

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

XFI

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I²C, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-WFQFN Exposed Pad
Supplier Device Package	24-HWQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10277ana-u5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.4.2 24-pin products

<R> • 24-pin plastic HWQFN (4 × 4 mm, 0.5 mm pitch)

Note Provided only in the R5F102 products.

Remarks 1. For pin identification, see 1.5 Pin Identification.

- 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR).
- 3. It is recommended to connect an exposed die pad to Vss.

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings (TA = 25°C)

Parameter	Symbols		Conditions	Ratings	Unit
Supply Voltage	VDD			-0.5 to + 6.5	V
REGC terminal input	VIREGC	REGC		-0.3 to +2.8	V
voltage ^{Note1}				and -0.3 to V_{DD} + 0.3 Note 2	
Input Voltage	VI1	Other than P60, P	61	-0.3 to V _{DD} + $0.3^{Note 3}$	V
	V _{I2}	P60, P61 (N-ch or	pen drain)	–0.3 to 6.5	V
Output Voltage	Vo			-0.3 to V_{DD} + $0.3^{\text{Note 3}}$	V
Analog input voltage	Vai	20-, 24-pin produc	cts: ANI0 to ANI3, ANI16 to ANI22	-0.3 to V _{DD} + 0.3	V
		30-pin products: A	NIO to ANI3, ANI16 to ANI19	and -0.3 to AVREF(+)+0.3 ^{Notes 3, 4}	
Output current, high	Іон1	Per pin	Other than P20 to P23	-40	mA
		Total of all pins	All the terminals other than P20 to P23	-170	mA
			20-, 24-pin products: P40 to P42	-70	mA
			30-pin products: P00, P01, P40, P120		
			20-, 24-pin products: P00 to P03 ^{Note 5} , P10 to P14	-100	mA
			30-pin products: P10 to P17, P30, P31, P50, P51, P147		
	Іон2	Per pin	P20 to P23	-0.5	mA
		Total of all pins		-2	mA
Output current, low	IOL1	Per pin	Other than P20 to P23	40	mA
		Total of all pins	All the terminals other than P20 to P23	170	mA
			20-, 24-pin products: P40 to P42 30-pin products: P00, P01, P40, P120	70	mA
			20-, 24-pin products: P00 to P03 ^{Note 5} , P10 to P14, P60, P61 30-pin products: P10 to P17, P30, P31, P50, P51, P60, P61, P147	100	mA
	IOL2	Per pin	P20 to P23	1	mA
		Total of all pins		5	mA
Operating ambient temperature	TA			-40 to +85	°C
Storage temperature	Tstg			-65 to +150	°C

Notes 1. 30-pin product only.

- 2. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value determines the absolute maximum rating of the REGC pin. Do not use it with voltage applied.
- **3.** Must be 6.5 V or lower.
- 4. Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.
- **5.** 24-pin products only.
- **Caution** Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** AVREF(+) : + side reference voltage of the A/D converter.
 - 3. Vss : Reference voltage

(1/2)

