

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2014110	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-WFQFN Exposed Pad
Supplier Device Package	24-HWQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10277ana-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.5 Pin Identification

ANI0 to ANI3,		REGC:	Regulator Capacitance
ANI16 to ANI22:	Analog input	RESET:	Reset
AVREFM:	Analog Reference Voltage Minus	RxD0 to RxD2:	Receive Data
AVREFP:	Analog reference voltage plus	SCK00, SCK01, SCK11,	
EXCLK:	External Clock Input	SCK20:	Serial Clock Input/Output
	(Main System Clock)	SCL00, SCL01,	
INTP0 to INTP5	Interrupt Request From Peripheral	SCL11, SCL20, SCLA0:	Serial Clock Input/Output
KR0 to KR9:	Key Return	SDA00, SDA01, SDA11,	
P00 to P03:	Port 0	SDA20, SDAA0:	Serial Data Input/Output
P10 to P17:	Port 1	SI00, SI01, SI11, SI20:	Serial Data Input
P20 to P23:	Port 2	SO00, SO01, SO11,	
P30 to P31:	Port 3	SO20:	Serial Data Output
P40 to P42:	Port 4	TI00 to TI07:	Timer Input
P50, P51:	Port 5	TO00 to TO07:	Timer Output
P60, P61:	Port 6	TOOL0:	Data Input/Output for Tool
P120 to P122, P125:	Port 12	TOOLRxD, TOOLTxD:	Data Input/Output for External
P137:	Port 13		Device
P147:	Port 14	TxD0 to TxD2:	Transmit Data
PCLBUZ0, PCLBUZ1:	Programmable Clock Output/	VDD:	Power supply
	Buzzer Output	Vss:	Ground
		X1, X2:	Crystal Oscillator (Main System Clock)
			Olocky

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings (TA = 25°C)

Parameter	Symbols		Conditions	Ratings	Unit
Supply Voltage	VDD			-0.5 to + 6.5	V
REGC terminal input voltage ^{Note1}	VIREGC	REGC		-0.3 to +2.8 and -0.3 to V _{DD} + 0.3 _{Note 2}	V
Input Voltage	VI1	Other than P60, F	261	-0.3 to V _{DD} + $0.3^{Note 3}$	V
	VI2	P60, P61 (N-ch o	pen drain)	-0.3 to 6.5	V
Output Voltage	Vo			-0.3 to V _{DD} + 0.3 ^{Note 3}	V
Analog input voltage	VAI	20-, 24-pin produ	cts: ANI0 to ANI3, ANI16 to ANI22	-0.3 to V _{DD} + 0.3	V
		30-pin products: A	ANIO to ANI3, ANI16 to ANI19	and –0.3 to AVREF(+)+0.3 ^{Notes 3, 4}	
Output current, high	Іон1	Per pin	Other than P20 to P23	-40	mA
		Total of all pins	All the terminals other than P20 to P23	-170	mA
			20-, 24-pin products: P40 to P42	-70	mA
			30-pin products: P00, P01, P40, P120		
			20-, 24-pin products: P00 to P03 ^{Note 5} , P10 to P14 30-pin products: P10 to P17, P30, P31, P50, P51, P147	-100	mA
	Іон2	Per pin	P20 to P23	-0.5	mA
		Total of all pins		-2	mA
Output current, low	IOL1	Per pin	Other than P20 to P23	40	mA
		Total of all pins	All the terminals other than P20 to P23	170	mA
			20-, 24-pin products: P40 to P42 30-pin products: P00, P01, P40, P120	70	mA
			20-, 24-pin products: P00 to P03 ^{Note 5} , P10 to P14, P60, P61 30-pin products: P10 to P17, P30, P31, P50, P51, P60, P61, P147	100	mA
	IOL2	Per pin	P20 to P23	1	mA
		Total of all pins	7	5	mA
Operating ambient temperature	TA			-40 to +85	°C
Storage temperature	Tstg			-65 to +150	°C

Notes 1. 30-pin product only.

