

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

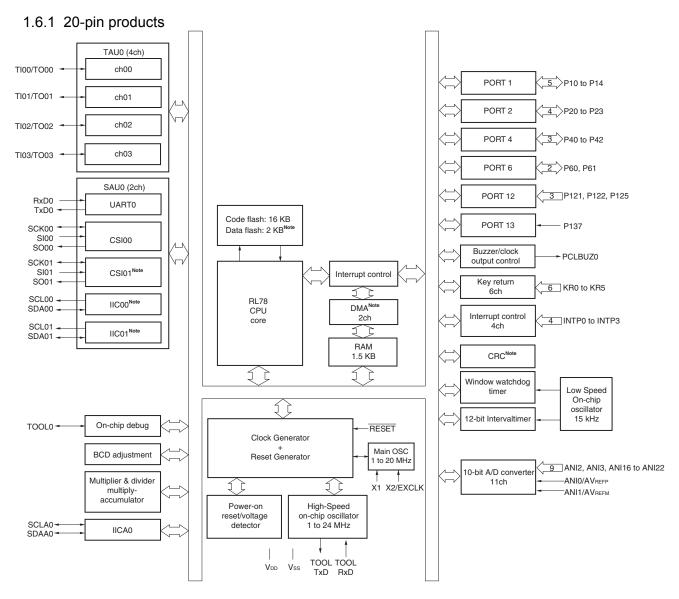
XF

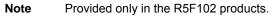
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-WFQFN Exposed Pad
Supplier Device Package	24-HWQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10278ana-w5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1.	List of	Ordering	Part	Numbers
------------	---------	----------	------	---------


	Pin count	Package	Data flash	Fields of Application	Part Number
<r></r>	20 pins	20-pin plastic LSSOP $(4.4 \times 6.5 \text{ mm}, 0.65 \text{ mm pitch})$	Mounted	A	R5F1026AASP#V5, R5F10269ASP#V5, R5F10268ASP#V5, R5F10267ASP#V5, R5F10266ASP#V5 R5F1026AASP#X5, R5F10269ASP#X5, R5F10268ASP#X5, R5F10267ASP#X5, R5F10266ASP#X5
				D	R5F1026ADSP#V5, R5F10269DSP#V5, R5F10268DSP#V5, R5F10267DSP#V5, R5F10266DSP#V5 R5F1026ADSP#X5, R5F10269DSP#X5, R5F10268DSP#X5, R5F10267DSP#X5, R5F10266DSP#X5
				G	R5F1026AGSP#V5, R5F10269GSP#V5, R5F10268GSP#V5, R5F10267GSP#V5, R5F10266GSP#V5 R5F1026AGSP#X5, R5F10269GSP#X5, R5F10268GSP#X5, R5F10267GSP#X5, R5F10266GSP#X5
			Not mounted	A	R5F1036AASP#V5, R5F10369ASP#V5, R5F10368ASP#V5, R5F10367ASP#V5, R5F10366ASP#V5 R5F1036AASP#X5, R5F10369ASP#X5, R5F10368ASP#X5, R5F10367ASP#X5, R5F10366ASP#X5
				D	R5F1036ADSP#V5, R5F10369DSP#V5, R5F10368DSP#V5, R5F10367DSP#V5, R5F10366DSP#V5 R5F1036ADSP#X5, R5F10369DSP#X5, R5F10368DSP#X5, R5F10367DSP#X5, R5F10366DSP#X5
<r></r>	pins HWQFN	HWQFN (4 × 4 mm, 0.5	Mounted	A	R5F1027AANA#U5, R5F10279ANA#U5, R5F10278ANA#U5, R5F10277ANA#U5 R5F1027AANA#W5, R5F10279ANA#W5, R5F10278ANA#W5, R5F10277ANA#W5
		mm pitch)			D
					G
			Not mounted	А	R5F1037AANA#V5, R5F10379ANA#V5, R5F10378ANA#V5, R5F10377ANA#V5
					R5F1037AANA#X5, R5F10379ANA#X5, R5F10378ANA#X5, R5F10377ANA#X5
				D	R5F1037ADNA#V5, R5F10379DNA#V5, R5F10378DNA#V5, R5F10377DNA#V5 R5F1037ADNA#X5, R5F10379DNA#X5, R5F10378DNA#X5, R5F10377DNA#X5
	30 pins	30-pin plastic LSSOP	Mounted	A	R5F102AAASP#V0, R5F102A9ASP#V0, R5F102A8ASP#V0, R5F102A7ASP#V0 R5F102AAASP#X0, R5F102A9ASP#X0, R5F102A8ASP#X0, R5F102A7ASP#X0
		(7.62 mm (300), 0.65 mm		D	R5F102AADSP#V0, R5F102A9DSP#V0, R5F102A8DSP#V0, R5F102A7DSP#V0 R5F102AADSP#X0, R5F102A9DSP#X0, R5F102A8DSP#X0, R5F102A7DSP#X0
		pitch)	:h)	G	R5F102AAGSP#V0, R5F102A9GSP#V0, R5F102A8GSP#V0, R5F102AAGSP#V0 R5F102AAGSP#X0, R5F102A9GSP#X0, R5F102A8GSP#X0, R5F102A7GSP#X0
			Not mounted	А	R5F103AAASP#V0, R5F103A9ASP#V0, R5F103A8ASP#V0, R5F103A7ASP#V0 R5F103AAASP#X0, R5F103A9ASP#X0, R5F103A8ASP#X0, R5F103A7ASP#X0
				D	R5F103AADSP#V0, R5F103A9DSP#V0, R5F103A8DSP#V0, R5F103A7DSP#V0 R5F103AADSP#X0, R5F103A9DSP#X0, R5F103A8DSP#X0, R5F103A7DSP#X0


