




Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

XFI

| Product Status             | Obsolete                                                                        |
|----------------------------|---------------------------------------------------------------------------------|
| Core Processor             | RL78                                                                            |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 24MHz                                                                           |
| Connectivity               | CSI, I <sup>2</sup> C, UART/USART                                               |
| Peripherals                | DMA, LVD, POR, PWM, WDT                                                         |
| Number of I/O              | 18                                                                              |
| Program Memory Size        | 12KB (12K x 8)                                                                  |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | 2K x 8                                                                          |
| RAM Size                   | 1K x 8                                                                          |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 5.5V                                                                     |
| Data Converters            | A/D 11x8/10b                                                                    |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 24-WFQFN Exposed Pad                                                            |
| Supplier Device Package    | 24-HWQFN (4x4)                                                                  |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10279ana-u5 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

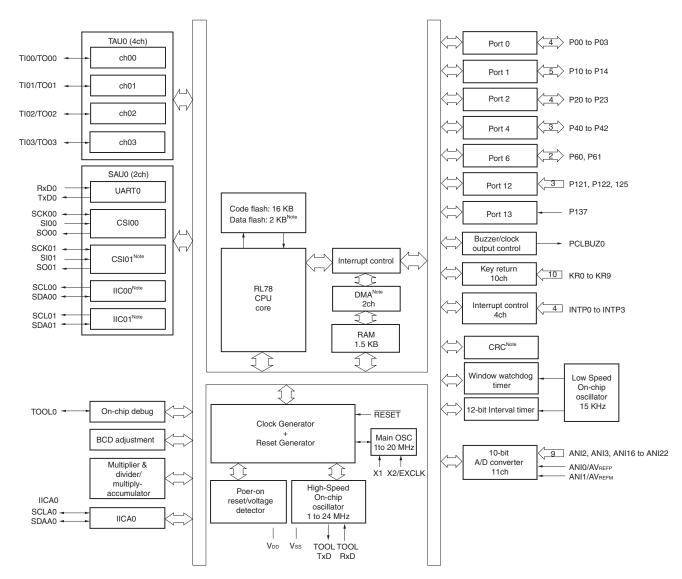
## 1.3.2 On-chip oscillator characteristics

(1) High-speed on-chip oscillator oscillation frequency of the R5F102 products

| Oscillator             | Condition                       | MIN  | MAX  | Unit |
|------------------------|---------------------------------|------|------|------|
| High-speed on-chip     | T <sub>A</sub> = -20 to +85 °C  | -1.0 | +1.0 | %    |
| oscillator oscillation | T <sub>A</sub> = -40 to -20 °C  | -1.5 | +1.5 |      |
| frequency accuracy     | T <sub>A</sub> = +85 to +105 °C | -2.0 | +2.0 |      |

(2) High-speed on-chip oscillator oscillation frequency of the R5F103 products

| Oscillator             | Condition                       | MIN  | MAX  | Unit |
|------------------------|---------------------------------|------|------|------|
| High-speed on-chip     | T <sub>A</sub> = -40 to + 85 °C | -5.0 | +5.0 | %    |
| oscillator oscillation |                                 |      |      |      |
| frequency accuracy     |                                 |      |      |      |


## 1.3.3 Peripheral Functions

The following are differences in peripheral functions between the R5F102 products and the R5F103 products.

|                  |                             | R5F102     | product        | R5F103 product |         |  |
|------------------|-----------------------------|------------|----------------|----------------|---------|--|
| RL78/G12         |                             | 20, 24 pin | 30 pin product | 20, 24 pin     | 30 pin  |  |
|                  |                             | product    |                | product        | product |  |
| Serial interface | UART                        | 1 channel  | 3 channels     | 1 channel      |         |  |
|                  | CSI                         | 2 channels | 3 channels     | 1 channel      |         |  |
|                  | Simplified I <sup>2</sup> C | 2 channels | 3 channels     | None           |         |  |
| DMA function     |                             | 2 channels |                | None           |         |  |
| Safety function  | CRC operation               | Yes        |                | None           |         |  |
|                  | RAM guard                   | Yes        | Yes            |                |         |  |
|                  | SFR guard                   | Yes        |                | None           |         |  |