(2) 30-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit																			
Supply	DD1	Operating	HS (High-speed	$f_{IH}=24\ MHz^{Note3}$	Basic	$V_{DD} = 5.0 V$		1.5		mA																			
current Note 1		mode	main) mode ^{Note 4}		operation	V _{DD} = 3.0 V		1.5																					
					Normal	$V_{DD} = 5.0 V$		3.7	5.5	mA																			
					operation	V _{DD} = 3.0 V		3.7	5.5																				
				f⊪ = 16 MHz ^{№te 3}		V _{DD} = 5.0 V		2.7	4.0	mA																			
	LS (Low-sp				V _{DD} = 3.0 V		2.7	4.0																					
			LS (Low-speed final main) mode ^{Note 4}	$f_{IH} = 8 \text{ MHz}^{\text{Note 3}}$ $f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	$f_{IH} = 8 \text{ MHz}^{\text{Note 3}}$ $f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	f⊩ = 8 MHz ^{Note 3}	$f_{\text{IH}} = 8 \text{ MHz}^{\text{Note 3}}$	f⊪ = 8 MHz ^{Note 3}	f⊪ = 8 MHz ^{Note 3}	$f_{\text{IH}}=8\;MHz^{\text{Note 3}}$.S (Low-speed $f_{H} = 8 \text{ MHz}^{Note 3}$ $V_{DD} = 3.0$	$V_{DD} = 3.0 V$		1.2	1.8	mA													
	HS (High-speec main) mode ^{Note4}	main) mode ^{Note 4}	$f_{MX} = 20 \ MHz^{\text{Note 2}},$ $V_{DD} = 5.0 \ V$				V _{DD} = 2.0 V		1.2	1.8																			
		HS (High-speed				$f_{MX} = 20 \text{ MHz}^{Note 2},$	$f_{MX} = 20 \text{ MHz}^{Note 2},$	$f_{MX} = 20 \text{ MHz}^{Note 2},$		Square wave input		3.0	4.6	mA															
		main) mode ^{Note 4}			Resonator connection		3.2	4.8																					
				$f_{\text{MX}} = 20 \text{ MHz}^{\text{Note 2}},$ $V_{\text{DD}} = 3.0 \text{ V}$		Square wave input		3.0	4.6	mA																			
					$V_{DD} = 3.0 V$		Resonator connection		3.2	4.8																			
				$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		1.9	2.7	mA																			
				VDD = 5.0 V	VDD = 5.0 V	VDD = 5.0 V	VDD = 5.0 V	VDD = 5.0 V	$V_{DD} = 5.0 V$	$V_{DD} = 5.0 \text{ V}$	$V_{DD} = 5.0 V$	$V_{DD} = 5.0 V$	$V_{DD} = 5.0 \text{ V}$	$V_{DD} = 5.0 \text{ V}$	$V_{DD} = 5.0 V$	$V_{\text{DD}} = 5.0 \text{ V}$	$V_{\text{DD}} = 5.0 \text{ V}$	$V_{DD} = 5.0 \text{ V}$	$V_{DD} = 5.0 \text{ V}$	$V_{\text{DD}} = 5.0 \text{ V}$	V _{DD} = 5.0 V	VDD = 5.0 V	V _{DD} = 5.0 V		Resonator connection		1.9	2.7	
				$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		1.9	2.7	mA																			
				V _{DD} = 3.0 V	V _{DD} = 3.0 V	VDD = 3.0 V	VDD = 3.0 V	VDD = 3.0 V	VDD = 3.0 V	$V_{DD} = 3.0 \text{ V}$	$V_{DD} = 3.0 \text{ V}$	$V_{DD} = 3.0 \text{ V}$	Vdd = 3.0 V	$V_{\text{DD}} = 3.0 \text{ V}$	$V_{\text{DD}} = 3.0 \text{ V}$		Resonator connection		1.9	2.7									
	LS (Low-speed	LS (Low-speed	$f_{MX} = 8 MHz^{Note 2}$,		Square wave input		1.1	1.7	mA																				
			main) mode ^{Note 4}	VDD = 3.0 V		Resonator connection		1.1	1.7																				
		$f_{\text{MX}}=8 \text{ MHz}^{\text{Note 2}},$	$f_{MX} = 8 MHz^{Note 2},$	$f_{MX} = 8 \text{ MHz}^{Note 2},$	$f_{MX} = 8 \text{ MHz}^{Note 2},$	$f_{MX} = 8 \text{ MHz}^{Note 2},$	$f_{MX} = 8 \text{ MHz}^{Note 2},$		Square wave input		1.1	1.7	mA																
				VDD = 2.0 V		Resonator connection		1.1	1.7																				

Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. When high-speed on-chip oscillator clock is stopped.
- 3. When high-speed system clock is stopped
- 4. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode: $V_{DD} = 2.7 \text{ V}$ to 5.5 V @1 MHz to 24 MHz $V_{DD} = 2.4 \text{ V}$ to 5.5 V @1 MHz to 16 MHz

LS(Low speed main) mode: $V_{DD} = 1.8 V$ to 5.5 V @1 MHz to 8 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$.