Note For fields of application, see Figure 1-1 Part Number, Memory Size, and Package of RL78/G12.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.6 Block Diagram

TA = -40 10 + 00 C,	1.0 V \(\sigma\)	/od ≤ 5.5 V, Vss = 0 V)					
Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Dutput current, low ^{Note 1}	lol1	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42 30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147				20.0 Note 2	mA
		Per pin for P60, P61				15.0 Note 2	mA
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			60.0	mA
		Total of P40 to P42	$2.7~V \leq V_{\text{DD}} < 4.0~V$			9.0	mA
		30-pin products: Total of P00, P01, P40, P120 (When duty $\leq 70\%^{\text{Note 3}}$)	$1.8~V \leq V_{\text{DD}} < 2.7~V$			1.8	mA
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			80.0	mA
		Total of P00 to P03 ^{Note 4} ,	$2.7~V \leq V_{\text{DD}} < 4.0~V$			27.0	mA
	P10 to P14, P60, P61 1.8 V \leq V _{DD} < 2.7 V			5.4	mA		
		Total of all pins (When duty $\leq 70\%^{Note 3}$)				140	mA
	IOL2	Per pin for P20 to P23				0.4	mA
		Total of all pins				1.6	mA

(0)

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.

2. However, do not exceed the total current value.

3. The output current value under conditions where the duty factor \leq 70%.

If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).

• Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and $I_{OL} = 10.0 \text{ mA}$

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \cong 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

- 4. 24-pin products only.
- Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(2) 30-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	DD2 Note 2	HALT	HS (High-speed	$f_{IH} = 24 \text{ MHz}^{Note 4}$	V _{DD} = 5.0 V		440	1280	μA
current Note 1		mode	main) mode ^{Note 6}		V _{DD} = 3.0 V		440	1280	
				$f_{IH} = 16 \text{ MHz}^{Note 4}$	$V_{DD} = 5.0 V$		400	1000	μA
					$V_{DD} = 3.0 V$		400	1000	
			LS (Low-speed	$f_{\text{IH}} = 8 \text{ MHz}^{\text{Note 4}}$	$V_{DD} = 3.0 V$		260	530	μA
			main) mode ^{№066}		$V_{DD} = 2.0 V$		260	530	
			HS (High-speed	$f_{MX} = 20 \text{ MHz}^{Note 3}$,	Square wave input		280	1000	μA
			main) mode ^{Note6}	$V_{DD} = 5.0 V$	Resonator connection		450	1170	
				$f_{MX} = 20 \text{ MHz}^{Note 3}$,	Square wave input		280	1000	μA
				$V_{DD} = 3.0 V$	Resonator connection		450	1170	
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		190	600	μA
				$V_{DD} = 5.0 V$	Resonator connection		260	670	
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		190	600	μA
				$V_{DD} = 3.0 V$	Resonator connection		260	670	
			LS (Low-speed	$f_{MX} = 8 MHz^{Note 3}$,	Square wave input		95	330	μA
			main) mode ^{Note 6}	$V_{DD} = 3.0 V$	Resonator connection		145	380	
				$f_{MX} = 8 MHz^{Note 3}$	Square wave input		95	330	μA
				$V_{DD} = 2.0 V$	Resonator connection		145	380	
		STOP	$T_{\text{A}} = -40^{\circ}C$				0.18	0.50	μA
		mode	$T_A = +25^{\circ}C$	= +25°C			0.23	0.50	
			$T_A = +50^{\circ}C$				0.30	1.10	
			$T_A = +70^{\circ}C$				0.46	1.90	
			T _A = +85°C				0.75	3.30	

Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. During HALT instruction execution by flash memory.
- 3. When high-speed on-chip oscillator clock is stopped.
- 4. When high-speed system clock is stopped.
- 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.
- 6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS (High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz

VDD = 2.4 V to 5.5 V @1 MHz to 16 MHz

LS (Low speed main) mode: VDD = 1.8 V to 5.5 V @1 MHz to 8 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except STOP mode, temperature condition of the TYP. value is TA = 25°C.