## 1.6.2 24-pin products



Note Provided only in the R5F102 products.



| Parameter                                               | Symbol | Conditions                                                                                             |                                       | HS (high-<br>main) M |      | LS (low-spe<br>Mod | -    | Unit |
|---------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------|------|--------------------|------|------|
|                                                         |        |                                                                                                        |                                       | MIN.                 | MAX. | MIN.               | MAX. |      |
| SCKp cycle time                                         | tkCY1  | tксү1 ≥ 4/fc∟к                                                                                         | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$ | 167                  |      | 500                |      | ns   |
|                                                         |        |                                                                                                        | $2.4~V \leq V_{\text{DD}} \leq 5.5~V$ | 250                  |      | 500                |      | ns   |
|                                                         |        |                                                                                                        | $1.8~V \leq V_{\text{DD}} \leq 5.5~V$ | -                    |      | 500                |      | ns   |
| SCKp high-/low-level width                              | tкнı,  | $4.0~V \leq V_{\text{DD}} \leq$                                                                        | 5.5 V                                 | tксү1/2–12           |      | tксү1/2-50         |      | ns   |
|                                                         | tĸ∟1   | $\begin{array}{l} 2.7 \ V \leq V_{DD} \leq 5.5 \ V \\ \\ 2.4 \ V \leq V_{DD} \leq 5.5 \ V \end{array}$ |                                       | tксү1/2–18           |      | tксү1/2-50         |      | ns   |
|                                                         |        |                                                                                                        |                                       | tксү1/2–38           |      | tксү1/2–50         |      | ns   |
|                                                         |        | $1.8~V \leq V_{\text{DD}} \leq$                                                                        | 5.5 V                                 | -                    |      | tксү1/2-50         |      | ns   |
| SIp setup time (to SCKp↑)                               | tsik1  | $4.0~V \leq V_{\text{DD}} \leq 5.5~V$                                                                  |                                       | 44                   |      | 110                |      | ns   |
| Note 1                                                  |        | $2.7~V \leq V_{\text{DD}} \leq$                                                                        | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$ |                      |      | 110                |      | ns   |
|                                                         |        | $2.4~V \leq V_{\text{DD}} \leq$                                                                        | 5.5 V                                 | 75                   |      | 110                |      | ns   |
|                                                         |        | $1.8~V \leq V_{\text{DD}} \leq$                                                                        | 5.5 V                                 | -                    |      | 110                |      | ns   |
| SIp hold time<br>(from SCKp↑) <sup>№te 2</sup>          | tksi1  |                                                                                                        |                                       | 19                   |      | 19                 |      | ns   |
| Delay time from SCKp↓ to<br>SOp output <sup>№te 3</sup> | tkso1  | C = 30 pF <sup>Note4</sup>                                                                             |                                       |                      | 25   |                    | 25   | ns   |

# (3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (T<sub>A</sub> = -40 to +85°C, 1.8 V $\leq$ V<sub>DD</sub> $\leq$ 5.5 V, V<sub>SS</sub> = 0 V)

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to  $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp<sup>↑</sup>" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - 4. C is the load capacitance of the SCKp and SOp output lines.
- **Caution** Select the normal input buffer for the SIp pin and the normal output mode for the SOp and SCKp pins by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).
- **Remarks 1.** p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products)
  - 2. fMCK: Serial array unit operation clock frequency
    - (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products.))



