

Welcome to E-XFL.COM

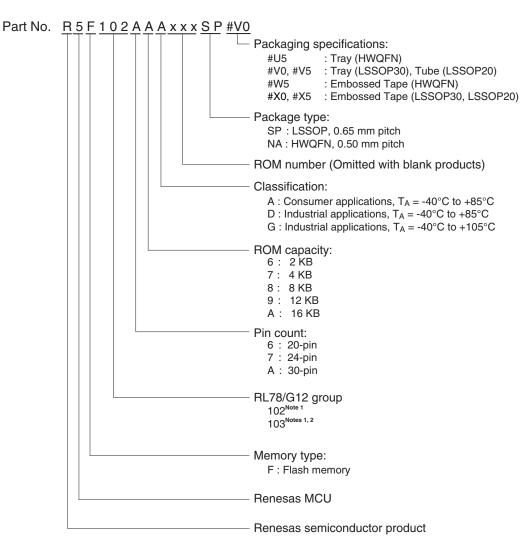
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

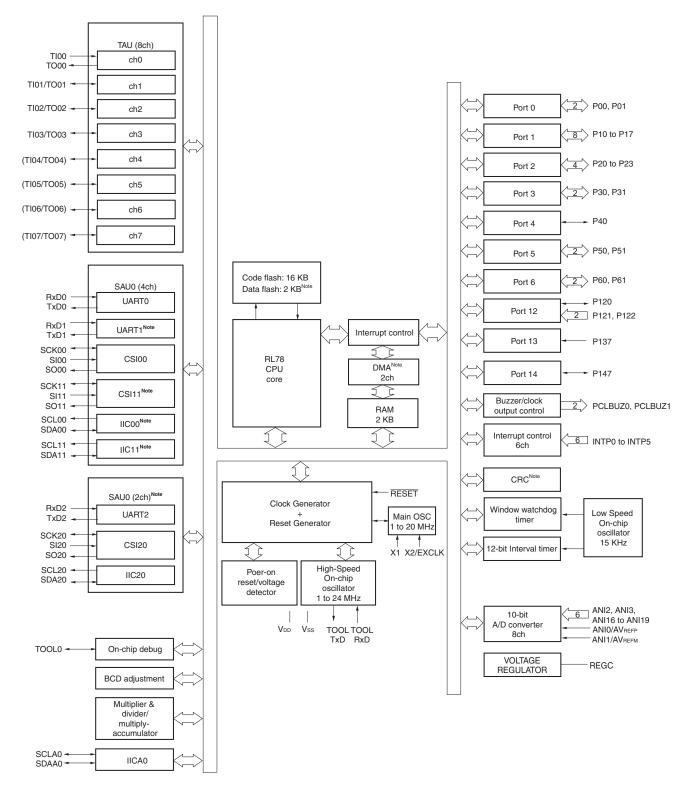

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-WFQFN Exposed Pad
Supplier Device Package	24-HWQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10278ana-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

<R>

1.2 List of Part Numbers


Figure 1-1. Part Number, Memory Size, and Package of RL78/G12

Notes 1. For details about the differences between the R5F102 products and the R5F103 products of RL78/G12, see 1.1 Differences between the R5F102 Products and the R5F103 Products.

2. Products only for "A: Consumer applications ($T_A = -40$ to $+85^{\circ}C$)" and "D: Industrial applications ($T_A = -40$ to $+85^{\circ}C$)"

1.6.3 30-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR).