- 2. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value determines the absolute maximum rating of the REGC pin. Do not use it with voltage applied.
- **3.** Must be 6.5 V or lower.
- 4. Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.
- **5.** 24-pin products only.
- **Caution** Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** AVREF(+) : + side reference voltage of the A/D converter.
 - 3. Vss : Reference voltage

Parameter	Symbol		Conditio	ons	MIN.	TYP.	MAX.	Unit
Output voltage, low	Vol1	20-, 24-pin products P00 to P03 ^{Note} , P10		$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 20.0 \ mA \end{array} \label{eq:DD}$			1.3	V
		P40 to P42 30-pin products: P0		$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.5 \ mA \end{array} \label{eq:DD}$			0.7	V
		P10 to P17, P30, F P50, P51, P120, P		$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 3.0 \ mA \end{array} \label{eq:DD}$			0.6	V
				$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 1.5 \ mA \end{array} \label{eq:DD}$			0.4	V
				$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq V_{\mbox{DD}} \leq 5.5 \mbox{ V}, \\ I_{\mbox{DL1}} = 0.6 \mbox{ mA} \end{array}$			0.4	V
	Vol2	P20 to P23	P20 to P23				0.4	v
	Vol3			$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 15.0 \ mA \end{array} \label{eq:DD}$			2.0	V
				$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 5.0 \ mA \end{array} \label{eq:DD}$			0.4	V
				$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 3.0 \ mA \end{array} \label{eq:DD}$			0.4	V
				$\label{eq:VDD} \begin{array}{l} 1.8 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 2.0 \ mA \end{array}$			0.4	V
nput leakage current, nigh	Ішні	Other than P121, P122	$V_{\text{I}} = V_{\text{DD}}$				1	μA
	Ішна	P121, P122 (X1, X2/EXCLK)	$V_{\text{I}} = V_{\text{DD}}$	Input port or external clock input			1	μA
				When resonator connected			10	μA
nput leakage current, ow	ILIL1	Other than P121, P122	VI = Vss				-1	μA
	ILIL2	P121, P122 (X1, X2/EXCLK)	$V_I = V_{SS}$	Input port or external clock input			-1	μA
				When resonator connected			-10	μA
Dn-chip pull-up resistance	Ru	20-, 24-pin product: P00 to P03 ^{Note} , P10 P40 to P42, P125, 30-pin products: P0 P10 to P17, P30, F	0 to P14, RESET 00, P01,	VI = Vss, input port	10	20	100	kΩ
		P10 to P17, P30, F P50, P51, P120, P						

$40 \text{ to } 185^{\circ}$ 18V < Vpp < 55 V Vcc -0 1/1

Note 24-pin products only.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(1/2)

2.3.2 Supply current characteristics

(1) 20-, 24-pin products

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit																					
Supply	IDD1	Operating	HS(High-speed	$f_{IH}=24~MHz^{\text{Note 3}}$	Basic	$V_{DD} = 5.0 V$		1.5		mA																					
current ^{Note 1}		mode	mode main) mode ^{№004}		operation	V _{DD} = 3.0 V		1.5																							
					Normal	$V_{DD} = 5.0 V$		3.3	5.0	mA																					
				operation	$V_{DD} = 3.0 V$		3.3	5.0																							
				$f_{\text{IH}} = 16 \; MHz^{\text{Note 3}}$		$V_{DD} = 5.0 V$		2.5	3.7	mA																					
						$V_{DD} = 3.0 V$		2.5	3.7																						
			LS(Low-speed	$f_{\text{IH}} = 8 \; MHz^{\text{Note 3}}$		$V_{DD} = 3.0 V$		1.2	1.8	mA																					
	main) mode ^{Note4}			$V_{DD} = 2.0 V$		1.2	1.8																								
		HS(High-speed	$f_{MX} = 20 \text{ MHz}^{Note 2},$		Square wave input		2.8	4.4	mA																						
main	main) mode ^{№064}	ain) mode ^{Note4} $V_{DD} = 5.0 V$		Resonator connection		3.0	4.6																								
			f _{MX} = 20 MHz ^{Note}	$f_{MX} = 20 \text{ MHz}^{Note 2},$		Square wave input		2.8	4.4	mA																					
				$\label{eq:VDD} \begin{split} V_{DD} &= 3.0 \ V \\ f_{MX} &= 10 \ MHz^{\text{Note 2}}, \\ V_{DD} &= 5.0 \ V \end{split}$		Resonator connection		3.0	4.6																						
						$f_{MX} = 10 \text{ MHz}^{Note 2},$	$f_{MX} = 10 \text{ MHz}^{Note 2}$,	$f_{MX} = 10 \text{ MHz}^{Note 2},$	$f_{MX} = 10 \text{ MHz}^{Note 2}$,	$f_{MX} = 10 \text{ MHz}^{Note 2},$		$f_{MX} = 10 \text{ MHz}^{Note 2}$,	$f_{MX} = 10 \text{ MHz}^{Note 2},$	$f_{MX} = 10 \text{ MHz}^{Note 2}$,	$f_{MX} = 10 \text{ MHz}^{Note 2},$	$f_{MX} = 10 \text{ MHz}^{Note 2}$,	$f_{MX} = 10 \text{ MHz}^{Note 2},$	$f_{MX} = 10 \text{ MHz}^{Note 2},$	Square wave input		1.8	2.6	mA								
						Resonator connection		1.8	2.6																						
				$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		1.8	2.6	mA																					
				$V_{DD} = 3.0 V$		Resonator connection		1.8	2.6																						
			LS(Low-speed	$f_{MX} = 8 MHz^{Note2}$,		Square wave input		1.1	1.7	mA																					
	main) mode ^{Note 4}	$V_{DD} = 3.0 V$		Resonator connection		1.1	1.7																								
		fi	$f_{MX} = 8 \text{ MHz}^{Note 2},$		Square wave input		1.1	1.7	mA																						
				VDD = 2.0 V		Resonator connection		1.1	1.7																						

Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. When high-speed on-chip oscillator clock is stopped.
- **3.** When high-speed system clock is stopped
- **4.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode: $V_{DD} = 2.7 \text{ V}$ to 5.5 V @1 MHz to 24 MHz $V_{DD} = 2.4 \text{ V}$ to 5.5 V @1 MHz to 16 MHz

- LS(Low speed main) mode: $V_{DD} = 1.8 V$ to 5.5 V @1 MHz to 8 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fil: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$.

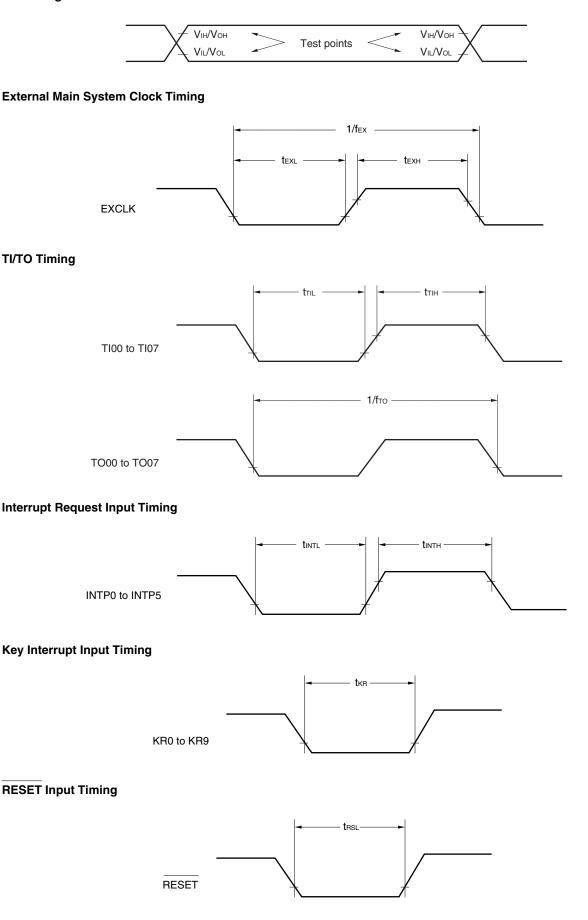
(1) 20-, 24-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit	
Supply	DD2 Note 2	HALT	HS (High-speed	$f_{IH} = 24 \text{ MHz}^{Note 4}$	$V_{DD} = 5.0 V$		440	1210	μA	
current Note 1		mode	mode main) mode ^{Note 6}		$V_{DD} = 3.0 V$		440	1210		
				fıн = 16 MHz ^{№te 4}	$V_{DD} = 5.0 V$		400	950	μA	
					$V_{DD} = 3.0 V$		400	950		
			LS (Low-speed	$f_{IH} = 8 \text{ MHz}^{Note 4}$	$V_{DD} = 3.0 V$		270	542	μA	
			main) mode ^{Note 6}		V _{DD} = 2.0 V		270	542		
			HS (High-speed	$f_{MX} = 20 \text{ MHz}^{Note 3},$	Square wave input		280	1000	μA	
			main) mode ^{Note 6}	$V_{DD} = 5.0 V$	Resonator connection		450	1170		
				$f_{MX} = 20 \text{ MHz}^{Note 3},$	Square wave input		280	1000	μA	
			V _{DD} = 3.0 V	Resonator connection		450	1170			
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$ $V_{\text{DD}} = 5.0 \text{ V}$	$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		190	590	μA
					Resonator connection		260	660		
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		190	590	μA	
				$V_{DD} = 3.0 V$	Resonator connection		260	660		
			LS (Low-speed	$f_{MX} = 8 \text{ MHz}^{Note 3},$	Square wave input		110	360	μA	
			main) mode ^{Note 6}	$V_{DD} = 3.0 V$	Resonator connection		150	416		
				$f_{MX} = 8 \text{ MHz}^{Note 3},$	Square wave input		110	360	μA	
				$V_{DD} = 2.0 V$	Resonator connection		150	416		
	DD3 Note 5	STOP	$T_A = -40^{\circ}C$				0.19	0.50	μA	
	mode	$T_A = +25^{\circ}C$	T _A = +25°C			0.24	0.50			
			$T_A = +50^{\circ}C$	T _A = +50°C			0.32	0.80		
			$T_A = +70^{\circ}C$				0.48	1.20		
			T _A = +85°C				0.74	2.20		

Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. During HALT instruction execution by flash memory.
- 3. When high-speed on-chip oscillator clock is stopped.
- 4. When high-speed system clock is stopped.
- 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.
- 6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.


HS(High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz VDD = 2.4 V to 5.5 V @1 MHz to 16 MHz

LS(Low speed main) mode: VDD = 1.8 V to 5.5 V @1 MHz to 8 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except temperature condition of the TYP. value is $T_A = 25^{\circ}C$, other than STOP mode

AC Timing Test Point

(7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCK00... internal clock output, corresponding CSI00 only)

Parameter	Symbol		Conditions	HS (hig main)	•	LS (low main)		Unit
				MIN.	MAX.	MIN.	MAX.	
SCK00 cycle time	tксү1	tĸcy1≥2/fCLK		200		1150		ns
			$\begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 20 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	300		1150		ns
SCK00 high-level width	tкнı	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.8$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 10 \text{ pF}$	5 V, 2.7 V \leq Vb \leq 4.0 V, \approx 1.4 k\Omega	tксү1/2 – 50		tксү1/2– 50		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 100 \text{ pF}$	0 V, 2.3 V ≤ V _b ≤ 2.7 V, $.2.7$ kΩ	tксү1/2 – 120		tксү1/2 – 120		ns
SCK00 low-level width	tĸ∟ı	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.8 \\ C_b = 20 \ pF, \ R_b = \end{array}$	5 V, 2.7 V \leq Vb \leq 4.0 V, \approx 1.4 k\Omega	tксү1/2 – 7		tксү1/2 – 50		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ \\ C_{\text{b}} = 20 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$		tксү1/2 – 10		tксү1/2 – 50		ns
SI00 setup time (to SCK00↑) ^{Note 1}	tsıĸı	$\label{eq:sik1} \begin{array}{l} \mbox{4.0 V} \le V_{DD} \le 5.5 \mbox{ V}, \mbox{2.7 V} \le V_b \le 4.0 \mbox{ V}, \\ \\ \mbox{C}_b = 20 \mbox{ pF}, \mbox{ R}_b = 1.4 \mbox{ k}\Omega \end{array}$		58		479		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 100 \text{ F}$	0 V, 2.3 V ≤ V _b ≤ 2.7 V, \approx 2.7 kΩ	121		479		ns
SI00 hold time (from SCK00↑) ^{Note 1}	tksi1	$\label{eq:VDD} \begin{split} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 20 \ pF, \ R_b = 1.4 \ k\Omega \end{split}$		10		10		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 100 \text{ pF}$	0 V, 2.3 V ≤ V _b ≤ 2.7 V, $.2.7$ kΩ	10		10		ns
Delay time from SCK00↓ to SO00 output ^{Note 1}	tkso1	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.8$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 100 \text{ pF}$	5 V, 2.7 V \leq Vb \leq 4.0 V, \approx 1.4 k\Omega		60		60	ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 100 \text{ F}$	0 V, 2.3 V ≤ V _b ≤ 2.7 V, : 2.7 kΩ		130		130	ns
SI00 setup time (to SCK00↓) ^{Note 2}	tsıĸı	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.8$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 100 \text{ pF}$	5 V, 2.7 V \leq Vb \leq 4.0 V, \approx 1.4 k\Omega	23		110		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 100 \text{ F}$	0 V, 2.3 V \leq V _b \leq 2.7 V, : 2.7 kΩ	33		110		ns
SI00 hold time (from SCK00↓) ^{Note 2}	tksi1	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.8$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 100 \text{ F}$	$5~V,~2.7~V \leq V_b \leq 4.0~V,$: 1.4 kΩ	10		10		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 100 \text{ F}$	0 V, 2.3 V \leq V _b \leq 2.7 V, : 2.7 kΩ	10		10		ns
Delay time from SCK00↑ to SO00 output ^{Note 2}	t _{KSO1}	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.8$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 10 \text{ pF}$	5 V, 2.7 V \leq V_b \leq 4.0 V, : 1.4 k\Omega		10		10	ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ C}_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 10 \text{ pF}$	$\label{eq:Vb} \begin{array}{l} V, \ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ \mathfrak{c}. \ 2.7 \ k\Omega \end{array}$		10		10	ns

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

(Notes, Caution, and Remarks are listed on the next page.)