(2) 30-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

(T _A = -40 to	+85°C, 1.8	$\mathbf{S} \mathbf{V} \leq \mathbf{V} \mathbf{D} \mathbf{D}$	≤ 5.5 V, Vss = 0	V)					(2/2)
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	DD2 Note 2	HALT	HS (High-speed	$f_{IH} = 24 \text{ MHz}^{Note 4}$	Vdd = 5.0 V		440	1280	μA
current Note 1		mode	main) mode ^{Note 6}		V _{DD} = 3.0 V		440	1280	
				$f_{IH} = 16 \text{ MHz}^{Note 4}$	$V_{DD} = 5.0 V$		400	1000	μA
					$V_{DD} = 3.0 V$		400	1000	
			LS (Low-speed	$f_{IH} = 8 \text{ MHz}^{Note 4}$	$V_{DD} = 3.0 V$		260	530	μA
			main) mode ^{Note 6}		V _{DD} = 2.0 V		260	530	
			HS (High-speed	$f_{MX} = 20 \text{ MHz}^{Note 3},$	Square wave input		280	1000	μA
	main) m	main) mode ^{Note 6}	$V_{DD} = 5.0 V$	Resonator connection		450	1170		
				$f_{MX} = 20 \text{ MHz}^{Note 3},$	Square wave input		280	1000	μA
			$V_{DD} = 3.0 V$	Resonator connection		450	1170		
			$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		190	600	μA	
				$V_{DD} = 5.0 V$ $f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$ $V_{DD} = 3.0 \text{ V}$	Resonator connection		260	670	
					Square wave input		190	600	μA
					Resonator connection		260	670	
			LS (Low-speed	$f_{MX} = 8 \text{ MHz}^{Note 3}$,	Square wave input		95	330	μA
			main) mode ^{Note 6}	$V_{DD} = 3.0 V$	Resonator connection		145	380	
				$f_{MX} = 8 MHz^{Note 3}$	Square wave input		95	330	μA
				$V_{DD} = 2.0 V$	Resonator connection		145	380	
		STOP	$T_A = -40^{\circ}C$				0.18	0.50	μA
		mode	T _A = +25°C				0.23	0.50	
			T _A = +50°C				0.30	1.10	
			T _A = +70°C				0.46	1.90	
			T _A = +85°C				0.75	3.30	

Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. During HALT instruction execution by flash memory.
- 3. When high-speed on-chip oscillator clock is stopped.
- 4. When high-speed system clock is stopped.
- 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.
- 6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS (High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz

VDD = 2.4 V to 5.5 V @1 MHz to 16 MHz

LS (Low speed main) mode: VDD = 1.8 V to 5.5 V @1 MHz to 8 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except STOP mode, temperature condition of the TYP. value is TA = 25°C.

2.4 AC Characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Items	Symbol		Condition	s	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсч	Main system	HS (High-	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.04167		1	μS
instruction execution time)		clock (fMAIN) operation	speed main) mode	$2.4~V \leq V_{\text{DD}} < 2.7~V$	0.0625		1	μS
			LS (Low- speed main) mode	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	0.125		1	μS
		During self	HS (High-	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.04167		1	μs
		programming	speed main) mode	$2.4~V \leq V_{\text{DD}} < 2.7~V$	0.0625		1	μS
			LS (Low- speed main) mode	$1.8~V \le V_{\text{DD}} \le 5.5~V$	0.125		1	μS
External main system clock	fex	$2.7~V \leq V_{\text{DD}} \leq 5$.5 V		1.0		20.0	MHz
frequency		$2.4~V \leq V_{\text{DD}} < 2$.7 V		1.0		16.0	MHz
		$1.8~V \leq V_{\text{DD}} < 2$.4 V		1.0		8.0	MHz
External main system clock	texн, texL	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			24			ns
input high-level width, low-		$2.4~V \leq V_{DD} < 2.7~V$			30			ns
		$1.8~V \leq V_{\text{DD}} < 2$	4 V		60			ns
TI00 to TI07 input high-level width, low-level width	tn∺, tn∟				1/fмск + 10			ns
TO00 to TO07 output	fто	$4.0~V \leq V_{\text{DD}} \leq 5$.5 V				12	MHz
frequency		$2.7~V \leq V_{\text{DD}} < 4$	0 V				8	MHz
		$1.8~V \leq V_{\text{DD}} < 2$.7 V				4	MHz
PCLBUZ0, or PCLBUZ1	f PCL	$4.0~V \leq V_{\text{DD}} \leq 5$.5 V				16	MHz
output frequency		$2.7~V \leq V_{\text{DD}} < 4$.0 V				8	MHz
		$1.8~V \leq V_{\text{DD}} < 2$.7 V				4	MHz
INTP0 to INTP5 input high- level width, low-level width	tinth, tintl				1			μS
KR0 to KR9 input available width	tкв				250			ns
RESET low-level width	t RSL				10			μs