1.7 Outline of Functions

This outline describes the function at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

	Item	20-pin		24-pin		30-pin			
		R5F1026x	R5F1036x	R5F1027x	R5F1037x	R5F102Ax	R5F103Ax		
Code flas	h memory	2 to 16	KB ^{Note 1}		4 to 1	16 KB	KB 2 KB – 512 B to 2KB (EXCLK)		
Data flash	n memory	2 KB	-	2 KB	-	2 KB	-		
RAM		256 B to	o 1.5 KB	512 B to	o 1.5 KB	512 B	to 2KB		
Address s	space			11	MB				
Main system clock	High-speed system clock	HS (High-spee HS (High-spee	ed main) mode : ed main) mode :	n, external main s 1 to 20 MHz (Vc 1 to 16 MHz (Vc 1 to 8 MHz (Vc	D = 2.7 to 5.5 V D = 2.4 to 5.5 V	,			
	High-speed on-chip oscillator clock	HS (High-spee	(High-speed main) mode : 1 to 24 MHz ($V_{DD} = 2.7$ to 5.5 V), (High-speed main) mode : 1 to 16 MHz ($V_{DD} = 2.4$ to 5.5 V), (Low-speed main) mode : 1 to 8 MHz ($V_{DD} = 1.8$ to 5.5 V)						
Low-spee	Low-speed on-chip oscillator clock 15 kHz (TYP)								
General-p	ourpose register	(8-bit register × 8) × 4 banks							
Minimum	instruction execution time	0.04167 μ s (High-speed on-chip oscillator clock: f _{IH} = 24 MHz operation)							
		0.05 μ s (High-speed system clock: f _{MX} = 20 MHz operation)							
Instruction	n set	Data transfer (8/16 bits)							
		Adder and subtractor/logical operation (8/16 bits)							
		 Multiplication 	n (8 bits × 8 bits))					
	1	Rotate, barre	el shift, and bit n	nanipulation (set	, reset, test, and	Boolean operat	ion), etc.		
I/O port	Total	1	8	2	2	2	6		
	CMOS I/O	(N-ch C	2 D.D. I/O nd voltage]: 4)	(N-ch C	6 D.D. I/O id voltage]: 5)		1 D.D. I/O d voltage]: 9)		
	CMOS input		4		4	;	3		
	N-ch open-drain I/O (6 V tolerance)			:	2				
Timer	16-bit timer		4 cha	annels		8 cha	nnels		
	Watchdog timer			1 cha	annel				
	12-bit Interval timer			1 cha	annel				
	Timer output	4 channels (PWM outputs: 3 ^{№te 3})			8 cha (PWM outpu				

Notes 1. The self-programming function cannot be used in the R5F10266 and R5F10366.

2. The maximum number of channels when PIOR0 is set to 1.

3. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves). (See **6.9.3 Operation as multiple PWM output function**.)

Caution When the flash memory is rewritten via a user program, the code flash area and RAM area are used because each library is used. When using the library, refer to RL78 Family Flash Self Programming Library Type01 User's Manual and RL78 Family Data Flash Library Type04 User's Manual.

Item		20-	pin	24-	pin	30-p	oin		
		R5F1026x	R5F1036x	R5F1027x	R5F1037x	R5F102Ax	R5F103Ax		
Clock output/buzzer ou	utput			1		2			
		2.44 kHz to 10	MHz: (Peripher	al hardware cloc	:k: fмаіn = 20 MH	z operation)			
8/10-bit resolution A/D	converter		11 ch	annels		8 char	nnels		
Serial interface		[R5F1026x (20	[R5F1026x (20-pin), R5F1027x (24-pin)]						
		• CSI: 2 chann	els/Simplified I ²	C: 2 channels/U	ART: 1 channel				
		[R5F102Ax (30)-pin)]						
		・CSI: 1 chann	el/Simplified I ² C	: 1 channel/UAF	RT: 1 channel				
		・CSI: 1 chann	el/Simplified I ² C	: 1 channel/UAF	RT: 1 channel				
		・CSI: 1 chann	el/Simplified I ² C	: 1 channel/UAF	RT: 1 channel				
		[R5F1036x (20	-pin), R5F1037:	k (24-pin)]					
		CSI: 1 chann	el/Simplified I ² C	: 0 channel/UAF	RT: 1 channel				
		[R5F103Ax (30-pin)]							
		CSI: 1 channel/Simplified I ² C: 0 channel/UART: 1 channel							
	I ² C bus		1 channel						
Multiplier and divider/m	nultiply-	• 16 bits × 16 bits = 32 bits (unsigned or signed)							
accumulator		• 32 bits × 32 bits = 32 bits (unsigned)							
		• 16 bits × 16 b	its + 32 bits = 3	2 bits (unsigned	or signed)	T			
DMA controller	1	2 channels		2 channels		2 channels			
Vectored interrupt	Internal	18	16	18	16	26	19		
sources	External			5		6			
Key interrupt		6		1	0	_	-		
Reset		Reset by RES							
			by watchdog til by power-on-re						
			by voltage dete						
				ction execution '	Note				
		Internal reset by RAM parity error							
		 Internal reset 	by illegal-mem	ory access					
Power-on-reset circuit		Power-on-reset: 1.51 V (TYP) Power-down-reset: 1.50 V (TYP)							
Voltage detector		Rising edge :	1.88 to 4.06 V	(12 stages)					
		• Falling edge	: 1.84 to 3.98 V	(12 stages)					
On-chip debug function	n	Provided							
Power supply voltage		V _{DD} = 1.8 to 5.5	5 V						
Operating ambient terr	perature	$T_A = -40$ to +85 (G: Industrial a		er applications,	D: Industrial app	lications), $T_A = -4$	40 to +105°C		