- **Notes 1.** When DAP00 = 0 and CKP00 = 0, or DAP00 = 1 and CKP00 = 1
 - **2.** When DAP00 = 0 and CKP00 = 1, or DAP00 = 1 and CKP00 = 0.
- Caution Select the TTL input buffer for the SI00 pin and the N-ch open drain output (V_{DD} tolerance) mode for the SO00 pin and SCK00 pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b [Ω]:Communication line (SCK00, SO00) pull-up resistance, C_b [F]: Communication line (SCK00, SO00) load capacitance, V_b [V]: Communication line voltage
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register 0 (SPS0) and the CKS00 bit of serial mode register 00 (SMR00).)

19

25

25

25

19

25

25

25

ns

ns

ns

ns

Delay time from

SOp output Note 1

SCKp↑ to

tkso1

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$ Parameter Symbol Conditions HS (high-speed LS (low-speed Unit main) Mode main) Mode MIN. MAX. MIN. MAX. SIp setup time $4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$ 44 tsik1 110 ns (to SCKp↓) Note 1 $C_{\text{b}}=30 \text{ pF}, \text{ R}_{\text{b}}=1.4 \text{ k}\Omega$ $2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ 44 110 ns $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ 1.8 V \leq V_{DD} < 3.3 V, 1.6 V \leq V_b \leq 2.0 V $^{\text{Note 2}},$ 110 110 ns $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$ Slp hold time 4.0 V \leq V_{DD} \leq 5.5 V, 2.7 V \leq V_b \leq 4.0 V, 19 tksi1 19 ns (from SCKp \downarrow) ^{Note 1} $C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$ $2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ 19 19 ns $C_b = 30 \text{ pF}, \text{ } \text{R}_b = 2.7 \text{ } \text{k}\Omega$

 $1.8 \text{ V} \le V_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le V_{\text{b}} \le 2.0 \text{ V}^{\text{Note 2}},$

 $4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$

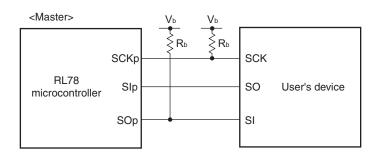
 $2.7~V \leq V_{\text{DD}} < 4.0~V,\, 2.3~V \leq V_{\text{b}} \leq 2.7~V,$

 $1.8 \text{ V} \le V_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le V_{b} \le 2.0 \text{ V}^{\text{Note 2}},$

 $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$

 $C_b = 30 \text{ pF}, R_b = 1.4 \text{ } \text{k}\Omega$

 $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$


 $C_{\text{b}}=30 \text{ pF}, \text{ } \text{R}_{\text{b}}=5.5 \text{ } \text{k}\Omega$

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock

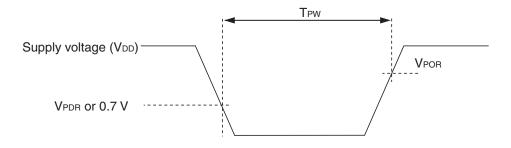
output) (3/3) (T_1 = 40 to 180 (

- **Notes 1.** When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. **2.** Use it with $V_{DD} \ge V_b$.
- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.
- **Remarks 1.** R_b [Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b [F]: Communication line (SCKp, SOp) load capacitance, V_b [V]: Communication line voltage
 - **2.** p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

CSI mode connection diagram (during communication at different potential)

2.6.2 Temperature sensor/internal reference voltage characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.50	V
Temperature coefficient	Fvtmps	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs


(T_A = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, HS (high-speed main) mode

2.6.3 POR circuit characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.47	1.51	1.55	V
	VPDR	Power supply fall time	1.46	1.50	1.54	V
Minimum pulse width Note	TPW		300			μS

