.0 \mbox{ V}, \mbox{2.3 V} \le V_{b} \le 2.7 \mbox{ V}, \\ \mbox{C}_{b} = 30 \mbox{ pF}, \mbox{ R}_{b} = 2.7 \mbox{ k}\Omega \end{array}$	38		ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 5.5 \ k\Omega \end{array}$	38		ns
Delay time from SCKp↓ to SOp output ^{№te}	tkso1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 1.4 \ k\Omega \end{array}$		200	ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$		390	ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 5.5 \ k\Omega \end{array}$		966	ns

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

Note When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

(Cautions and Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- Remarks 1. Rb [Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb [F]: Communication line (SDAr, SCLr) load capacitance, Vb [V]: Communication line voltage
 - **2.** r: IIC Number (r = 00, 20)
 - 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number (m = 0,1), n: Channel number (n = 0))

(3) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V_{ss} (ADREFM = 0), target pin: ANI0 to ANI3, ANI16 to ANI22, internal reference voltage, and temperature sensor output voltage

Parameter	Symbol	Condition	ns	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution			1.2	±7.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μS
		ConditionsMIN.810-bit resolution $3.6 V \le V DD \le 5.5 V$ 2.125 Target pin: ANI0 to ANI3, ANI16 to ANI22 $3.6 V \le V DD \le 5.5 V$ 3.1875 ANI16 to ANI22 $2.7 V \le V DD \le 5.5 V$ 3.1875 10-bit resolution $3.6 V \le V DD \le 5.5 V$ 2.375 Target pin: internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode) $2.7 V \le V DD \le 5.5 V$ 3.5625 2.4 $V \le V DD \le 5.5 V$ 3.5625 $2.4 V \le V DD \le 5.5 V$ 17 10-bit resolution $2.4 V \le V DD \le 5.5 V$ 17 10-bit resolution $2.4 V \le V DD \le 5.5 V$ 17 10-bit resolution 10 -bit resolution 0 10-bit resolution 0 10 -bit resolution10-bit resolution 0 10-bit resolution 0 10-bit resolution 0 10-bit resolution 0 10-bit resolution 0 110-bit resolution 0 10-bit resolution 0 10-bit resolution 0 110-bit resolution 0 <t< td=""><td>3.1875</td><td></td><td>39</td><td>μS</td></t<>	3.1875		39	μS	
		ANI16 to ANI22	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		MAX. 10 ±7.0 39 39 39 39 39 39 39 ±0.60 ±0.60 ±0.60 ±4.0 ±2.0 VDD	μs
Conversion time	tconv	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.375		39	μs
		Target pin: internal reference	$2.7 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	3.5625		39	μs
		voltage, and temperature sensor output voltage (HS	ature $2.7 V \le VDD \le 5.5 V$ 3.5025 39 μs ature $2.4 V \le VDD \le 5.5 V$ 17 39 μs node) μs μs μs				
		(high-speed main) mode)				39 39 39 39 39 39 ±0.60 ±0.60 ±4.0 ±2.0	
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution	·			±0.60	%FSR
Full-scale error ^{Notes 1, 2}	EFS	10-bit resolution				±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution				±4.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution				±2.0	LSB
Analog input voltage	VAIN	ANI0 to ANI3, ANI16 to ANI2	2	0		VDD	V
		Internal reference voltage			$V_{\text{BGR}} \ ^{\text{Note 3}}$		V
		(HS (high-speed main) mode)					
		Temperature sensor output v (HS (high-speed main) mode)	roltage		VTMPS25 Note 3	i	V

(T 40 to 105%)	$24V \leq V_{\rm PR} \leq 55V$	Vec - 0 V Deference	$voltogo(v) - V_{pp}$	Peterspec voltage () =	/ 00)
(1A = -40 10 + 105 C	$, \mathbf{Z.4} \mathbf{V} \leq \mathbf{V} \mathbf{D} \mathbf{D} \leq 5.5 \mathbf{V},$	vss = 0 v, neierence	vonage(+) = voo,	reference voltage (-) = v	rssj

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. Refer to 29.6.2 Temperature sensor/internal reference voltage characteristics.

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AV_{REFM} (ADREFM = 1), target pin: ANI0, ANI2, ANI3, and ANI16 to ANI22

(T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, Reference voltage (+) = V_{BGR}^{Note 3}, Reference voltage (-) = AV_{REFM}^{Note 4} = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		bit
Conversion time	t CONV	8-bit resolution	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	8-bit resolution			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution			±1.0	LSB
Analog input voltage	VAIN		0		$V_{\text{BGR}}{}^{\text{Note 3}}$	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. Refer to 29.6.2 Temperature sensor/internal reference voltage characteristics.

4. When reference voltage (-) = Vss, the MAX. values are as follows.

Zero-scale error: Add $\pm 0.35\%$ FSR to the MAX. value when reference voltage (–) = AV_{REFM}. Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (–) = AV_{REFM}. Differential linearity error: Add ± 0.2 LSB to the MAX. value when reference voltage (–) = AV_{REFM}.