 $\label{eq:Note} \textbf{Note} \quad \text{The illegal instruction is generated when instruction code FFH is executed.}$

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings (TA = 25°C)

Parameter	Symbols		Conditions	Ratings	Unit
Supply Voltage	VDD			-0.5 to + 6.5	V
REGC terminal input voltage ^{Note1}	VIREGC	REGC		-0.3 to +2.8 and -0.3 to V _{DD} + 0.3 _{Note 2}	V
Input Voltage	VI1	Other than P60, F	261	-0.3 to V _{DD} + $0.3^{Note 3}$	V
	VI2	P60, P61 (N-ch o	pen drain)	-0.3 to 6.5	V
Output Voltage	Vo			-0.3 to V _{DD} + 0.3 ^{Note 3}	V
Analog input voltage	VAI	20-, 24-pin produ	cts: ANI0 to ANI3, ANI16 to ANI22	-0.3 to V _{DD} + 0.3	V
		30-pin products: A	ANIO to ANI3, ANI16 to ANI19	and –0.3 to AVREF(+)+0.3 ^{Notes 3, 4}	
Output current, high	Іон1	Per pin	Other than P20 to P23	-40	mA
		Total of all pins	All the terminals other than P20 to P23	-170	mA
			20-, 24-pin products: P40 to P42	-70	mA
			30-pin products: P00, P01, P40, P120		
			20-, 24-pin products: P00 to P03 ^{Note 5} , P10 to P14 30-pin products: P10 to P17, P30, P31, P50, P51, P147	-100	mA
	Іон2	Per pin	P20 to P23	-0.5	mA
		Total of all pins		-2	mA
Output current, low	IOL1	Per pin	Other than P20 to P23	40	mA
		Total of all pins	All the terminals other than P20 to P23	170	mA
			20-, 24-pin products: P40 to P42 30-pin products: P00, P01, P40, P120	70	mA
			20-, 24-pin products: P00 to P03 ^{Note 5} , P10 to P14, P60, P61 30-pin products: P10 to P17, P30, P31, P50, P51, P60, P61, P147	100	mA
	IOL2	Per pin	P20 to P23	1	mA
		Total of all pins	7	5	mA
Operating ambient temperature	TA			-40 to +85	°C
Storage temperature	Tstg			-65 to +150	°C

Notes 1. 30-pin product only.

