

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	14
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f1026agsp-x5

Email: info@E-XFL.COM

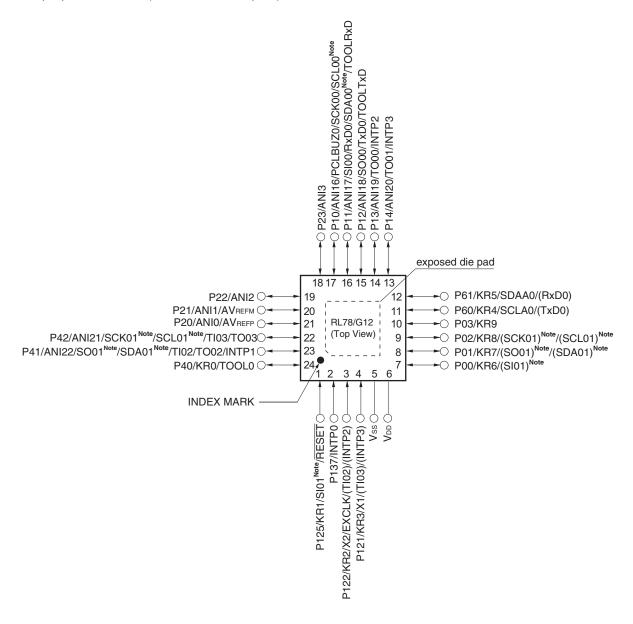
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RL78/G12 1. OUTLINE

O ROM, RAM capacities

Code flash	Data flash	RAM	20 pins	24 pins	30 pins
16 KB	2 KB	2 KB	_	_	R5F102AA
	_		_	_	R5F103AA
	2 KB	1.5 KB	R5F1026A Note 1	R5F1027A Note 1	_
	_		R5F1036A Note 1	R5F1037A Note 1	_
12 KB	2KB	1 KB	R5F10269 Note 1	R5F10279 Note 1	R5F102A9
	_		R5F10369 Note 1	R5F10379 Note 1	R5F103A9
8 KB	2 KB	768 B	R5F10268 Note 1	R5F10278 Note 1	R5F102A8
	_		R5F10368 Note 1	R5F10378 Note 1	R5F103A8
4 KB	2KB	512 B	R5F10267	R5F10277	R5F102A7
	_		R5F10367	R5F10377	R5F103A7
2 KB	2 KB	256 B	R5F10266 Note 2	_	_
	_		R5F10366 Note 2	_	_

Notes 1. This is 640 bytes when the self-programming function or data flash function is used. (For details, see CHAPTER 3 CPU ARCHITECTURE.)


2. The self-programming function cannot be used for R5F10266 and R5F10366.

Caution When the flash memory is rewritten via a user program, the code flash area and RAM area are used because each library is used. When using the library, refer to RL78 Family Flash Self Programming Library Type01 User's Manual and RL78 Family Data Flash Library Type04 User's Manual.

RL78/G12 1. OUTLINE

1.4.2 24-pin products

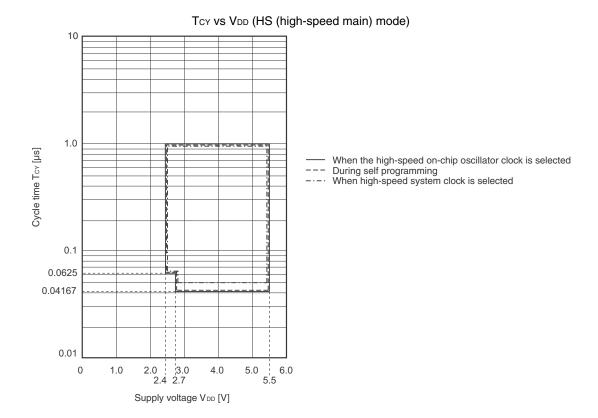
<R> • 24-pin plastic HWQFN (4 × 4 mm, 0.5 mm pitch)