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the timer clock select register 0 (TPS0) and the CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7))

Parameter	Symbol	C	conditions	ditions HS (high-speed main) Mode		LS (low-spe Moe	Unit	
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkCY1	tксү1 ≥ 4/fclк	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	167		500		ns
			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	250		500		ns
			$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	_		500		ns
SCKp high-/low-level width	tкнı,	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$		tксү1/2–12		tксү1/2–50		ns
	tĸ∟1	$\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 5.5 \ V \\ \\ 2.4 \ V \leq V_{DD} \leq 5.5 \ V \end{array}$		tксү1/2-18		tксү1/2–50		ns
				tксү1/2-38		tксү1/2–50		ns
		$1.8~V \leq V_{\text{DD}} \leq$	5.5 V	_		tксү1/2-50		ns
SIp setup time (to SCKp↑)	tsik1	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V	44		110		ns
Note 1		$2.7~V \leq V_{\text{DD}} \leq$	5.5 V	44		110		ns
		$2.4~V \leq V_{\text{DD}} \leq$	5.5 V	75		110		ns
		$1.8~V \leq V_{\text{DD}} \leq$	5.5 V	-		110		ns
SIp hold time (from SCKp↑) ^{№te 2}	tksi1			19		19		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 30 pF ^{Note4}			25		25	ns

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (T_A = -40 to +85°C, 1.8 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.
- **Caution** Select the normal input buffer for the SIp pin and the normal output mode for the SOp and SCKp pins by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).
- **Remarks 1.** p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products)
 - 2. fMCK: Serial array unit operation clock frequency
 - (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products.))

Parameter	Symbol	Cond	litions	HS (higł main)	n-speed Mode	LS (low-sp Mo	beed main) bde	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note4	t ксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	20 MHz < fмск	8/f мск		-		ns
			fмск ≤ 20 MHz	6/fмск		6/fмск		ns
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	16 MHz < fмск	8/fмск		-		ns
			fмск \leq 16 MHz	6/fмск		6/fмск		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		6/fмск		6/fмск		ns
				and 500		and 500		
		$1.8~V \leq V_{\text{DD}} \leq 5.5~V$		-		6/fмск		ns
						and 750		
SCKp high-/low-level	tкн2,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2-7		tксү2/2-7		ns
width	tĸ∟2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2-8		tксү2/2-8		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2–18		tксү2/2-18		ns
		$1.8~V \leq V_{\text{DD}} \leq 5.5~V$		-		tксү2/2-18		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsik2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск + 20		1/fмск + 30		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск + 30		1/fмск + 30		ns
		$1.8~V \leq V_{\text{DD}} \leq 5.5~V$		_		1/fмск + 30		ns
SIp hold time (from SCKp↑) ^{№te 2}	tksi2			1/f _{мск} + 31		1/fмск + 31		ns
Delay time from SCKp↓ to	tkso2	C = 30 pF ^{Note4}	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		2/fмск + 44		2/fмск + 110	ns
SOp output Note 3			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		2/fмск + 75		2/fмск + 110	ns
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		_		2/fмск + 110	ns

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) ($T_A = -40$ to $+85^{\circ}$ C, 1.8 V $\leq V_{DD} \leq 5.5$ V, Vss = 0 V)

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- **Caution** Select the normal input buffer for the SIp and SCKp pins and the normal output mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- **Remarks 1.** R_b[Ω]: Communication line (TxDq) pull-up resistance, C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)
 - fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 - m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))
 - **4.** UART0 of the 20- and 24-pin products supports communication at different potential only when the peripheral I/O redirection function is not used.