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3)

Parameter	Symbol		Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkCY1	$t_{KCY1} \geq 4/f_{CLK}$	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	300		1150		ns
			$2.7~V \leq V_b \leq 4.0~V,$					
			$C_{b}=30 \text{ pF}, \text{R}_{b}=1.4 \text{k}\Omega$					
			$2.7~V \leq V_{\text{DD}} < 4.0~V,$	500		1150		ns
			$2.3~V \leq V_b \leq 2.7~V,$					
			$C_{b}=30 \text{ pF}, \text{R}_{b}=2.7 \text{k}\Omega$					
			$1.8~V \leq V_{\text{DD}} < 3.3~V,$	1150		1150		ns
			1.6 V \leq V_b \leq 2.0 V $^{\text{Note}}$,					
			C_b = 30 pF, R_b = 5.5 k Ω					
SCKp high-level width	tкнı	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V,$		tксү1/2 –75		tксү1/2-75		ns
		C _b = 30 pF, R	b = 1.4 kΩ					
		$2.7 \text{ V} \leq V_{\text{DD}} <$	$4.0~V,~2.3~V \le V_{b} \le 2.7~V,$	tkcy1/2-170		tксү1/2–170		ns
		$C_b = 30 \text{ pF}, \text{ R}$	b = 2.7 kΩ					
		$1.8 \text{ V} \leq \text{V}_{\text{DD}}$ <	3.3 V, 1.6 V \leq V_b \leq 2.0 V $^{\text{Note}}$,	tксү1/2 –458		tксү1/2-458		ns
		$C_b = 30 \text{ pF}, \text{ R}$	$h_{b} = 5.5 \text{ k}\Omega$					
SCKp low-level width	tĸ∟1	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V, 2.7 V \leq V_b \leq 4.0 V,	tксү1/2 −12		tксү1/2–50		ns
		$C_b = 30 \text{ pF}, \text{ R}$	b = 1.4 kΩ					
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} <$	$4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$	tксү1/2-18		tксү1/2–50		ns
		C_b = 30 pF, R_b = 2.7 k Ω						
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} <$	3.3 V, 1.6 V \leq V_b \leq 2.0 V $^{\text{Note}},$	tксү1/2 –50		tксү1/2–50		ns
		$C_{b} = 30 \text{ pF}, \text{ R}$	$h_{\rm b} = 5.5 \ {\rm k}\Omega$					

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

 $\label{eq:Note} \textbf{Note} \quad \textbf{Use it with } V_{\text{DD}} \geq V_{\text{b}}.$

- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.
- **Remarks 1.** R_b [Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b [F]: Communication line (SCKp, SOp) load capacitance, V_b [V]: Communication line voltage
 - **2.** p: CSI number (p = 00, 20)

Parameter	Symbol	C	onditions	HS (high-spo Mod	,	LS (low-spe Mod		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	t ксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	20 MHz < fмск ≤ 24 MHz	12/fмск		-		ns
		$2.7~V \leq V_b \leq 4.0~V$	8 MHz < fмск ≤ 20 MHz	10/fмск		-		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	8/fмск		16/fмск		ns
			fмск \leq 4 MHz	6/fмск		10/f мск		ns
		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	20 MHz < fмск \leq 24 MHz	16/fмск		I		ns
		$2.3~V \leq V_b \leq 2.7~V$	16 MHz < fмск ≤ 20 MHz	14/fмск		ļ		ns
			8 MHz < fmck \leq 16 MHz	12/fмск		I		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	8/fмск		16/f мск		ns
			fмск ≤ 4 MHz	6/fмск		10/f мск		ns
		$1.8~V \leq V_{\text{DD}} < 3.3~V,$	20 MHz < fмск \leq 24 MHz	36/fмск		I		ns
		$\begin{array}{l} 1.6 \ V \leq V_b \leq 2.0 \ V \\ \label{eq:Note2} \end{array}$ Note 2	16 MHz < fмск \leq 20 MHz	32/fмск		ļ		ns
			8 MHz < fmck \leq 16 MHz	26/f мск		ļ		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	16/fмск		16/fмск		ns
			fмск \leq 4 MHz	10/fмск		10/f мск		ns
SCKp high-/low-level	tкн2, tкL2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	$2.7~V \leq V_b \leq 4.0~V$	tксү2/2 – 12		tксү2/2 – 50		ns
width		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	$2.3~V \leq V_{b} \leq 2.7~V$	tkcy2/2 - 18		tксү2/2 – 50		ns
		$1.8~V \leq V_{\text{DD}} < 3.3~V,$	$1.6~V \leq V_{b} \leq 2.0~V^{\text{Note 2}}$	tkcy2/2 - 50		tксү2/2 – 50		ns
SIp setup time	tsik2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	$2.7~V \leq V_{\text{DD}} \leq 4.0~V$	1/fмск + 20		1/fмск + 30		ns
(to SCKp↑) ^{Note 3}		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	$2.3~V \leq V_{\text{b}} \leq 2.7~V$	1/fмск + 20		1/fмск + 30		ns
		$1.8~V \leq V_{\text{DD}} < 3.3~V,$	$1.6~V \leq V_{\text{DD}} \leq 2.0~V^{\text{Note 2}}$	1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) ^{Note 4}	tksi2			1/fмск + 31		1/fмск + 31		ns
Delay time from	tĸso2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	$2.7~V \leq V_b \leq 4.0~V,$		2/fмск +		2/fмск +	ns
SCKp↓ to SOp		$C_b = 30 \text{ pF}, \text{ R}_b = 1.4$	kΩ		120		573	
output Note 5		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	$2.3~V \leq V_{b} \leq 2.7~V,$		2/fмск +		2/fмск +	ns
		$C_b = 30 \text{ pF}, \text{ R}_b = 2.7$	kΩ		214		573	
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V},$	$1.6~V \leq V_{b} \leq 2.0~V^{\text{Note 2}},$		2/fмск +		2/fмск +	ns
		C _b = 30 pF, R _b = 5.5	kΩ		573		573	