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

3.4 AC Characteristics

$(T_A = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Items	Symbol		Condition	IS	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсч	Main system	HS (High-	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.04167		1	μs
instruction execution time)		clock (fMAIN) operation	speed main) mode	$2.4~V \leq V_{\text{DD}} < 2.7~V$	0.0625		1	μs
		During self	HS (High-	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.04167		1	μs
		programming	speed main) mode	$2.4~V \leq V_{\text{DD}} < 2.7~V$	0.0625		1	μS
External main system clock	fex	$2.7~V \leq V_{\text{DD}} \leq 5.4$	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$				20.0	MHz
frequency		$2.4~V \leq V_{\text{DD}} < 2.7~V$			1.0		16.0	MHz
External main system clock	texh, texl	$2.7~V \leq V_{\text{DD}} \leq 5$	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$					ns
input high-level width, low- level width		$2.4~V \leq V_{\text{DD}} < 2.4$	30			ns		
TI00 to TI07 input high-level width, low-level width	t⊓н, tт⊾				1/fмск + 10			ns
TO00 to TO07 output	f _{то}	$4.0~V \leq V_{\text{DD}} \leq 5$.5 V				12	MHz
frequency		$2.7~V \leq V_{\text{DD}} < 4.0~V$					8	MHz
		$2.4~V \leq V_{\text{DD}} < 2.7~V$					4	MHz
PCLBUZ0, or PCLBUZ1	f PCL	$4.0~V \leq V_{\text{DD}} \leq 5$.5 V				16	MHz
output frequency		$2.7~V \leq V_{\text{DD}} < 4$.0 V				8	MHz
		$2.4~V \leq V_{\text{DD}} < 2$.7 V				4	MHz
INTP0 to INTP5 input high- level width, low-level width	tinth, tintl				1			μs
KR0 to KR9 input available width	tкя				250			ns
RESET low-level width	tRSL				10			μs

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the timer clock select register 0 (TPS0) and the CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7))

Parameter	Symbol	Conditions			speed main) Iode	Unit
				MIN.	MAX.	
Transfer rate ^{Note4}		Reception			fмск/12 Note 1	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		2.0	Mbps
			$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$		fмск/12 Note 1	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} {}^{Note \ 2}$		2.0	Mbps
			$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_{b} \leq 2.0 \ V \end{array}$		fмск/12 Note 1	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		2.0	Mbps
		Transmission			Note 3	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, V_b = 2.7 \text{ V}$		2.0 Note 4	Mbps
			$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ \\ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \end{array}$		Note 5	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$		1.2 Note 6	Mbps
			$2.4 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$		Notes 2, 7	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, \text{ R}_b = 5.5 \text{ k}\Omega, \text{ V}_b = 1.6 \text{ V}$		0.43 Note 8	Mbps

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

 $(T_A = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq V_{DD} \leq 5.5 V) 16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)

3. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq V_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =

$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3)

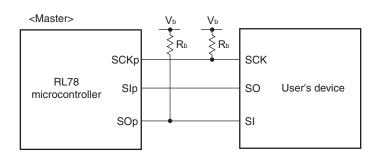
Parameter	Symbol	Conditions	HS (high-spee	ed main) Mode	Unit
			MIN.	MAX.	
SIp setup time (to SCKp↑) _{Note}	tsik1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 1.4 \ k\Omega \end{array}$	162		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$	354		ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 5.5 \ k\Omega \end{array}$	958		ns
SIp hold time (from SCKp↑) ^{Note}	tksi1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$	38		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$	38		ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	38		ns
Delay time from SCKp↓ to SOp output ^{Note}	tkso1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$		200	ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$		390	ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 5.5 \ k\Omega \end{array}$		966	ns

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

Note When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

(Cautions and Remarks are listed on the next page.)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)


Parameter	Symbol	Conditions	HS (high-speed main) Mode MIN. MAX. 88 88 220 220 38 38 38 38	Unit	
			MIN.	MAX.	
SIp setup time (to SCKp \downarrow)	tsıкı	$ \begin{array}{l} \label{eq:VDD} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{b} \leq 4.0 \ V, \\ C_{b} = 30 \ pF, \ R_{b} = 1.4 \ k\Omega \end{array} $	88		ns
		$\label{eq:VD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ C_{b} = 30 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	88		ns
		$\label{eq:VD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V, \\ C_{b} = 30 \ pF, \ R_{b} = 5.5 \ k\Omega \end{array}$	220		ns
SIp hold time (from SCKp↓) ^{№te}	tksii		38		ns
		$\label{eq:VD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ C_{b} = 30 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	38		ns
		$\label{eq:VD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V, \\ C_{\text{b}} = 30 \ p\text{F}, \ R_{\text{b}} = 5.5 \ k\Omega \end{array}$	38		ns
Delay time from SCKp↑ to SOp output ^{Note}	tkso1			50	ns
		$\label{eq:VD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ C_{b} = 30 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$		50	ns
		$\label{eq:VD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V, \\ C_{\text{b}} = 30 \ p\text{F}, \ R_{\text{b}} = 5.5 \ k\Omega \end{array}$		50	ns

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Note When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.
- **Remarks 1.** R_b [Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b [F]: Communication line (SCKp, SOp) load capacitance, V_b [V]: Communication line voltage
 - **2.** p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