- 2. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value determines the absolute maximum rating of the REGC pin. Do not use it with voltage applied.
- **3.** Must be 6.5 V or lower.
- 4. Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.
- **5.** 24-pin products only.
- **Caution** Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** AVREF(+) : + side reference voltage of the A/D converter.
 - 3. Vss : Reference voltage

TA = -40 10 + 00 C,	1.0 V \(\sigma\)	/DD ≤ 5.5 V, Vss = 0 V)			1	1	(2/4
Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Dutput current, low ^{Note 1}	lol1	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42 30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147				20.0 Note 2	mA
		Per pin for P60, P61				15.0 Note 2	mA
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			60.0	mA
		Total of P40 to P42	$2.7~V \leq V_{\text{DD}} < 4.0~V$			9.0	mA
		30-pin products: Total of P00, P01, P40, P120 (When duty $\leq 70\%^{\text{Note 3}}$)	$1.8~V \leq V_{\text{DD}} < 2.7~V$			1.8	mA
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			80.0	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			27.0	mA
		P10 to P14, P60, P61 30-pin products: Total of P10 to P17, P30, P31, P50, P51, P60, P61, P147 (When duty ≤ 70% ^{Note 3})	$1.8~V \leq V_{\text{DD}} < 2.7~V$			5.4	mA
		Total of all pins (When duty $\leq 70\%^{Note 3}$)				140	mA
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			0.4	mA		
		Total of all pins				1.6	mA

(0.14)

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.

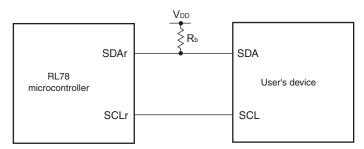
2. However, do not exceed the total current value.

3. The output current value under conditions where the duty factor \leq 70%.

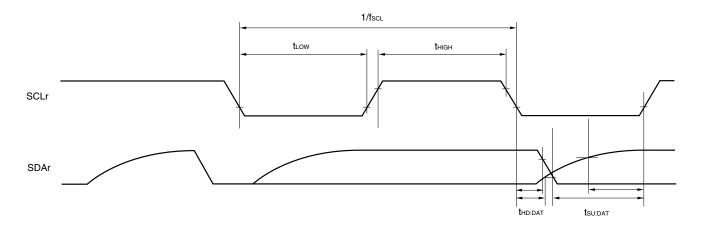
If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).

• Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$

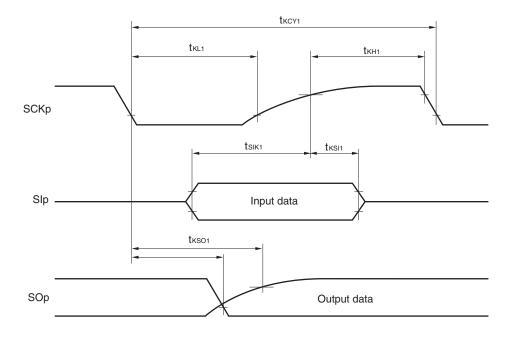
<Example> Where n = 80% and $I_{OL} = 10.0 \text{ mA}$


Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \cong 8.7$ mA

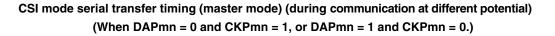
However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

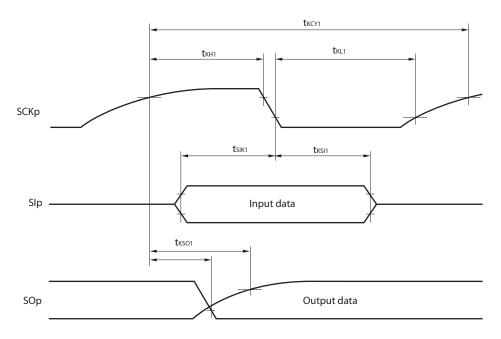

- 4. 24-pin products only.
- Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

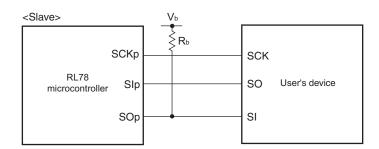
Simplified I²C mode connection diagram (during communication at same potential)



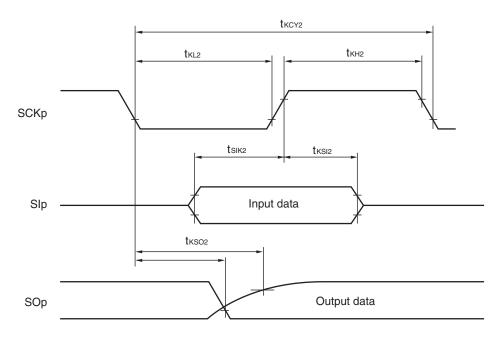
Simplified I²C mode serial transfer timing (during communication at same potential)




- 2. r: IIC number (r = 00, 01, 11, 20), h: = POM number (h = 0, 1, 4, 5)
- fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (0, 1, 3))
- **4.** Simplified I²C mode is supported only by the R5F102 products.