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) ($T_A = -40$ to $+85^{\circ}$ C, 1.8 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

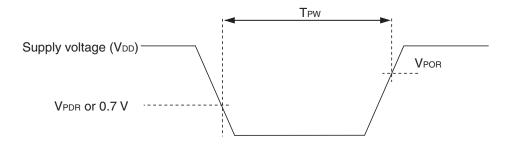
Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

 $\textbf{2.} \quad \textbf{Use it with } V_{\text{DD}} \geq V_{\text{b}}.$

- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Cautions 1. Select the TTL input buffer for the SIp and SCKp pins and the N-ch open drain output (Vbb tolerance) mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For ViH and ViL, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.

2.6.2 Temperature sensor/internal reference voltage characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.50	V
Temperature coefficient	Fvtmps	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs


(T_A = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, HS (high-speed main) mode

2.6.3 POR circuit characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.47	1.51	1.55	V
	VPDR	Power supply fall time	1.46	1.50	1.54	V
Minimum pulse width Note	TPW		300			μS

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

$(1A = -40 \text{ to } +105^{\circ}\text{C})$, 2.4 V ≤	$V \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V} $						
Parameter	Symbol	Conditions	Conditions			MAX.	Unit	
Output current, low ^{Note 1}	Iol1	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42 30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147				8.5 Note 2	mA	
		Per pin for P60, P61				15.0 Note 2	mA	
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			25.5	mA	
		20 pip producto:	$2.7~V \leq V_{\text{DD}} < 4.0~V$			9.0	mA	
			$2.4~V \leq V_{\text{DD}} < 2.7~V$			1.8	mA	
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			40.0	mA	
		P10 to P14, P60, P61	$2.7~V \leq V_{\text{DD}} < 4.0~V$			27.0	mA	
			$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			5.4	mA	
		Total of all pins (When duty $\leq 70\%^{Note 3}$)				65.5	mA	
	Iol2	Per pin for P20 to P23				0.4	mA	
		Total of all pins				1.6	mA	

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

(2/4)

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.

2. However, do not exceed the total current value.

3. The output current value under conditions where the duty factor \leq 70%.

If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).

• Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and I_{OL} = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \cong 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

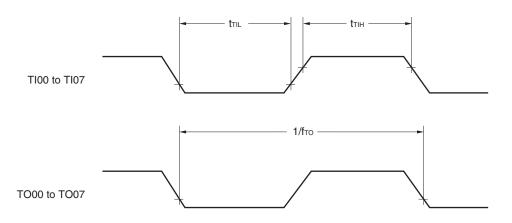
- **4.** 24-pin products only.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(1) 20-, 24-pin products

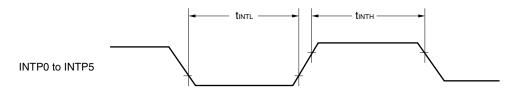
$T_{A} = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V} $ (2)								(2/2)									
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit								
Supply	DD2 Note 2	HALT	HS (High-speed	$f_{IH} = 24 \text{ MHz}^{Note 4}$	V _{DD} = 5.0 V		440	2230	μA								
current ^{Note 1}		mode	node main) mode ^{Note 6}		V _{DD} = 3.0 V		440	2230									
				$f_{IH} = 16 \text{ MHz}^{Note 4}$	$V_{DD} = 5.0 V$		400	1650	μA								
					V _{DD} = 3.0 V		400	1650									
				fмх = 20 MHz ^{Note 3} ,	Square wave input		280	1900	μA								
				$V_{DD} = 5.0 V$	Resonator connection		450	2000									
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		280	1900	μA								
				$V_{DD} = 3.0 V$	Resonator connection		450	2000									
													$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		190	1010
				$V_{DD} = 5.0 V$	Resonator connection		260	1090									
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$ $V_{\text{DD}} = 3.0 \text{ V}$	Square wave input		190	1010	μA								
					Resonator connection		260	1090									
	DD3 Note 5	STOP	$T_A = -40^{\circ}C$				0.19	0.50	μA								
		mode	T _A = +25°C				0.24	0.50									
			$T_A = +50^{\circ}C$				0.32	0.80									
			T _A = +70°C				0.48	1.20									
			T _A = +85°	T _A = +85°C	;			0.74	2.20								
			T _A = +105°C				1.50	10.20									

Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

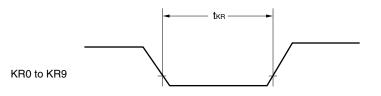
- 2. During HALT instruction execution by flash memory.
- **3.** When high-speed on-chip oscillator clock is stopped.
- 4. When high-speed system clock is stopped.
- 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.
- 6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

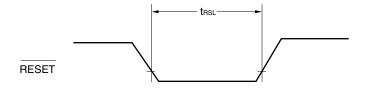

HS (High speed main) mode: $V_{DD} = 2.7$ V to 5.5 V @1 MHz to 24 MHz $V_{DD} = 2.4$ V to 5.5 V @1 MHz to 16 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fill: high-speed on-chip oscillator clock frequency
 - 3. Except temperature condition of the TYP. value is $T_A = 25^{\circ}C$, other than STOP mode

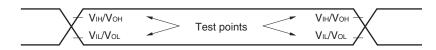


(2/2)


TI/TO Timing


Interrupt Request Input Timing

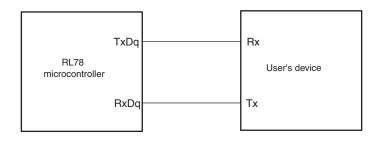
Key Interrupt Input Timing


RESET Input Timing

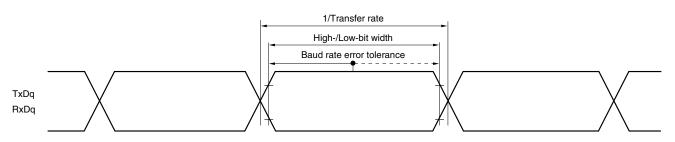
3.5 Peripheral Functions Characteristics

AC Timing Test Point

3.5.1 Serial array unit


(1) During communication at same potential (UART mode) (T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
Transfer rate				fмск/12	bps
Note 1		Theoretical value of the maximum transfer rate $f_{CLK} = f_{MCK}^{Note2}$		2.0	Mbps


Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

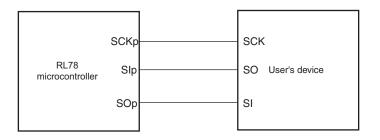
- 2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are: HS (high-speed main) mode: 24 MHz (2.7 V \leq V_{DD} \leq 5.5 V) 16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)
- **Caution** Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 2), g: PIM, POM number (g = 0, 1)

- 2. fMCK: Serial array unit operation clock frequency
 - (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 - m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

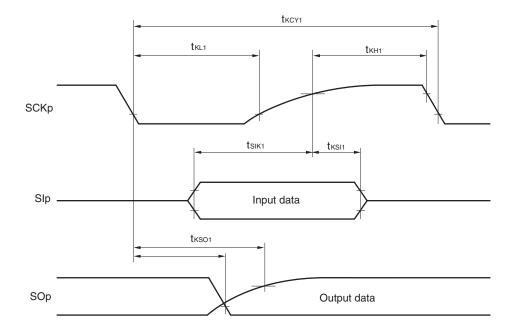


Parameter	Symbol	Conditions		HS (high-speed	main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time Note4	tксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	20 MHz < fмск	16/fмск		ns
			fмск ≤ 20 MHz	12/fмск		ns
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	16 MHz < fмск	16/fмск		ns
			fмск ≤ 16 MHz	12/fмск		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		12/fмск		ns
SCKp high-/low-level width	tкн2,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2–14		ns
	tĸ∟2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2–16		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2–36		ns
SIp setup time (to SCKp↑)	tsik2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск + 40		ns
Note 1		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск + 60		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi2			1/fмск + 62		ns
Delay time from SCKp \downarrow to	tĸso2	C = 30 pF Note4	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		2/fмск + 66	ns
SOp output Note 3			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		2/fмск + 113	ns

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

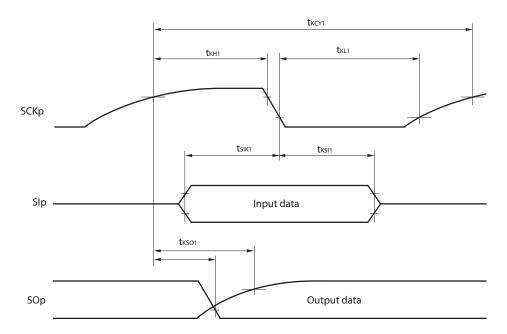
- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- **Caution** Select the normal input buffer for the SIp and SCKp pins and the normal output mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).