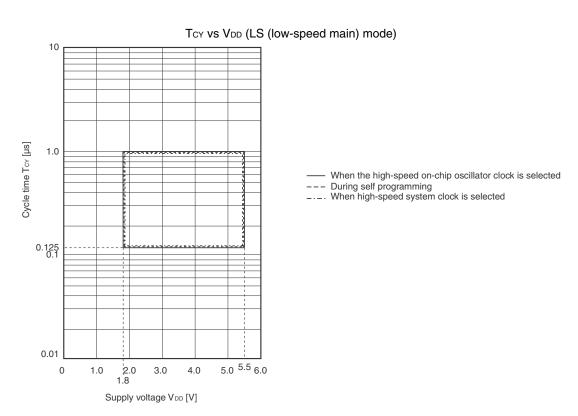
Note Provided only in the R5F102 products.

Remarks 1. For pin identification, see 1.5 Pin Identification.

- 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR).
- 3. It is recommended to connect an exposed die pad to Vss.

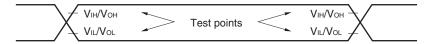
 $(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le VDD \le 5.5 \text{ V}, Vss = 0 \text{ V})$


(4/4)


Parameter	Symbol		Condition	ons	MIN.	TYP.	MAX.	Unit
Output voltage, low	V _{OL1}	20-, 24-pin product P00 to P03 ^{Note} , P10 P40 to P42		$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 20.0 \text{ mA}$ $4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$			1.3 0.7	V
		P10 to P17, P30, P31, P40, P50, P51, P120, P147 2. lo		$I_{OL1} = 8.5 \text{ mA}$ $2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 3.0 \text{ mA}$			0.6	V
				$2.7~V \leq V_{DD} \leq 5.5~V,$ $I_{OL1} = 1.5~mA$			0.4	V
				$1.8~V \leq V_{DD} \leq 5.5~V,$ $I_{OL1} = 0.6~mA$			0.4	V
	V _{OL2}	P20 to P23		Iol2 = 400 μA			0.4	V
	V _{OL3}	P60, P61		$4.0~V \leq V_{DD} \leq 5.5~V,$ $I_{OL1} = 15.0~mA$			2.0	V
				$4.0~V \leq V_{DD} \leq 5.5~V,$ $I_{OL1} = 5.0~mA$			0.4	V
				$2.7~V \leq V_{DD} \leq 5.5~V,$ $I_{OL1} = 3.0~mA$			0.4	V
				$1.8~V \leq V_{DD} \leq 5.5~V,$ $I_{OL1} = 2.0~mA$			0.4	V
Input leakage current, high	Ішн1	Other than P121, V _I = V _{DD} P122					1	μΑ
	І Lін2	P121, P122 (X1, X2/EXCLK)	$V_{I} = V_{DD}$	Input port or external clock input			1	μΑ
				When resonator connected			10	μΑ
Input leakage current, low	ILIL1	Other than P121, P122	Vı = Vss				-1	μΑ
	ILIL2	P121, P122 (X1, X2/EXCLK)	Vı = Vss	Input port or external clock input			-1	μΑ
				When resonator connected			-10	μΑ
On-chip pull-up resistance	Rυ	20-, 24-pin products: P00 to P03 ^{Note} , P10 to P14, P40 to P42, P125, RESET 30-pin products: P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147		V _I = Vss, input port	10	20	100	kΩ

Note 24-pin products only.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.


Minimum Instruction Execution Time during Main System Clock Operation

2.5 Peripheral Functions Characteristics

AC Timing Test Point

2.5.1 Serial array unit

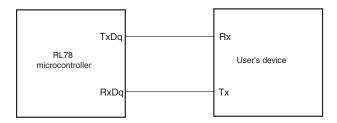
(1) During communication at same potential (UART mode)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

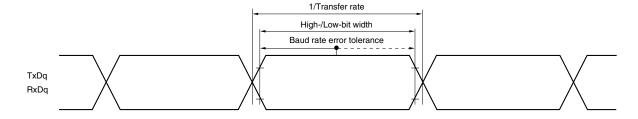
	,	1 = 122 = 616 1, 168 = 6 1,					
Parameter	Symbol	Conditions		h-speed Mode	,	/-speed Mode	Unit
			MIN.	MAX.	MIN.	MAX.	
Transfer rate				fмск/6		fмск/6	bps
Note 1		Theoretical value of the maximum transfer rate $f_{\text{CLK}} = f_{\text{MCK}}^{\text{Note2}}$		4.0		1.3	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:


HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 5.5 V)

16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)


LS (low-speed main) mode: $8 \text{ MHz} (1.8 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V})$

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 2), g: PIM, POM number (g = 0, 1)

2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) ($T_A = -40$ to +85°C, 1.8 V \leq V_{DD} \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	C	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode	
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fcLk	$2.7~V \leq V_{DD} \leq 5.5~V$	167		500		ns
			$2.4~V \leq V_{DD} \leq 5.5~V$	250		500		ns
			$1.8~V \leq V_{DD} \leq 5.5~V$	-		500		ns
SCKp high-/low-level width	tкн1,	$4.0~V \leq V_{DD} \leq$	5.5 V	tксү1/2-12		tkcy1/2-50		ns
	t _{KL1}	$2.7~V \leq V_{DD} \leq$	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$ $2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$ to			tkcy1/2-50		ns
		$2.4~V \leq V_{DD} \leq$				tkcy1/2-50		ns
		1.8 V ≤ V _{DD} ≤	5.5 V	-		tkcy1/2-50		ns
SIp setup time (to SCKp↑)	tsıĸı	$4.0~V \leq V_{DD} \leq 5.5~V$		44		110		ns
Note 1		$2.7~V \leq V_{DD} \leq 5.5~V$		44		110		ns
		$2.4~V \leq V_{DD} \leq$	5.5 V	75		110		ns
		$1.8~V \leq V_{DD} \leq$	5.5 V	-		110		ns
SIp hold time (from SCKp↑) Note 2	tksıı			19		19		ns
Delay time from SCKp↓ to SOp output Note 3	tkso1	C = 30 pF Note4			25		25	ns

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp and SCKp pins by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).

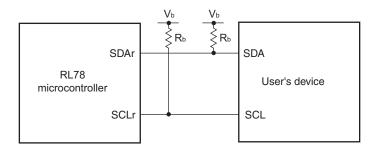
- **Remarks 1.** p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products)
 - 2. fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products.))