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3)

Parameter	Symbol		Conditions HS (h		HS (high-speed main) Mode		LS (low-speed main) Mode	
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү1	$t_{KCY1} \geq 4/f_{CLK}$	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	300		1150		ns
			$2.7~V \leq V_b \leq 4.0~V,$					
			C_b = 30 pF, R_b = 1.4 k Ω					
			$2.7~V \leq V_{\text{DD}} < 4.0~V,$	500		1150		ns
			$2.3~V \leq V_b \leq 2.7~V,$					
			C_b = 30 pF, R_b = 2.7 k Ω					
			$1.8~V \leq V_{\text{DD}} < 3.3~V,$	1150		1150		ns
			$1.6~V \leq V_{b} \leq 2.0~V^{\text{ Note}},$					
			$C_b = 30 \text{ pF}, \text{ R}_b = 5.5 \text{ k}\Omega$					
SCKp high-level width	tкнı	$4.0~V \leq V_{\text{DD}} \leq$	$0.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$			tксү1/2-75		ns
		$C_b = 30 \text{ pF}, \text{ F}$	lb = 1.4 kΩ					
		$2.7 \text{ V} \leq \text{V}_{\text{DD}}$ <	$4.0~V,~2.3~V \le V_b \le 2.7~V,~$	tксү1/2 –170		tксү1/2–170		ns
		$C_b = 30 \text{ pF}, \text{ R}$	$h_b = 2.7 \text{ k}\Omega$					
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} <$	3.3 V, 1.6 V \leq V $_{b}$ \leq 2.0 V $^{\text{Note}},$	tксү1/2 –458		tксү1/2-458		ns
		$C_b = 30 \text{ pF}, \text{ F}$	$h_b = 5.5 \text{ k}\Omega$					
SCKp low-level width	tĸ∟1	$4.0~V \leq V_{\text{DD}} \leq$	$5.5~V,~2.7~V \le V_b \le 4.0~V,$	tксү1/2-12		tксү1/2–50		ns
		$C_{b} = 30 \text{ pF}, \text{ R}$	lb = 1.4 kΩ					
		$2.7 \text{ V} \leq \text{V}_{\text{DD}}$ <	$4.0~V,~2.3~V \le V_b \le 2.7~V,~$	tксү1/2 –18		tксү1/2–50		ns
		C _b = 30 pF, R	$h_b = 2.7 \text{ k}\Omega$					
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} <$	$3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}^{\text{Note}},$	tксү1/2 –50		tксү1/2–50		ns
		C _b = 30 pF, R	$h_b = 5.5 \text{ k}\Omega$					

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

 $\label{eq:Note} \textbf{Note} \quad \textbf{Use it with } V_{\text{DD}} \geq V_{\text{b}}.$

- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.
- **Remarks 1.** R_b [Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b [F]: Communication line (SCKp, SOp) load capacitance, V_b [V]: Communication line voltage
 - **2.** p: CSI number (p = 00, 20)

2.9 Dedicated Flash Memory Programmer Communication (UART)

		(, ()) = (())				
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

2.10 Timing of Entry to Flash Memory Programming Modes

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset are released before external reset release			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset are released before external reset release	10			μS
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tнd	POR and LVD reset are released before external reset release	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - t_{SU} : Time to release the external reset after the TOOL0 pin is set to the low level
 - the: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