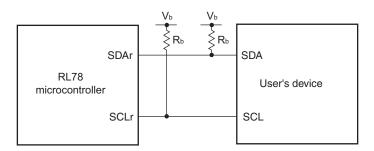

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1)

CSI mode connection diagram (during communication at different potential)

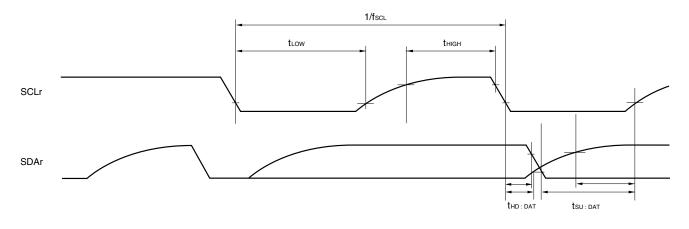


Remarks 1. R_b [Ω]: Communication line (SOp) pull-up resistance, C_b [F]: Communication line (SOp) load capacitance, V_b [V]: Communication line voltage

2. p: CSI number (
$$p = 00, 20$$
), m: Unit number ($m = 0, 1$), n: Channel number ($n = 0$)


 fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 10))

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)



Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b [Ω]: Communication line (SDAr, SCLr) pull-up resistance, C_b [F]: Communication line (SDAr, SCLr) load capacitance, V_b [V]: Communication line voltage
 - **2.** r: IIC Number (r = 00, 20)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number (m = 0,1), n: Channel number (n = 0))
 - 4. Simplified l^2 C mode is supported only by the R5F102 products.

LVD detection voltage of interrupt & reset n	node
$(T_{4} - 10 t_{0} + 85^{\circ}C)$ Van $< Van < 5.5 V$ Van $= ($	N 1/1

Parameter	Symbol		Con	ditions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVDB0	VPOC2,	VPOC1, VPOC0 = 0, 0, 1, fa	1.80	1.84	1.87	V	
mode	VLVDB1		LVIS1, LVIS0 = 1, 0	Rising reset release voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB2		LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB3		LVIS1, LVIS0 = 0, 0	Rising reset release voltage	3.07	3.13	3.19	V
VLVDC0 VLVDC1				Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDC0	VPOC2,	VPOC2, VPOC1, VPOC0 = 0, 1, 0, falling reset voltage			2.45	2.50	V
	VLVDC1		LVIS1, LVIS0 = 1, 0	Rising reset release voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDC3		LVIS1, LVIS0 = 0, 0	Rising reset release voltage	3.68	3.75	3.82	V
				Falling interrupt voltage	3.60	3.67	3.74	V
	VLVDD0	VPOC2,	VPOC1, VPOC1 = 0, 1, 1, fa	ling reset voltage	2.70	2.75	2.81	V
	VLVDD1		LVIS1, LVIS0 = 1, 0	Rising reset release voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2		LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V
	V LVDD3		LVIS1, LVIS0 = 0, 0	Rising reset release voltage	3.98	4.06	4.14	V
				Falling interrupt voltage	3.90	3.98	4.06	V

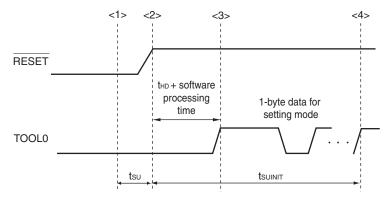
2.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 28.4 AC Characteristics.