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

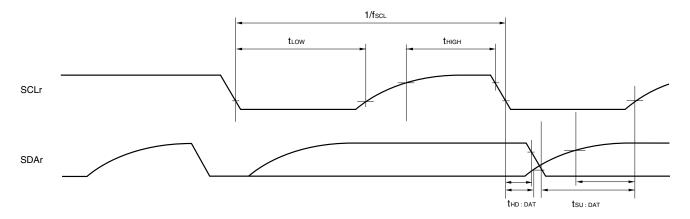
 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Co	onditions	HS (high-spe		LS (low-spe	•	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	tkcy2	$4.0~V \leq V_{DD} \leq 5.5~V,$	20 MHz < fмcк ≤ 24 MHz	12/fмск		-		ns
		$2.7~V \leq V_b \leq 4.0~V$	8 MHz < fмcк ≤ 20 MHz	10/fмск		=		ns
			4 MHz < fмcк ≤ 8 MHz	8/fмск		16/fмск		ns
			fмcк ≤ 4 MHz	6/fмск		10/fмск		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$	20 MHz < fмcк ≤ 24 MHz	16/fмск		_		ns
		$2.3~V \leq V_b \leq 2.7~V$	16 MHz < fмcк ≤ 20 MHz	14/fмск		=		ns
			8 MHz < fмск ≤ 16 MHz	12/fмск		_		ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/fмск		ns
			fмcк ≤ 4 MHz	6/fмск		10/fмск		ns
		$1.8 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$	20 MHz < fмcк ≤ 24 MHz	36/fмск		_		ns
		$1.6~V \leq V_b \leq 2.0~V$	16 MHz < fмcк ≤ 20 MHz	32/fмск		=		ns
		Note 2	8 MHz < fмск ≤ 16 MHz	26/fмск		_		ns
			4 MHz < fмcк ≤ 8 MHz	16/fмск		16/fмск		ns
			fмcк ≤ 4 MHz	10/fмск		10/fмск		ns
SCKp high-/low-level	t _{KH2} ,	$4.0~V \leq V_{DD} \leq 5.5~V,$	tkcy2/2 - 12		tkcy2/2 - 50		ns	
width	t _{KL2}	$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$	$2.3~V \leq V_b \leq 2.7~V$	tkcy2/2 - 18		tkcy2/2 - 50		ns
		$1.8 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$	$1.6~V \leq V_b \leq 2.0~V^{\text{Note 2}}$	tkcy2/2 - 50		tkcy2/2 - 50		ns
SIp setup time	tsik2	$4.0~V \leq V_{DD} \leq 5.5~V,$	$2.7~V \leq V_{DD} \leq 4.0~V$	1/fmck + 20		1/fмск + 30		ns
(to SCKp↑) Note 3		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$	$2.3~V \leq V_b \leq 2.7~V$	1/fmck + 20		1/fмск + 30		ns
		$1.8 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$	$1.6~V \leq V_{DD} \leq 2.0~V^{Note~2}$	1/fmck + 30		1/fмск + 30		ns
SIp hold time (from SCKp [↑]) Note 4	tksi2			1/fмск + 31		1/fмск + 31		ns
Delay time from	tkso2	$4.0~V \leq V_{DD} \leq 5.5~V,$	$2.7 \text{ V} \le V_b \le 4.0 \text{ V},$		2/fмск +		2/fмск +	ns
SCKp↓ to SOp		C _b = 30 pF, R _b = 1.4	kΩ		120		573	
output Note 5		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$	$2.3 \text{ V} \le V_b \le 2.7 \text{ V},$		2/fмск +		2/fмск +	ns
		C _b = 30 pF, R _b = 2.7	kΩ		214		573	
		$1.8 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$	$1.6 \text{ V} \le V_b \le 2.0 \text{ V}^{\text{Note 2}},$		2/fмск +		2/fмск +	ns
	1	C _b = 30 pF, R _b = 5.5	kΩ		573		573	

Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps


- 2. Use it with $V_{DD} \ge V_b$.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **5.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Cautions 1. Select the TTL input buffer for the SIp and SCKp pins and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1).


For VIH and VIL, see the DC characteristics with TTL input buffer selected.

2. CSI01 and CSI11 cannot communicate at different potential.

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** Rb $[\Omega]$: Communication line (SDAr, SCLr) pull-up resistance, Cb [F]: Communication line (SDAr, SCLr) load capacitance, Vb [V]: Communication line voltage
 - **2.** r: IIC Number (r = 00, 20)
 - fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 - m: Unit number (m = 0,1), n: Channel number (n = 0)
 - 4. Simplified I²C mode is supported only by the R5F102 products.

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - **3.** When $AV_{REFP} < V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.05\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AVREFP = VDD.

- **4.** Values when the conversion time is set to 57 μ s (min.) and 95 μ s (max.).
- 5. Refer to 28.6.2 Temperature sensor/internal reference voltage characteristics.

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI22

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error Note 1	AINL	10-bit resolution			1.2	±5.0	LSB
		AVREFP = VDD Note 3			1.2	±8.5 Note 4	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μS
		Target ANI pin: ANI16 to ANI22	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
			$1.8~V \leq V_{DD} \leq 5.5~V$	17		39	μS
				57		95	μS
Zero-scale error Notes 1, 2	EZS	10-bit resolution	0-bit resolution			±0.35	%FSR
		AVREFP = VDD Note 3				±0.60 Note 4	%FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution				±0.35	%FSR
		AVREFP = VDD Note 3				±0.60 Note 4	%FSR
Integral linearity error Note 1	ILE	10-bit resolution				±3.5	LSB
		AVREFP = VDD Note 3				±6.0 Note 4	LSB
Differential linearity	DLE	10-bit resolution				±2.0	LSB
error ^{Note 1}		AVREFP = VDD Note 3	VREFP = VDD Note 3			±2.5 Note 4	LSB
Analog input voltage	VAIN	ANI16 to ANI22		0		AVREFP and VDD	V

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - **3.** When $AV_{REFP} \leq V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 4.0 LSB to the MAX, value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.20\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AVREFP = VDD.

4. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM (ADREFM = 1), target pin: ANI0, ANI2, ANI3, and ANI16 to ANI22

(Ta = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = VBGR Note 3, Reference voltage (-) = AVREFM Note 4 = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		bit
Conversion time	tconv	8-bit resolution	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	8-bit resolution			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution			±1.0	LSB
Analog input voltage	VAIN		0		VBGR Note 3	V

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - 3. Refer to 28.6.2 Temperature sensor/internal reference voltage characteristics.
 - **4.** When reference voltage (–) = Vss, the MAX. values are as follows.

Zero-scale error: Add ±0.35%FSR to the MAX. value when reference voltage (-) = AVREFM.

Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (–) = AVREFM.

Differential linearity error: Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

LVD detection voltage of interrupt & reset mode

(T_A = -40 to +85°C, V_{PDR} \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol		Con	ditions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	V _{LVDB0}	V _{POC2} ,	VPOC1, VPOC0 = 0, 0, 1, fa	lling reset voltage	1.80	1.84	1.87	V
mode	V _{LVDB1}		LVIS1, LVIS0 = 1, 0	Rising reset release voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	V _{LVDB2}		LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
	V _{LVDB3}		LVIS1, LVIS0 = 0, 0	Rising reset release voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	V _{LVDC0}	V _{POC2} ,	VPOC1, VPOC0 = 0, 1, 0, fa	lling reset voltage	2.40	2.45	2.50	V
	V _{LVDC1}		LVIS1, LVIS0 = 1, 0	Rising reset release voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	V _{LVDC3}		LVIS1, LVIS0 = 0, 0	Rising reset release voltage	3.68	3.75	3.82	V
				Falling interrupt voltage	3.60	3.67	3.74	V
	V _{LVDD0}	V _{POC2} ,	VPOC1, VPOC1 = 0, 1, 1, fa	lling reset voltage	2.70	2.75	2.81	V
	V _{LVDD1}		LVIS1, LVIS0 = 1, 0	Rising reset release voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	V _{LVDD2}		LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V
	V _{LVDD3}		LVIS1, LVIS0 = 0, 0	Rising reset release voltage	3.98	4.06	4.14	V
				Falling interrupt voltage	3.90	3.98	4.06	V

2.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 28.4 AC Characteristics.

3.1 Absolute Maximum Ratings

Absolute Maximum Ratings (TA = 25°C)

Parameter	Symbols		Conditions	Ratings	Unit
Supply Voltage	V _{DD}			-0.5 to + 6.5	V
REGC terminal input voltage Note1	Virego	REGC		-0.3 to +2.8 and -0.3 to V _{DD} + 0.3 _{Note 2}	V
Input Voltage	VII	Other than P60, F	² 61	-0.3 to V _{DD} + 0.3 ^{Note 3}	V
	Vı2	P60, P61 (N-ch o	pen drain)	-0.3 to 6.5	V
Output Voltage	Vo			-0.3 to V _{DD} + 0.3 ^{Note 3}	V
Analog input voltage	Val	20, 24-pin produc	ts: ANI0 to ANI3, ANI16 to ANI22	-0.3 to V _{DD} + 0.3	V
		30-pin products: A	ANIO to ANI3, ANI16 to ANI19	and -0.3 to AVREF(+)+0.3 Notes 3, 4	
Output current, high	І он1	Per pin	Other than P20 to P23	-40	mA
		Total of all pins	All the terminals other than P20 to P23	-170	mA
			20-, 24-pin products: P40 to P42	-70	mA
			30-pin products: P00, P01, P40, P120		
			20-, 24-pin products: P00 to P03 ^{Note 5} , P10 to P14 30-pin products: P10 to P17, P30, P31, P50, P51, P147	-100	mA
	10н2	Per pin	P20 to P23	-0.5	mA
		Total of all pins	Total of all pins		mA
Output current, low	lo _{L1}	Per pin	Other than P20 to P23	40	mA
		Total of all pins	All the terminals other than P20 to P23	170	mA
			20-, 24-pin products: P40 to P42 30-pin products: P00, P01, P40, P120	70	mA
			20-, 24-pin products: P00 to P03 Note 5, P10 to P14, P60, P61 30-pin products: P10 to P17, P30, P31, P50, P51, P60, P61, P147	100	mA
	I _{OL2}	Per pin	P20 to P23	1	mA
		Total of all pins		5	mA
Operating ambient temperature	Та			-40 to +105	°C
Storage temperature	T _{stg}			-65 to +150	°C