							(=,=)
Parameter	Symbol	Conditions	T	MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	Iol1	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42				8.5 Note 2	mA
		30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147					
		Per pin for P60, P61				15.0 Note 2	mA
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			25.5	mA
		Total of P40 to P42	$2.7~V \leq V_{\text{DD}} < 4.0~V$			9.0	mA
		30-pin products: Total of P00, P01, P40, P120 (When duty $\leq 70\%^{\text{Note 3}}$)	$2.4~V \leq V_{\text{DD}} < 2.7~V$			1.8	mA
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			40.0	mA
		Total of P00 to P03 ^{Note 4} ,	$2.7~V \leq V_{\text{DD}} < 4.0~V$			27.0	mA
		30-pin products: Total of P10 to P17, P30, P31, P50, P51, P60, P61, P147 (When duty \leq 70% ^{Note 3})	$2.4~V \leq V_{\text{DD}} < 2.7~V$			5.4	mA
		Total of all pins (When duty $\leq 70\%^{Note 3}$)				65.5	mA
	IOL2	Per pin for P20 to P23				0.4	mA
		Total of all pins				1.6	mA

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

(2/4)

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.

2. However, do not exceed the total current value.

3. The output current value under conditions where the duty factor \leq 70%.

If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).

• Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and lol = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \cong 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

- **4.** 24-pin products only.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

3.4 AC Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Items	Symbol		Condition	S	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсү	Main system	HS (High-	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.04167		1	μS
instruction execution time)		clock (fMAIN) operation	speed main) mode	$2.4~V \leq V_{\text{DD}} < 2.7~V$	0.0625		1	μS
		During self	HS (High-	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.04167		1	μS
		programming	speed main) mode	$2.4~V \leq V_{\text{DD}} < 2.7~V$	0.0625		1	μS
External main system clock	fex	$2.7~V \leq V_{\text{DD}} \leq 5.4$	5 V		1.0		20.0	MHz
frequency		$2.4~V \leq V_{\text{DD}} < 2$.7 V		1.0		16.0	MHz
External main system clock	texн, texL	$2.7~V \leq V_{\text{DD}} \leq 5$.5 V		24			ns
input high-level width, low- level width		$2.4~V \leq V_{\text{DD}} < 2.4$	$.4 V \leq V_{DD} < 2.7 V$					ns
TI00 to TI07 input high-level width, low-level width	t⊓∺, t⊤∟				1/fмск + 10			ns
TO00 to TO07 output	fто	$4.0~V \leq V_{\text{DD}} \leq 5$.5 V				12	MHz
frequency		$2.7~V \leq V_{\text{DD}} < 4.$			8	MHz		
		$2.4~V \leq V_{\text{DD}} < 2$.7 V				4	MHz
PCLBUZ0, or PCLBUZ1	f PCL	$4.0~V \leq V_{\text{DD}} \leq 5$.5 V				16	MHz
output frequency		$2.7~V \leq V_{\text{DD}} < 4$.0 V				8	MHz
		$2.4~V \leq V_{\text{DD}} < 2$.7 V				4	MHz
INTP0 to INTP5 input high- level width, low-level width	tinth, tintl				1			μS
KR0 to KR9 input available width	t KR				250			ns
RESET low-level width	trsL				10			μS

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the timer clock select register 0 (TPS0) and the CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7))

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time	tксүı	$t_{KCY1} \geq 4/f_{CLK}$	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	334		ns
			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	500		ns
SCKp high-/low-level width	tкнı,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		tксү1/2–24		ns
	tĸ∟1	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		tксү1/2–36		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		tксү1/2-76		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsik1	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		66		ns
		$2.7~V \leq V_{\text{DD}} \leq 5.5$	V	66		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		113		ns
SIp hold time (from SCKp↑) Note 2	tksi1			38		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	$C = 30 \text{ pF}^{Note4}$			50	ns

(2)	During communication at same potential (CSI mode) (master mode, SCKp internal clock outpu	t)
(T/	$A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$	

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.
- **Caution** Select the normal input buffer for the SIp pin and the normal output mode for the SOp and SCKp pins by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).
- **Remarks 1.** p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3)
 - 2. fmck: Serial array unit operation clock frequency
 - (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3))