2.9 Dedicated Flash Memory Programmer Communication (UART)


(1x = 40.0000, 1.0003)		•,•33 – • •)				
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

2.10 Timing of Entry to Flash Memory Programming Modes

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset are released before external reset release			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	ts∪	POR and LVD reset are released before external reset release	10			μS
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset are released before external reset release	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - t_{SU} : Time to release the external reset after the TOOL0 pin is set to the low level
 - the: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

(3) Peripheral functions (Common to all products)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed onchip oscillator operating current	FIL Note 1				0.20		μA
12-bit interval timer operating current	ITMKA Notes 1, 2, 3				0.02		μA
Watchdog timer operating current	WDT Notes 1, 2, 4	fı∟ = 15 kHz			0.22		μA
A/D converter	IADC	When conversion	Normal mode, AV _{REFP} = V _{DD} = 5.0 V		1.30	1.70	mA
operating current	Notes 1, 5	at maximum speed	Low voltage mode, AV _{REFP} = V _{DD} = 3.0 V		0.50	0.70	mA
A/D converter reference voltage operating current	IADREF Note 1				75.0		μA
Temperature sensor operating current	ITMPS Note 1				75.0		μA
LVD operating current	ILVD Notes 1, 6				0.08		μA
Self-programming operating current	IFSP Notes 1, 8				2.00	12.20	mA
BGO operating current	BGO Notes 1, 7				2.00	12.20	mA
SNOOZE operating	Isnoz	ADC operation	The mode is performed Note 9		0.50	1.10	mA
	Note 1		The A/D conversion operations are performed, Low voltage mode, $AV_{REFP} = V_{DD} = 3.0 \text{ V}$		1.20	2.04	mA
		CSI/UART operation	<u>ו</u>		0.70	1.54	mA

Notes 1. Current flowing to the VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and IFIL and ITMKA when the 12-bit interval timer operates.
- 4. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.
- 5. Current flowing only to the A/D converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 6. Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit operates.
- 7. Current flowing only during data flash rewrite.
- **8.** Current flowing only during self programming.
- 9. For shift time to the SNOOZE mode, see 17.3.3 SNOOZE mode.

Remarks 1. fill: Low-speed on-chip oscillator clock frequency

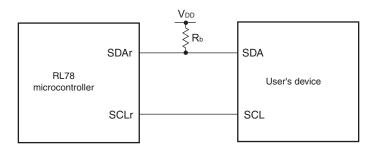
2. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

Parameter	Symbol	Conditions		HS (high-spee	d main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time	tKCY1	$t_{\text{KCY1}} \geq 4/f_{\text{CLK}}$	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	334		ns
			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	500		ns
SCKp high-/low-level width	tкнı,	$4.0~V \leq V_{\text{DD}} \leq 5$	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V \\ \\ 2.7 \ V \leq V_{DD} \leq 5.5 \ V \end{array}$			ns
	tĸ∟ı	$2.7~V \leq V_{\text{DD}} \leq 5$				ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		tксү1/2–76		ns
SIp setup time (to SCKp \uparrow) ^{Note 1}	tsik1	$4.0~V \leq V_{\text{DD}} \leq 5$.5 V	66		ns
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		66		ns
		$2.4~V \leq V_{\text{DD}} \leq 5$	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			ns
SIp hold time (from SCKp \uparrow) Note 2	tksi1			38		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 30 pF Note4			50	ns

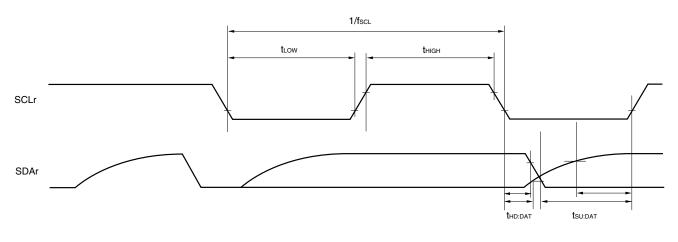
(2) During communication at same potential (CSI mode) (master mode, SCKp internal clock output)
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.
- **Caution** Select the normal input buffer for the SIp pin and the normal output mode for the SOp and SCKp pins by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).
- **Remarks 1.** p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3)
 - 2. fmck: Serial array unit operation clock frequency
 - (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3))