Notes 1. 30-pin product only.

- 2. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value determines the absolute maximum rating of the REGC pin. Do not use it with voltage applied.
- 3. Must be 6.5 V or lower.
- **4.** Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.
- 5. 24-pin products only.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remarks 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- **2.** AV_{REF}(+): + side reference voltage of the A/D converter.
- 3. Vss : Reference voltage

(1) 20-, 24-pin products

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit	
Supply	IDD2 Note 2	HALT	HS (High-speed	f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		440	2230	μА	
current ^{Note 1}		mode	main) mode Note 6		V _{DD} = 3.0 V		440	2230		
				fih = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		400	1650	μА	
					V _{DD} = 3.0 V		400	1650		
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		280	1900	μA	
				V _{DD} = 5.0 V	Resonator connection		450	2000		
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		280	1900	μA	
			_	V _{DD} = 3.0 V	Resonator connection		450	2000		
					$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		190	1010	μА
				V _{DD} = 5.0 V	Resonator connection		260	1090		
					fmx = 10 MHz ^{Note 3} ,	Square wave input		190	1010	μA
				V _{DD} = 3.0 V	Resonator connection		260	1090		
	I _{DD3} Note 5	STOP	T _A = -40°C				0.19	0.50	μA	
		mode	T _A = +25°C				0.24	0.50		
			T _A = +50°C				0.32	0.80		
			$T_A = +70^{\circ}C$ $T_A = +85^{\circ}C$				0.48	1.20		
							0.74	2.20		
			T _A = +105°C				1.50	10.20		

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator clock is stopped.
 - 4. When high-speed system clock is stopped.
 - 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **6.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS (High speed main) mode: $V_{DD} = 2.7 \text{ V to } 5.5 \text{ V}$ @1 MHz to 24 MHz $V_{DD} = 2.4 \text{ V to } 5.5 \text{ V}$ @1 MHz to 16 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except temperature condition of the TYP. value is $T_A = 25$ °C, other than STOP mode

3.4 AC Characteristics

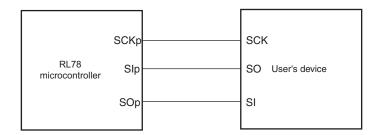
$(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Items	Symbol		Condition	S	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Tcy	Main system	HS (High-	$2.7~V \leq V_{DD} \leq 5.5~V$	0.04167		1	μS
instruction execution time)		clock (fMAIN) operation	speed main) mode	$2.4~V \leq V_{\text{DD}} < 2.7~V$	0.0625		1	μS
		During self	HS (High-	$2.7~V \leq V_{DD} \leq 5.5~V$	0.04167		1	μS
		programming	speed main) mode	$2.4~V \leq V_{DD} < 2.7~V$	0.0625		1	μS
External main system clock	fex	$2.7 \text{ V} \leq V_{DD} \leq 5.$	5 V		1.0		20.0	MHz
frequency		$2.4~V \leq V_{DD} < 2$.7 V		1.0		16.0	MHz
External main system clock	texh, texl	$2.7~V \leq V_{DD} \leq 5.5~V$		24			ns	
input high-level width, low- level width		$2.4~V \leq V_{DD} < 2.7~V$			30			ns
TI00 to TI07 input high-level width, low-level width	tπн, tπ∟				1/fмск + 10			ns
TO00 to TO07 output	f _{TO}	$4.0~V \leq V_{DD} \leq 5.5~V$					12	MHz
frequency		$2.7~V \leq V_{DD} < 4.0~V$					8	MHz
		$2.4~V \leq V_{DD} < 2$.7 V				4	MHz
PCLBUZ0, or PCLBUZ1	f PCL	$4.0~V \leq V_{DD} \leq 5$.5 V				16	MHz
output frequency		$2.7~V \leq V_{DD} < 4.0~V$					8	MHz
		$2.4~V \leq V_{DD} < 2$.7 V				4	MHz
INTP0 to INTP5 input high- level width, low-level width	tinth, tintl				1			μS
KR0 to KR9 input available width	t KR				250			ns
RESET low-level width	trsL				10			μS