Parameter	Symbol		Conditions		HS (high-s Mc	peed main) ode	Unit
					MIN.	MAX.	
Transfer rate Note4		Reception	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5 \\ 2.7 \ V \leq V_b \leq 4.0 \end{array}$.5 V,) V		f _{MCK} /12 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		2.0	Mbps
			$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4 \\ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \end{array}$.0 V, 7 V		fмск/12 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		2.0	Mbps
			$2.4 \text{ V} \leq V_{DD} < 3$ $1.6 \text{ V} \leq V_b \leq 2.0$.3 V,) V		fмск/12 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		2.0	Mbps
		Transmission	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5 \\ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \end{array}$.5 V,) V		Note 3	bps
				Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k} \Omega, V_b = 2.7 \text{ V}$		2.0 Note 4	Mbps
			$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \end{array}$			Note 5	bps
				Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, \text{R}_b = 2.7 \text{k} \Omega, \text{V}_b = 2.3 \text{ V}$		1.2 Note 6	Mbps
			$2.4 V \le V_{DD} < 3$ $1.6 V \le V_b \le 2.0$.3 V,) V		Notes 2, 7	bps
				Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$		0.43 Note 8	Mbps

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

 $(T_A = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq V_{DD} \leq 5.5 V) 16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)

3. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq V_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =

$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3)

Parameter	Symbol	Conditions		HS (high-spee	HS (high-speed main) Mode	
				MIN.	MAX.	
SCKp cycle time	tkcy1	tксү1 ≥ 4/fclк	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	600		ns
			$2.7~V \leq V_b \leq 4.0~V,$			
			$C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$			
			$2.7~V \leq V_{DD} < 4.0~V,$	1000		ns
			$2.3~V \leq V_{b} \leq 2.7~V,$			
			C_b = 30 pF, R_b = 2.7 k Ω			
			$2.4~V \leq V_{\text{DD}} < 3.3~V,$	2300		ns
			$1.6~V \leq V_b \leq 2.0~V,$			
			C_b = 30 pF, R_b = 5.5 k Ω			
SCKp high-level width	tкнı	$4.0 V \le V_{DD} \le 5$	5.5 V, 2.7 V \leq V _b \leq 4.0 V,	tксү1/2 –150		ns
		$C_b = 30 \text{ pF}, R_b$	= 1.4 kΩ			
		$2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V,$		tксү1/2 –340		ns
		$C_b=30 \text{ pF}, \text{R}_b=2.7 \text{k}\Omega$				
		$2.4 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V,$		tксү1/2-916		ns
		$C_b = 30 \text{ pF}, \text{ R}_b$	= 5.5 kΩ			
SCKp low-level width	tĸ∟1	$4.0 V \le V_{DD} \le 5$	5.5 V, 2.7 V \leq V _b \leq 4.0 V,	tксү1/2 –24		ns
		$\begin{split} C_b &= 30 \text{ pF}, \text{R}_b = 1.4 \text{ k} \Omega \\ \\ 2.7 \text{ V} &\leq \text{V}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \leq \text{V}_b \leq 2.7 \text{ V}, \\ \\ C_b &= 30 \text{ pF}, \text{R}_b = 2.7 \text{ k} \Omega \\ \\ \\ 2.4 \text{ V} &\leq \text{V}_{\text{DD}} < 3.3 \text{ V}, 1.6 \text{ V} \leq \text{V}_b \leq 2.0 \text{ V}, \\ \\ \\ C_b &= 30 \text{ pF}, \text{R}_b = 5.5 \text{ k} \Omega \end{split}$				
				tксү1/2 –36		ns
				tксү1/2-100		ns

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.
- **Remarks 1.** R_b [Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b [F]: Communication line (SCKp, SOp) load capacitance, V_b [V]: Communication line voltage
 - **2.** p: CSI number (p = 00, 20)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
 - 3. When AV_{REFP} < V_{DD}, the MAX. values are as follows. Overall error: Add ±1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.05%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.
 - 4. Refer to 29.6.2 Temperature sensor/internal reference voltage characteristics.
- (2) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI22

(TA = -40 to +105°C, 2.4 V \leq AV _{REFP} \leq V _{DD} \leq 5.5 V, V _{SS} = 0 V, Reference voltation	age (+) = AVREFP, Reference voltage (-) =
AVREFM = 0 V)	