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
SCLr clock frequency	fsc∟	$C_{\text{b}} = 100 \text{ pF}, \text{R}_{\text{b}} = 3 \text{k} \Omega$		100 Note 1	kHz
Hold time when SCLr = "L"	tLOW	C_b = 100 pF, R_b = 3 k Ω	4600		ns
Hold time when SCLr = "H"	tнıgн	C_b = 100 pF, R_b = 3 k Ω	4600		ns
Data setup time (reception)	tsu:dat	$C_{\rm b}=100~pF,~R_{\rm b}=3~k\Omega$	1/fмск + 580 ^{Note 2}		ns
Data hold time (transmission)	thd:dat	$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	0	1420	ns


(4) During communication at same potential (simplified I²C mode)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$


Notes 1. The value must also be equal to or less than fmck/4.

- Set tsu:DAT so that it will not exceed the hold time when SCLr = "L" or SCLr = "H". 2.
- Caution Select the N-ch open drain output (VDD tolerance) mode for SDAr by using port output mode register h (POMh).

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b [Ω]:Communication line (SDAr) pull-up resistance Cb [F]: Communication line (SCLr, SDAr) load capacitance
 - 2. r: IIC number (r = 00, 01, 11, 20), h: = POM number (h = 0, 1, 4, 5)

3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number (m = 0, 1), n: Channel number (0, 1, 3)

Parameter Symbol		Conditions		HS (high-speed main) Mode		Unit
			MIN.	MAX.		
Transfer rate ^{Note4}		Reception			fмск/12 Note 1	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		2.0	Mbps
			$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$		fмск/12 Note 1	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} {}^{Note \ 2}$		2.0	Mbps
Transmissi		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_{b} \leq 2.0 \ V \end{array}$		fмск/12 Note 1	bps	
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		2.0	Mbps	
	Transmission			Note 3	bps	
		Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, V_b = 2.7 \text{ V}$		2.0 Note 4	Mbps	
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ \\ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \end{array}$		Note 5	bps	
		Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$		1.2 Note 6	Mbps	
		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$		Notes 2, 7	bps	
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, \text{ R}_b = 5.5 \text{ k}\Omega, \text{ V}_b = 1.6 \text{ V}$		0.43 Note 8	Mbps

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

 $(T_A = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq V_{DD} \leq 5.5 V) 16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)

3. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq V_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =

$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =

$$) = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \,[\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- 4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
- 5. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq VDD < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =

 $\begin{array}{c} \displaystyle \frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \\ \hline \\ \displaystyle (\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits} \end{array} \times 100 \ [\%]$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- 6. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 5** above to calculate the maximum transfer rate under conditions of the customer.
- 7. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.4 V \leq V_DD < 3.3 V, 1.6 V \leq V_b \leq 2.0 V

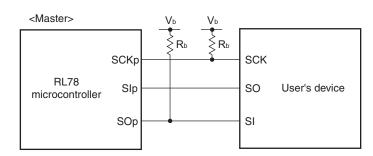
Maximum transfer rate =

$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = $\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \,[\%]$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 7 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)


Parameter	Symbol	Conditions	HS (high-speed	HS (high-speed main) Mode		
			MIN.	MAX.		
SIp setup time (to SCKp \downarrow) Note	tsiki	$ \begin{array}{l} \label{eq:VDD} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{b} \leq 4.0 \ V, \\ C_{b} = 30 \ pF, \ R_{b} = 1.4 \ k\Omega \end{array} $	88		ns	
		$\label{eq:VD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ C_{b} = 30 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	88		ns	
		$\label{eq:VD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V, \\ C_{b} = 30 \ pF, \ R_{b} = 5.5 \ k\Omega \end{array}$	220		ns	
SIp hold time (from SCKp↓) ^{№te}	tksii		38		ns	
		$\label{eq:VD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ C_{b} = 30 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	38		ns	
		$\label{eq:VD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V, \\ C_{\text{b}} = 30 \ p\text{F}, \ R_{\text{b}} = 5.5 \ k\Omega \end{array}$	38		ns	
Delay time from SCKp↑ to SOp output ^{Note}	tkso1			50	ns	
		$\label{eq:VD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ C_{b} = 30 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$		50	ns	
		$\label{eq:VD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 5.5 \ k\Omega \end{array}$		50	ns	