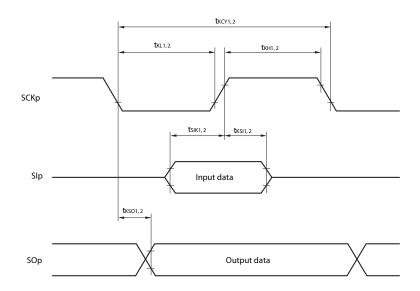
Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the timer clock select register 0 (TPS0) and the CKS0n bit of timer mode register 0 (TMR0n). n: Channel number (n = 0 to 7))

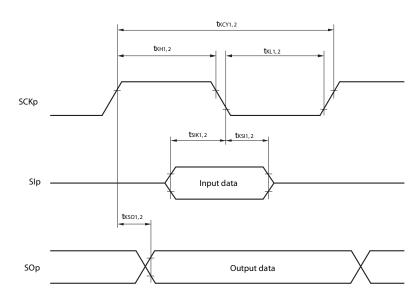
(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)


 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Con	HS (high-speed	Unit		
				MIN.	MAX.	
SCKp cycle time Note4	tkcy2	$4.0~V \leq V_{DD} \leq 5.5~V$	20 MHz < fмск	16/fмск		ns
			fмcк ≤ 20 MHz	12/fмск		ns
		$2.7~V \leq V_{DD} \leq 5.5~V$	16 MHz < fмск	16/fмск		ns
			fмcк ≤ 16 MHz	12/fмск		ns
		2.4 V ≤ V _{DD} ≤ 5.5 V		12/fмск		ns
				and 1000		
SCKp high-/low-level width tkH2,	tĸн2,	$4.0~V \leq V_{DD} \leq 5.5~V$		tксү2/2-14		ns
	t _{KL2}	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	tксү2/2–16		ns	
		$2.4~V \leq V_{DD} \leq 5.5~V$		tксү2/2-36		ns
SIp setup time (to SCKp↑)	tsik2	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$		1/fмск + 40		ns
				1/fмск + 60		ns
Slp hold time (from SCKp [↑]) Note 2	t _{KSI2}			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output Note 3	tkso2	C = 30 pF Note4	$2.7~V \leq V_{DD} \leq 5.5~V$		2/fмcк + 66	ns
			$2.4~V \leq V_{DD} \leq 5.5~V$		2/fмcк + 113	ns


- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp and SCKp pins and the normal output mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).


CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3)

2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0,1), n: Channel number (n = 0, 1, 3))

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
Slp setup time (to SCKp↑)	tsıĸ1	$ \begin{aligned} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $	162		ns
		$ 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, $ $ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega $	354		ns
		$ 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, $ $ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega $	958		ns
SIp hold time (from SCKp↑) Note	•	$ \begin{aligned} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $	38		ns
		$ 2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, $ $ C_{\text{b}} = 30 \text{ pF}, \ R_{\text{b}} = 2.7 \text{ k}\Omega $	38		ns
		$ 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, $ $ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega $	38		ns
Delay time from SCKp↓ to SOp output Note	tkso1	$ \begin{aligned} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $		200	ns
	$ 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, $ $ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega $		390	ns	
		$ 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, $ $ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega $		966	ns

Note When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

($\pmb{\mathsf{Cautions}}$ and $\pmb{\mathsf{Remarks}}$ are listed on the next page.)