CSI mode connection diagram (during communication at different potential)

Parameter	Symbol	Conditions	HS (high-sp Mo	,	Unit
			MIN.	MAX.	
SCLr clock frequency	fsc∟	$\begin{array}{l} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; V, 2.7 \; V \leq V_{b} \leq 4.0 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 2.8 \; k\Omega \end{array}$		100 ^{Note1}	kHz
		$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		100 ^{Note1}	kHz
		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$		100 ^{Note1}	kHz
Hold time when SCLr = "L"	tLOW	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{array}$	4600		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ C_{b} = 100 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	4600		ns
		$\label{eq:VD} \begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	4650		ns
Hold time when SCLr = "H"	tніgн	$\begin{array}{l} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; V, 2.7 \; V \leq V_{b} \leq 4.0 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 2.8 \; k\Omega \end{array}$	2700		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	2400		ns
		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	1830		ns
Data setup time (reception)	tsu:dat	$\begin{array}{l} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; V, 2.7 \; V \leq V_{b} \leq 4.0 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 2.8 \; k\Omega \end{array}$	1/fмск + 760 ^{Note3}		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq V_{\text{DD}} < 4.0 \; V, 2.3 \; V \leq V_{\text{b}} \leq 2.7 \; V, \\ C_{\text{b}} = 100 \; pF, \; R_{\text{b}} = 2.7 \; k\Omega \end{array}$	1/fмск + 760 ^{Note3}		ns
		$\label{eq:VD} \begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V, 1.6 \; V \leq V_b \leq 2.0 \; V, \\ \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	1/fмск + 570 ^{Note3}		ns
Data hold time (transmission)	thd:dat	$\begin{array}{l} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; V, 2.7 \; V \leq V_{b} \leq 4.0 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 2.8 \; k\Omega \end{array}$	0	1420	ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq V_{\text{DD}} < 4.0 \; V, 2.3 \; V \leq V_{\text{b}} \leq 2.7 \; V, \\ C_{\text{b}} = 100 \; pF, \; R_{\text{b}} = 2.7 \; k\Omega \end{array}$	0	1420	ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	0	1215	ns

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified l^2C mode)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

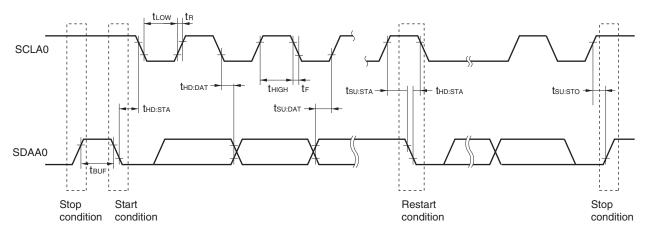
2. Set $t_{SU:DAT}$ so that it will not exceed the hold time when SCLr = "L" or SCLr = "H".

- Cautions 1. Select the TTL input buffer and the N-ch open drain output (V_{DD} tolerance) mode for the SDAr pin and the N-ch open drain output (V_{DD} tolerance) mode for the SCLr pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
 - 2. IIC01 and IIC11 cannot communicate at different potential.

(Remarks are listed on the next page.)

3.5.2 Serial interface IICA

Parameter	Symbol	Conditions	HS	HS (high-speed main) mode			Unit
			Standa	rd Mode	Fast	Mode	
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode: fclk≥ 3.5 MHz			0	400	kHz
		Normal mode: fcLK≥ 1 MHz	0	100			kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μS
Hold time ^{Note 1}	thd:sta		4.0		0.6		μS
Hold time when SCLA0 = "L"	t∟ow		4.7		1.3		μS
Hold time when SCLA0 = "H"	tніgн		4.0		0.6		μS
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission)Note 2	thd:dat		0	3.45	0	0.9	μS
Setup time of stop condition	tsu:sto		4.0		0.6		μS
Bus-free time	t BUF		4.7		1.3		μS


$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

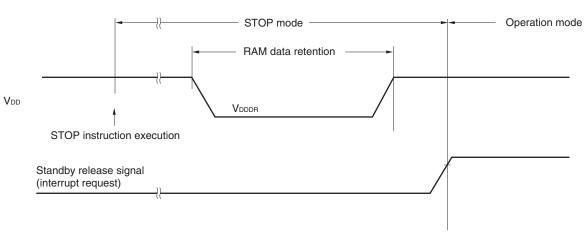
2. The maximum value (MAX.) of the during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- **Caution** Only in the 30-pin products, the values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