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Note When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.
- **Remarks 1.** R_b [Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b [F]: Communication line (SCKp, SOp) load capacitance, V_b [V]: Communication line voltage
 - **2.** p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

CSI mode connection diagram (during communication at different potential)

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

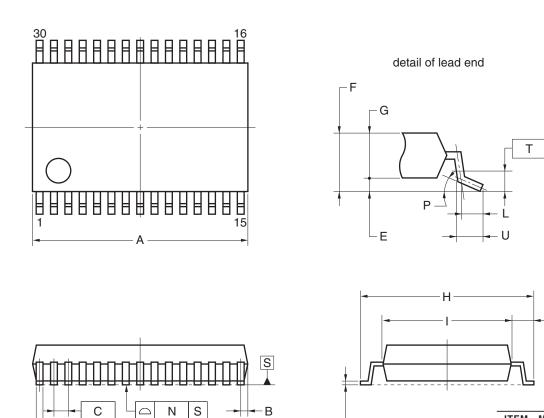
Input channel	Reference Voltage			
	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = VDD Reference voltage (-) = Vss	Reference voltage (+) = VBGR Reference voltage (-) = AVREFM	
ANI0 to ANI3	Refer to 29.6.1 (1).	Refer to 29.6.1 (3).	Refer to 29.6.1 (4).	
ANI16 to ANI22	Refer to 29.6.1 (2) .			
Internal reference voltage	Refer to 29.6.1 (1).		-	
Temperature sensor output voltage				

(1) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin: ANI2, ANI3, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AV}_{REFP} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AVREFP = VDD Note 3			1.2	±3.5	LSB
Conversion time	tCONV	10-bit resolution	$3.6~V \leq V\text{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI2, ANI3	$2.7~V \leq V\text{DD} \leq 5.5~V$	3.1875		39	μS
			$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μS
		10-bit resolution	$3.6~V \leq V\text{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: Internal	$2.7~V \leq V\text{DD} \leq 5.5~V$	3.5625		39	μS
		reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±0.25	%FSR
Full-scale error ^{Notes 1, 2}	EFS	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±0.25	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±2.5	LSB
Differential linearity error	DLE	10-bit resolution AVREFP = VDD Note 3				±1.5	LSB
Analog input voltage	VAIN	ANI2, ANI3		0		AVREFP	V
		Internal reference voltage (HS (high-speed main) mode)		VBGR Note 4		V	
	Temperature sens (HS (high-speed m		0		VTMPS25 ^{Note 4}	l	V

(Notes are listed on the next page.)



<R>

4.3 30-pin products

R5F102AAASP, R5F102A9ASP, R5F102A8ASP, R5F102A7ASP R5F103AAASP, R5F103A9ASP, R5F103A8ASP, R5F103A7ASP R5F102AADSP, R5F102A9DSP, R5F102A8DSP, R5F102A7DSP R5F103AADSP, R5F103A9DSP, R5F103A8DSP, R5F103A7DSP R5F102AAGSP, R5F102A9GSP, R5F102A8GSP, R5F102A7GSP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP30-0300-0.65	PLSP0030JB-B	S30MC-65-5A4-3	0.18

NOTE

DI⊕

MM

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
А	9.85±0.15
В	0.45 MAX.
С	0.65 (T.P.)
D	$0.24^{+0.08}_{-0.07}$
E	0.1±0.05
F	1.3±0.1
G	1.2
Н	8.1±0.2
I	6.1±0.2
J	1.0±0.2
К	0.17±0.03
L	0.5
М	0.13
Ν	0.10
Р	3° ^{+5°} -3°
Т	0.25
U	0.6±0.15

J

©2012 Renesas Electronics Corporation. All rights reserved.

Κ