| Parameter                                       | Symbol        | Conc                                  | litions                               | HS (high<br>main)          |                | LS (low-sp<br>Mo | eed main)<br>de | Unit |
|-------------------------------------------------|---------------|---------------------------------------|---------------------------------------|----------------------------|----------------|------------------|-----------------|------|
|                                                 |               |                                       |                                       | MIN.                       | MAX.           | MIN.             | MAX.            |      |
| SCKp cycle time Note4                           | <b>t</b> ксү2 | $4.0~V \leq V_{\text{DD}} \leq 5.5~V$ | 20 MHz < fмск                         | <b>8/f</b> мск             |                | -                |                 | ns   |
|                                                 |               |                                       | fмск ≤ 20 MHz                         | 6/fмск                     |                | 6/fмск           |                 | ns   |
|                                                 |               | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$ | 16 MHz < fмск                         | 8/fмск                     |                | -                |                 | ns   |
|                                                 |               |                                       | fмск ≤ 16 MHz                         | 6/fмск                     |                | 6/fмск           |                 | ns   |
|                                                 |               | $2.4~V \leq V_{\text{DD}} \leq 5.5~V$ |                                       | 6/fмск                     |                | 6/fмск           |                 | ns   |
|                                                 |               |                                       |                                       | and 500                    |                | and 500          |                 |      |
|                                                 |               | $1.8~V \le V_{\text{DD}} \le 5.5~V$   |                                       | -                          |                | 6/fмск           |                 | ns   |
|                                                 |               |                                       |                                       |                            |                | and 750          |                 |      |
| SCKp high-/low-level tkH2,<br>width tkL2        | tкн2,         | $4.0~V \leq V_{\text{DD}} \leq 5.5~V$ |                                       | tксү2/2-7                  |                | tксү2/2-7        |                 | ns   |
|                                                 | tĸ∟2          | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$ |                                       | tксү2/2-8                  |                | tксү2/2-8        |                 | ns   |
|                                                 |               | $2.4~V \leq V_{\text{DD}} \leq 5.5~V$ |                                       | tксү2/2–18                 |                | tксү2/2-18       |                 | ns   |
|                                                 |               | $1.8~V \leq V_{\text{DD}} \leq 5.5~V$ |                                       | -                          |                | tксү2/2-18       |                 | ns   |
| SIp setup time<br>(to SCKp↑) <sup>Note 1</sup>  | tsık2         | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$ |                                       | 1/fмск +<br>20             |                | 1/fмск +<br>30   |                 | ns   |
|                                                 |               | $2.4~V \leq V_{\text{DD}} \leq 5.5~V$ |                                       | 1/fмск +<br>30             |                | 1/fмск +<br>30   |                 | ns   |
|                                                 |               | $1.8~V \le V_{\text{DD}} \le 5.5~V$   |                                       | -                          |                | 1/fмск +<br>30   |                 | ns   |
| SIp hold time<br>(from SCKp↑) <sup>Note 2</sup> | tksi2         |                                       |                                       | 1/f <sub>мск</sub> +<br>31 |                | 1/fмск +<br>31   |                 | ns   |
| Delay time from<br>SCKp↓ to                     | tkso2         | C = 30 pF <sup>Note4</sup>            | $2.7~V \le V_{\text{DD}} \le 5.5~V$   |                            | 2/fмск +<br>44 |                  | 2/fмск +<br>110 | ns   |
| SOp output Note 3                               |               |                                       | $2.4~V \leq V_{\text{DD}} \leq 5.5~V$ |                            | 2/fмск +<br>75 |                  | 2/fмск +<br>110 | ns   |
|                                                 |               |                                       | $1.8~V \leq V_{\text{DD}} \leq 5.5~V$ |                            | -              |                  | 2/fмск +<br>110 | ns   |

## (4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (T<sub>A</sub> = -40 to +85°C, 1.8 V $\leq$ V<sub>DD</sub> $\leq$ 5.5 V, V<sub>SS</sub> = 0 V)

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp<sup>↑</sup>" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - 4. C is the load capacitance of the SOp output lines.
  - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- **Caution** Select the normal input buffer for the SIp and SCKp pins and the normal output mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).