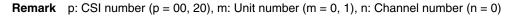
CSI mode connection diagram (during communication at same potential)


(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3)

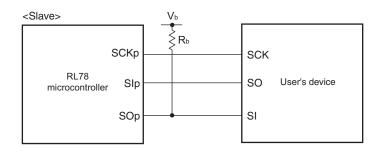
Symbol		Conditions	HS (high-speed	d main) Mode	Unit
			MIN.	MAX.	
tkcy1	$t_{KCY1} \geq 4/f_{CLK}$	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	600		ns
		$2.7~V \leq V_{b} \leq 4.0~V,$			
		C_b = 30 pF, R_b = 1.4 k Ω			
		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	1000		ns
		$2.3~V \leq V_{b} \leq 2.7~V,$			
		C_b = 30 pF, R_b = 2.7 k Ω			
		$2.4~V \leq V_{\text{DD}} < 3.3~V,$	2300		ns
		$1.6 V \le V_b \le 2.0 V$,			
		C_b = 30 pF, R_b = 5.5 k Ω			
tкнı	$4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V,$		tксү1/2 –150		ns
	$C_b = 30 \text{ pF}, \text{ Re}$	b = 1.4 kΩ			
	$2.7 \text{ V} \leq \text{V}_{\text{DD}}$ <	4.0 V, 2.3 V \leq V _b \leq 2.7 V,	tĸcy1/2 –340		ns
	$C_b = 30 \text{ pF}, \text{R}_b$	b = 2.7 kΩ			
	$2.4 \text{ V} \leq \text{V}_{\text{DD}}$ <	3.3 V, 1.6 V \leq V _b \leq 2.0 V,	tксү1/2 –916		ns
	C _b = 30 pF, Rt	b = 5.5 kΩ			
tĸ∟1	$4.0 V \le V_{DD} \le$	5.5 V, 2.7 V \leq V _b \leq 4.0 V,	tксү1/2 –24		ns
	2.7 V ≤ V _{DD} < 9	4.0 V. 2.3 V \leq Vb \leq 2.7 V.	tксү1/2 –36		ns
			tkcy1/2 -100		ns
		, , , , ,			
	tксу1 tксу1 tкн1 tкн1	tkcy1 tkcy1 ≥ 4/fcLk tkcy1 tkcy1 ≥ 4/fcLk tkH1 4.0 V ≤ VDD ≤ Cb = 30 pF, Ri 2.7 V ≤ VDD <	$\begin{tabular}{ c c c c c c c } t κ CY1 & t t κ CY1 & t t κ CY1 & t t k CY1 & t t t k CY1 & t t t t t t t t t $$	$\begin{tabular}{ c c c c } \hline trcy1 & trcy1 \ge 4/f_{GLK} & 4.0 \ V \le V_{DD} \le 5.5 \ V, & 600 \\ \hline trcy1 & trcy1 \ge 4/f_{GLK} & 4.0 \ V \le V_{DD} \le 5.5 \ V, & 600 \\ \hline 2.7 \ V \le V_b \le 4.0 \ V, & 2.7 \ V \le V_b \le 4.0 \ V, & 2.7 \ V \le V_{DD} < 4.0 \ V, & 2.7 \ V \le V_{DD} < 4.0 \ V, & 1000 \\ \hline 2.3 \ V \le V_{DD} < 4.0 \ V, & 2.7 \ V \le V_{DD} < 4.0 \ V, & 2.3 \ V \le 2.7 \ V, & 2300 \\ \hline 1.6 \ V \le V_{DD} < 3.3 \ V, & 1.6 \ V \le 2.0 \ V, & 1000 \\ \hline C_b = 30 \ pF, \ R_b = 1.4 \ R\Omega & 2000 \\ \hline 1.6 \ V \le V_{DD} < 3.3 \ V, & 2300 \\ \hline 1.6 \ V \le V_{DD} < 3.3 \ V, & 2300 \\ \hline 1.6 \ V \le V_{DD} < 3.3 \ V, & 1.6 \ V \le 4.0 \ V, & 1000 \\ \hline C_b = 30 \ pF, \ R_b = 5.5 \ R\Omega & 1000 \\ \hline C_b = 30 \ pF, \ R_b = 1.4 \ R\Omega & 2000 \\ \hline C_b = 30 \ pF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline C_b = 30 \ pF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline C_b = 30 \ pF, \ R_b = 5.5 \ R\Omega & 1000 \\ \hline C_b = 30 \ pF, \ R_b = 5.5 \ R\Omega & 1000 \\ \hline C_b = 30 \ pF, \ R_b = 5.5 \ R\Omega & 1000 \\ \hline T_{KL1} & 4.0 \ V \le V_{DD} < 5.5 \ V, \ 2.7 \ V \le V_b \le 4.0 \ V, & 1000 \ V = 100 \\ \hline T_{KL1} & 4.0 \ V \le V_{DD} \le 5.5 \ V, \ 2.7 \ V \le V_b \le 4.0 \ V, & 1000 \ V = 100 \\ \hline T_{KL1} & 4.0 \ V \le V_{DD} \le 5.5 \ V, \ 2.7 \ V \le V_b \le 2.0 \ V, & 1000 \ V = 100 \\ \hline T_{KL1} & 4.0 \ V \le V_{DD} \le 4.0 \ V, \ 2.3 \ V \le V_b \le 2.0 \ V, & 1000 \ V = 100 \\ \hline T_{KL1} & 4.0 \ V \le V_{DD} \le 4.0 \ V, \ 2.3 \ V \le V_b \le 2.0 \ V, & 1000 \ V = 100 \\ \hline T_{KL1} & 4.0 \ V \le V_{DD} \le 4.0 \ V, \ 2.3 \ V \le 0.0 \ V, & 1000 \ V \le 1000 \ V \le 1000 \ V = 10000 \ V $	$ \begin{array}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