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error Note 1	AINL	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}			1.2	±5.0	LSB
Conversion time	tCONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μs
		Target ANI pin: ANI16 to ANI22	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μs
			$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μS
Zero-scale error Notes 1, 2	EZS	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±0.35	%FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±0.35	%FSR
Integral linearity error Note 1	ILE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±3.5	LSB
Differential linearity error ^{Note 1}	DLE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±2.0	LSB
Analog input voltage	VAIN	ANI16 to ANI22		0		AVREFP and VDD	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. When $AV_{REFP} \leq V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 4.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.20\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ± 2.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

3.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode (T_A = -40 to +105°C, V_{PDR} \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection supply voltage	VLVD0	Power supply rise time	3.90	4.06	4.22	V
		Power supply fall time	3.83	3.98	4.13	V
	VLVD1	Power supply rise time	3.60	3.75	3.90	V
		Power supply fall time	3.53	3.67	3.81	V
	VLVD2	Power supply rise time	3.01	3.13	3.25	V
		Power supply fall time	2.94	3.06	3.18	V
	VLVD3	Power supply rise time	2.90	3.02	3.14	V
		Power supply fall time	2.85	2.96	3.07	V
	VLVD4	Power supply rise time	2.81	2.92	3.03	V
		Power supply fall time	2.75	2.86	2.97	V
	VLVD5	Power supply rise time	2.70	2.81	2.92	V
		Power supply fall time	2.64	2.75	2.86	V
	VLVD6	Power supply rise time	2.61	2.71	2.81	V
		Power supply fall time	2.55	2.65	2.75	V
	VLVD7	Power supply rise time	2.51	2.61	2.71	V
		Power supply fall time	2.45	2.55	2.65	V
Minimum pulse width	t∟w		300			μS
Detection delay time					300	μS

Rising reset release voltage

Falling interrupt voltage

MAX.

2.86

3.03

2.97

3.14

3.07

4.22

4.13

3.90

3.83

4.06

3.98

Unit

v

V

V

v

٧

V

٧

LVD detection voltage of interrupt & reset mode

(T _A = -40 to +10	5°C, Vpd	$R \leq V D D$	$0 \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V}$				
Parameter	Symbol		Cond	itions	MIN.	TYP.	
Interrupt and reset	VLVDD0	VPOC2, VPOC1, VPOC1 = 0, 1, 1, falling reset voltage				2.75	
mode	VLVDD1		LVIS1, LVIS0 = 1, 0	Rising reset release voltage	2.81	2.92	
				Falling interrupt voltage	2.75	2.86	
	VLVDD2		LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.90	3.02	
				Falling interrupt voltage	2.85	2.96	

LVIS1, LVIS0 = 0, 0

3.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

VLVDD3

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 29.4 AC Characteristics.

4. PACKAGE DRAWINGS

4.1 20-pin products

R5F1026AASP, R5F10269ASP, R5F10268ASP, R5F10267ASP, R5F10266ASP R5F1036AASP, R5F10369ASP, R5F10368ASP, R5F10367ASP, R5F10366ASP R5F1026ADSP, R5F10269DSP, R5F10268DSP, R5F10267DSP, R5F10266DSP R5F1036ADSP, R5F10369DSP, R5F10368DSP, R5F10367DSP, R5F10366DSP R5F1026AGSP, R5F10269GSP, R5F10268GSP, R5F10267GSP, R5F10266GSP

<R>

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP20-4.4x6.5-0.65	PLSP0020JB-A	P20MA-65-NAA-1	0.1

 detail of lead end

	(UNIT:mm)
ITEM	DIMENSIONS
D	6.50±0.10
Е	4.40±0.10
HE	6.40±0.20
А	1.45 MAX.
A1	0.10±0.10
A2	1.15
е	0.65±0.12
bp	0.22 + 0.10 - 0.05
С	0.15 + 0.05 - 0.02
L	0.50±0.20
У	0.10
θ	0° to 10°

©2012 Renesas Electronics Corporation. All rights reserved.

1.Dimensions "※1" and "※2" do not include mold flash.

2.Dimension "%3" does not include trim offset.