 $\label{eq:cb} \begin{array}{ll} \mbox{Normal mode:} & C_b = 400 \mbox{ pF}, \mbox{ Rb} = 2.7 \mbox{ } k\Omega \\ \mbox{Fast mode:} & C_b = 320 \mbox{ pF}, \mbox{ Rb} = 1.1 \mbox{ } k\Omega \end{array}$

IICA serial transfer timing

<R>


<R>

<R> 3.7 RAM Data Retention Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vdddr		1.44 ^{Note}		5.5	V

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

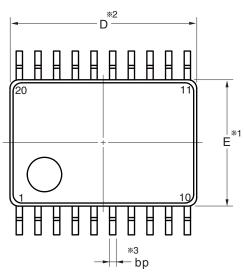
3.8 Flash Memory Programming Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclк		1		24	MHz
Code flash memory rewritable times Notes 1, 2, 3	Cerwr	Retained for 20 years $T_A = 85^{\circ}C^{Notes 4}$	1,000			Times
Data flash memory rewritable times Notes 1, 2, 3		Retained for 1 year T _A = $25^{\circ}C^{Notes 4}$		1,000,000		
		Retained for 5 years $T_A = 85^{\circ}C^{Notes 4}$	100,000			
		Retained for 20 years T _A = $85^{\circ}C^{Notes 4}$	10,000			

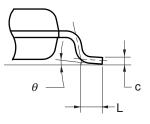
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.
- 4. This temperature is the average value at which data are retained.


4. PACKAGE DRAWINGS

4.1 20-pin products


R5F1026AASP, R5F10269ASP, R5F10268ASP, R5F10267ASP, R5F10266ASP R5F1036AASP, R5F10369ASP, R5F10368ASP, R5F10367ASP, R5F10366ASP R5F1026ADSP, R5F10269DSP, R5F10268DSP, R5F10267DSP, R5F10266DSP R5F1036ADSP, R5F10369DSP, R5F10368DSP, R5F10367DSP, R5F10366DSP R5F1026AGSP, R5F10269GSP, R5F10268GSP, R5F10267GSP, R5F10266GSP

<R>

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP20-4.4x6.5-0.65	PLSP0020JB-A	P20MA-65-NAA-1	0.1

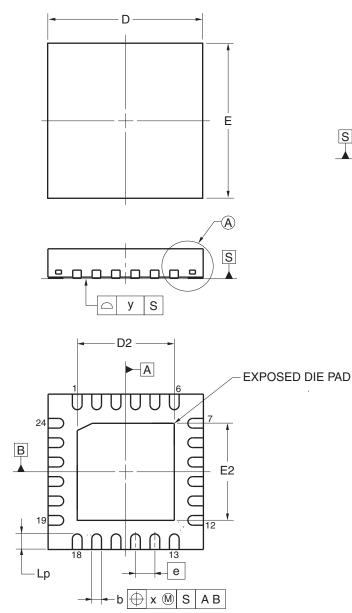
 detail of lead end

	(UNIT:mm)
ITEM	DIMENSIONS
D	6.50±0.10
E	4.40±0.10
HE	6.40±0.20
А	1.45 MAX.
A1	0.10±0.10
A2	1.15
е	0.65±0.12
bp	0.22 + 0.10 - 0.05
С	0.15 + 0.05 - 0.02
L	0.50±0.20
У	0.10
θ	0° to 10°

©2012 Renesas Electronics Corporation. All rights reserved.

1.Dimensions "%1" and "%2" do not include mold flash.

2.Dimension "X3" does not include trim offset.


4.2 24-pin products

R5F1027AANA, R5F10279ANA, R5F10278ANA, R5F10277ANA R5F1037AANA, R5F10379ANA, R5F10378ANA, R5F10377ANA R5F1027ADNA, R5F10279DNA, R5F10278DNA, R5F10277DNA R5F1037ADNA, R5F10379DNA, R5F10378DNA, R5F10377DNA R5F1027AGNA, R5F10279GNA, R5F10278GNA, R5F10277GNA

<R>

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-HWQFN24-4x4-0.50	PWQN0024KE-A	P24K8-50-CAB-1	0.04

S

(UNIT:mm) DIMENSIONS ITEM D $4.00\pm\!0.05$ Е 4.00 ± 0.05 А 0.75±0.05 0.25 + 0.05 - 0.07b 0.50 е Lp $0.40\pm\!0.10$ х 0.05 у 0.05

l r	ITEM			D2			E2	
			MIN	NOM	MAX	MIN	NOM	MAX
EXPO DIE PA VARIA		А	2.45	2.50	2.55	2.45	2.50	2.55

DETAIL OF (A) PART

©2012 Renesas Electronics Corporation. All rights reserved.

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.