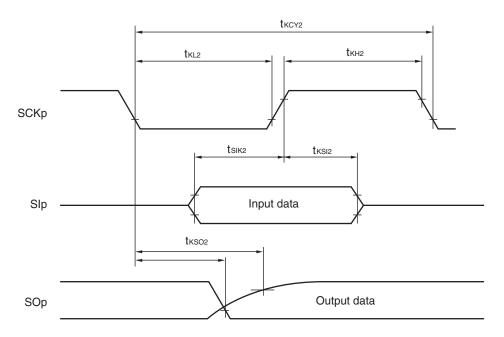
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$


- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.
- **Remarks 1.** R_b [Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b [F]: Communication line (SCKp, SOp) load capacitance, V_b [V]: Communication line voltage
 - **2.** p: CSI number (p = 00, 20)



CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1)


CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)



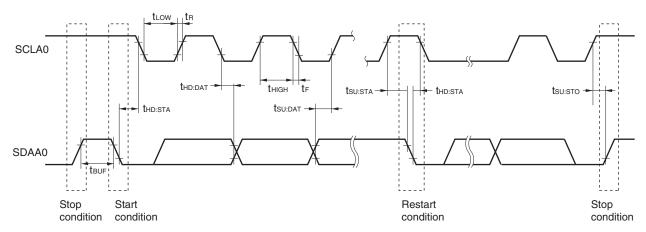
CSI mode connection diagram (during communication at different potential)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- Remarks 1.Rb [Ω]: Communication line (SOp) pull-up resistance, Cb [F]: Communication line (SOp) load capacitance,
Vb [V]: Communication line voltage
 - **2.** p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn))

3.5.2 Serial interface IICA

Parameter	Symbol	Conditions	HS (high-speed main) mode		node	Unit	
			Standa	rd Mode	Fast Mode		
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode: fclk≥ 3.5 MHz			0	400	kHz
		Normal mode: fcLK≥ 1 MHz	0	100			kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μS
Hold time ^{Note 1}	thd:sta		4.0		0.6		μS
Hold time when SCLA0 = "L"	t∟ow		4.7		1.3		μS
Hold time when SCLA0 = "H"	tніgн		4.0		0.6		μS
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission)Note 2	thd:dat		0	3.45	0	0.9	μS
Setup time of stop condition	tsu:sto		4.0		0.6		μS
Bus-free time	t BUF		4.7		1.3		μS


$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- **Caution** Only in the 30-pin products, the values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

 $\label{eq:cb} \begin{array}{ll} \mbox{Normal mode:} & C_b = 400 \mbox{ pF}, \mbox{ Rb} = 2.7 \mbox{ } k\Omega \\ \mbox{Fast mode:} & C_b = 320 \mbox{ pF}, \mbox{ Rb} = 1.1 \mbox{ } k\Omega \end{array}$

IICA serial transfer timing

<R>

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AV_{REFM} (ADREFM = 1), target pin: ANI0, ANI2, ANI3, and ANI16 to ANI22

(T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, Reference voltage (+) = V_{BGR}^{Note 3}, Reference voltage (-) = AV_{REFM}^{Note 4} = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		bit
Conversion time	t CONV	8-bit resolution	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	8-bit resolution			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution			±1.0	LSB
Analog input voltage	VAIN		0		$V_{\text{BGR}}{}^{\text{Note 3}}$	V

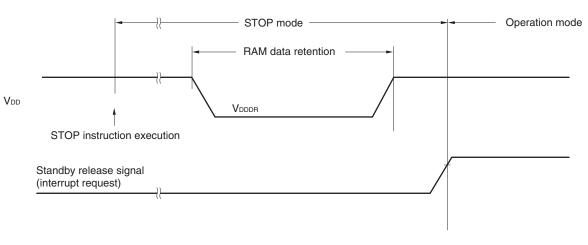
Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. Refer to 29.6.2 Temperature sensor/internal reference voltage characteristics.