3.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(Ta = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection supply voltage	V _{LVD0}	Power supply rise time	3.90	4.06	4.22	٧
		Power supply fall time	3.83	3.98	4.13	٧
	V _{LVD1}	Power supply rise time	3.60	3.75	3.90	٧
		Power supply fall time	3.53	3.67	3.81	٧
	V _{LVD2}	Power supply rise time	3.01	3.13	3.25	٧
		Power supply fall time	2.94	3.06	3.18	٧
	V LVD3	Power supply rise time	2.90	3.02	3.14	٧
		Power supply fall time	2.85	2.96	3.07	٧
	V _{LVD4}	Power supply rise time	2.81	2.92	3.03	٧
		Power supply fall time	2.75	2.86	2.97	٧
	V _{LVD5}	Power supply rise time	2.70	2.81	2.92	٧
		Power supply fall time	2.64	2.75	2.86	٧
	V _{LVD6}	Power supply rise time	2.61	2.71	2.81	٧
		Power supply fall time	2.55	2.65	2.75	٧
	V _{LVD7}	Power supply rise time	2.51	2.61	2.71	٧
		Power supply fall time	2.45	2.55	2.65	٧
Minimum pulse width	tıw		300			μs
Detection delay time					300	μS

LVD detection voltage of interrupt & reset mode

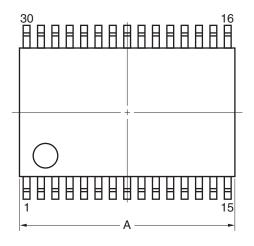
(Ta = -40 to +105°C, V_{PDR} \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

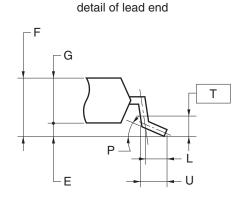
Parameter	Symbol		Conditions			TYP.	MAX.	Unit
Interrupt and reset	V _{LVDD0}	VPOC2,	V _{POC2} , V _{POC1} , V _{POC1} = 0, 1, 1, falling reset voltage			2.75	2.86	V
mode	V _{LVDD1}		LVIS1, LVIS0 = 1, 0	Rising reset release voltage	2.81	2.92	3.03	V
				Falling interrupt voltage	2.75	2.86	2.97	V
	V _{LVDD2}		LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.90	3.02	3.14	V
				Falling interrupt voltage	2.85	2.96	3.07	V
	V _{LVDD3}		LVIS1, LVIS0 = 0, 0	Rising reset release voltage	3.90	4.06	4.22	V
				Falling interrupt voltage	3.83	3.98	4.13	V

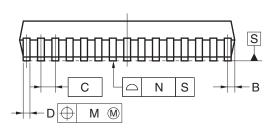
3.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

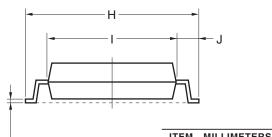

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 29.4 AC Characteristics.


<R>


4.3 30-pin products

R5F102AAASP, R5F102A9ASP, R5F102A8ASP, R5F102A7ASP R5F103AAASP, R5F103A9ASP, R5F103A8ASP, R5F103A7ASP R5F102AADSP, R5F102A9DSP, R5F102A8DSP, R5F102A7DSP R5F103AADSP, R5F103A9DSP, R5F103A8DSP, R5F103A7DSP R5F102AAGSP, R5F102A9GSP, R5F102A8GSP, R5F102A7GSP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP30-0300-0.65	PLSP0030JB-B	S30MC-65-5A4-3	0.18



NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

Κ

ITEM	MILLIMETERS
Α	9.85±0.15
В	0.45 MAX.
С	0.65 (T.P.)
D	$0.24^{+0.08}_{-0.07}$
Е	0.1±0.05
F	1.3±0.1
G	1.2
Н	8.1±0.2
I	6.1±0.2
J	1.0±0.2
K	0.17±0.03
L	0.5
М	0.13
N	0.10
Р	3°+5°
Т	0.25
U	0.6±0.15

©2012 Renesas Electronics Corporation. All rights reserved.