4. When reference voltage (-) = Vss, the MAX. values are as follows.

Zero-scale error: Add $\pm 0.35\%$ FSR to the MAX. value when reference voltage (–) = AV_{REFM}. Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (–) = AV_{REFM}. Differential linearity error: Add ± 0.2 LSB to the MAX. value when reference voltage (–) = AV_{REFM}.


<R>

<R> 3.7 RAM Data Retention Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vdddr		1.44 ^{Note}		5.5	V

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

3.8 Flash Memory Programming Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclк		1		24	MHz
Code flash memory rewritable times Notes 1, 2, 3	Cerwr	Retained for 20 years $T_A = 85^{\circ}C^{Notes 4}$	1,000			Times
Data flash memory rewritable times Notes 1, 2, 3		Retained for 1 year T _A = $25^{\circ}C^{Notes 4}$		1,000,000		
		Retained for 5 years $T_A = 85^{\circ}C^{Notes 4}$	100,000			
		Retained for 20 years T _A = $85^{\circ}C^{Notes 4}$	10,000			

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.
- 4. This temperature is the average value at which data are retained.

Revision History

RL78/G12 Data Sheet

		Description				
Rev.	Date	Page	Summary			
1.00	Dec 10, 2012	-	First Edition issued			
2.00	Sep 06, 2013	1	Modification of 1.1 Features			
		3	Modification of 1.2 List of Part Numbers			
		4	Modification of Table 1-1. List of Ordering Part Numbers, Note, and Caution			
		7 to 9	Modification of package name in 1.4.1 to 1.4.3			
		14	Modification of tables in 1.7 Outline of Functions			
		17	Modification of description of table in 2.1 Absolute Maximum Ratings (TA = 25°C)			
		18	Modification of table, Note, and Caution in 2.2.1 X1 oscillator characteristics			
		18 19	Modification of table in 2.2.2 On-chip oscillator characteristics			
		20	Modification of Note 3 in 2.3.1 Pin characteristics (1/4)			
			Modification of Note 3 in 2.3.1 Pin characteristics (2/4)			
		23	Modification of Notes 1 and 2 in (1) 20-, 24-pin products (1/2)			
		24	Modification of Notes 1 and 3 in (1) 20-, 24-pin products (2/2)			
		25	Modification of Notes 1 and 2 in (2) 30-pin products (1/2)			
		26	Modification of Notes 1 and 3 in (2) 30-pin products (2/2)			
		27	Modification of (3) Peripheral functions (Common to all products)			
		28	Modification of table in 2.4 AC Characteristics			
		29	Addition of Minimum Instruction Execution Time during Main System Clock Operation			
		30	Modification of figures of AC Timing Test Point and External Main System Clock Timing			
		31	Modification of figure of AC Timing Test Point			
		31	Modification of description and Note 2 in (1) During communication at same potential (UART mode)			
		32	Modification of description in (2) During communication at same potential (CSI mode)			
		33	Modification of description in (3) During communication at same potential (CSI mode)			
		34	Modification of description in (4) During communication at same potential (CSI mode)			
		36	Modification of table and Note 2 in (5) During communication at same potential			
			(simplified l ² C mode)			
		38, 39	Modification of table and Notes 1 to 9 in (6) Communication at different potential			
		00,00	(1.8 V, 2.5 V, 3 V) (UART mode)			
		40	Modification of Remarks 1 to 3 in (6) Communication at different potential (1.8 V,			
		10	2.5 V, 3 V) (UART mode)			
		41	Modification of table in (7) Communication at different potential (2.5 V, 3 V) (CSI mode)			
		42	Modification of Caution in (7) Communication at different potential (2.5 V, 3 V) (CSI mode)			
		43	Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI			
		40	mode) (1/3)			
		44	Modification of table and Notes 1 and 2 in (8) Communication at different potential (1.8			
		44	V, 2.5 V, 3 V) (CSI mode) (2/3)			
		45	Modification of table, Note 1, and Caution 1 in (8) Communication at different potential			
		45	(1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)			
		47	Modification of table in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI			
		47	mode)			
		50	Modification of table, Note 1, and Caution 1 in (10) Communication at different potential			
		50	(1.8 V, 2.5 V, 3 V) (simplified I ² C mode)			
		50	Modification of Remark in 2.5.2 Serial interface IICA			
		52	Addition of table to 2.6.1 A/D converter characteristics			
		53				
		53	Modification of description in 2.6.1 (1)			
		54	Modification of Notes 3 to 5 in 2.6.1 (1)			
		54	Modification of description and Notes 2 to 4 in 2.6.1 (2)			

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
- "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information

RENESAS

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

California Eastern Laboratories. Inc. 4590 Patrick Henry Drive, Santa Clara, California 95054-1817, U.S.A Tel: +1-408-919-2500, Fax: +1-408-988-0279 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited ntury Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong t 1601-1611, 16/F., Tower 2, Grand Cen : +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777 Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141