# (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3)

| Parameter             | Symbol                    | Conditions                                               |                                                          | HS (high-spe<br>Mode | ,    | LS (low-spee<br>Mode | ,    | Unit |
|-----------------------|---------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------|------|----------------------|------|------|
|                       |                           |                                                          |                                                          | MIN.                 | MAX. | MIN.                 | MAX. |      |
| SCKp cycle time tkcr1 | tkcy1 tkcy1 $\geq$ 4/fclk | $4.0~V \leq V_{\text{DD}} \leq 5.5~V,$                   | 300                                                      |                      | 1150 |                      | ns   |      |
|                       |                           |                                                          | $2.7~V \leq V_b \leq 4.0~V,$                             |                      |      |                      |      |      |
|                       |                           |                                                          | $C_{b}=30 \text{ pF},  \text{R}_{b}=1.4  \text{k}\Omega$ |                      |      |                      |      |      |
|                       |                           |                                                          | $2.7~V \leq V_{\text{DD}} < 4.0~V,$                      | 500                  |      | 1150                 |      | ns   |
|                       |                           |                                                          | $2.3~V \leq V_b \leq 2.7~V,$                             |                      |      |                      |      |      |
|                       |                           |                                                          | $C_{b}=30 \text{ pF},  \text{R}_{b}=2.7  \text{k}\Omega$ |                      |      |                      |      |      |
|                       |                           |                                                          | $1.8~V \leq V_{\text{DD}} < 3.3~V,$                      | 1150                 |      | 1150                 |      | ns   |
|                       |                           |                                                          | 1.6 V $\leq$ V_b $\leq$ 2.0 V $^{\text{Note}}$ ,         |                      |      |                      |      |      |
|                       |                           |                                                          | $C_b$ = 30 pF, $R_b$ = 5.5 k $\Omega$                    |                      |      |                      |      |      |
| SCKp high-level width | tкнı                      | $4.0~V \leq V_{\text{DD}} \leq$                          | 5.5 V, 2.7 V $\leq$ V_b $\leq$ 4.0 V,                    | tксү1/2 –75          |      | tксү1/2-75           |      | ns   |
|                       |                           | $C_{b}=30 \text{ pF},  \text{R}_{b}=1.4  \text{k}\Omega$ |                                                          |                      |      |                      |      |      |
|                       |                           | $2.7 \text{ V} \leq V_{\text{DD}} <$                     | $4.0~V,~2.3~V \le V_{b} \le 2.7~V,$                      | tkcy1/2-170          |      | tксү1/2–170          |      | ns   |
|                       |                           | $C_b = 30 \text{ pF}, \text{ R}$                         | b = 2.7 kΩ                                               |                      |      |                      |      |      |
|                       |                           | $1.8 \text{ V} \leq \text{V}_{\text{DD}}$ <              | 3.3 V, 1.6 V $\leq$ V_b $\leq$ 2.0 V $^{\text{Note}}$ ,  | tксү1/2 –458         |      | tксү1/2-458          |      | ns   |
|                       |                           | $C_b = 30 \text{ pF}, \text{ R}$                         | $h_{b} = 5.5 \text{ k}\Omega$                            |                      |      |                      |      |      |
| SCKp low-level width  | tĸ∟1                      | $4.0~V \leq V_{\text{DD}} \leq$                          | 5.5 V, 2.7 V $\leq$ V_b $\leq$ 4.0 V,                    | tксү1/2 −12          |      | tксү1/2–50           |      | ns   |
|                       |                           | $C_b = 30 \text{ pF}, \text{ R}$                         | b = 1.4 kΩ                                               |                      |      |                      |      |      |
|                       |                           | $2.7 \text{ V} \leq \text{V}_{\text{DD}} <$              | $4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$              | tксү1/2-18           |      | tксү1/2–50           |      | ns   |
|                       |                           | $C_b$ = 30 pF, $R_b$ = 2.7 k $\Omega$                    |                                                          |                      |      |                      |      |      |
|                       |                           | $1.8 \text{ V} \leq \text{V}_{\text{DD}} <$              | 3.3 V, 1.6 V $\leq$ V_b $\leq$ 2.0 V $^{\text{Note}},$   | tксү1/2 –50          |      | tксү1/2–50           |      | ns   |
|                       |                           | $C_{b} = 30 \text{ pF}, \text{ R}$                       | $h_{\rm b} = 5.5 \ {\rm k}\Omega$                        |                      |      |                      |      |      |

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$ 

 $\label{eq:Note} \textbf{Note} \quad \textbf{Use it with } V_{\text{DD}} \geq V_{\text{b}}.$ 

- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (V<sub>DD</sub> tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V<sub>IH</sub> and V<sub>IL</sub>, see the DC characteristics with TTL input buffer selected.
  - 2. CSI01 and CSI11 cannot communicate at different potential.
- **Remarks 1.** R<sub>b</sub> [Ω]: Communication line (SCKp, SOp) pull-up resistance, C<sub>b</sub> [F]: Communication line (SCKp, SOp) load capacitance, V<sub>b</sub> [V]: Communication line voltage
  - **2.** p: CSI number (p = 00, 20)



| Parameter                                       | Symbol        | C                                                                                                                  | onditions                                                                        | HS (high-spo<br>Mod | ,            | LS (low-spe<br>Mod |          | Unit |
|-------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------|--------------|--------------------|----------|------|
|                                                 |               |                                                                                                                    |                                                                                  | MIN.                | MAX.         | MIN.               | MAX.     |      |
| SCKp cycle time Note 1                          | <b>t</b> ксү2 | $4.0~V \leq V_{\text{DD}} \leq 5.5~V,$                                                                             | 20 MHz < fmck $\leq$ 24 MHz                                                      | 12/fмск             |              | -                  |          | ns   |
|                                                 |               | $2.7~V \leq V_b \leq 4.0~V$                                                                                        | 8 MHz < fмск ≤ 20 MHz                                                            | 10/fмск             |              | -                  |          | ns   |
|                                                 |               |                                                                                                                    | $4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$                                      | 8/fмск              |              | 16/fмск            |          | ns   |
|                                                 |               |                                                                                                                    | fмск $\leq$ 4 MHz                                                                | 6/fмск              |              | <b>10/f</b> мск    |          | ns   |
|                                                 |               | $2.7~V \leq V_{\text{DD}} < 4.0~V,$                                                                                | 20 MHz < fмск $\leq$ 24 MHz                                                      | 16/fмск             |              | I                  |          | ns   |
|                                                 |               | $2.3~V \leq V_b \leq 2.7~V$                                                                                        | 16 MHz < fмск $\leq$ 20 MHz                                                      | 14/fмск             |              | ļ                  |          | ns   |
|                                                 |               |                                                                                                                    | 8 MHz < fmck $\leq$ 16 MHz                                                       | 12/fмск             |              | I                  |          | ns   |
|                                                 |               |                                                                                                                    | $4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$                                      | 8/fмск              |              | 16/fмск            |          | ns   |
|                                                 |               |                                                                                                                    | fмск ≤ 4 MHz                                                                     | 6/fмск              |              | <b>10/f</b> мск    |          | ns   |
|                                                 |               | $1.8~V \leq V_{\text{DD}} < 3.3~V,$                                                                                | 20 MHz < fмск $\leq$ 24 MHz                                                      | 36/fмск             |              | I                  |          | ns   |
|                                                 |               | $1.6~V \leq V_b \leq 2.0~V$ Note 2                                                                                 | 16 MHz < fмск $\leq$ 20 MHz                                                      | 32/fмск             |              | ļ                  |          | ns   |
|                                                 |               |                                                                                                                    | 8 MHz < fmck $\leq$ 16 MHz                                                       | <b>26/f</b> мск     |              | ļ                  |          | ns   |
|                                                 |               |                                                                                                                    | $4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$                                      | 16/fмск             |              | 16/fмск            |          | ns   |
|                                                 |               |                                                                                                                    | fмск $\leq$ 4 MHz                                                                | 10/fмск             |              | <b>10/f</b> мск    |          | ns   |
| SCKp high-/low-level                            | <b>t</b> кн2, | $4.0~V \leq V_{\text{DD}} \leq 5.5~V,$                                                                             | tксү2/2 – 12                                                                     |                     | tксү2/2 – 50 |                    | ns       |      |
| width                                           | tĸl2          | $2.7~V \leq V_{\text{DD}} < 4.0~V,$                                                                                | $2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V$ |                     |              | tксү2/2 – 50       |          | ns   |
|                                                 |               | $1.8~V \leq V_{\text{DD}} < 3.3~V,$                                                                                | $1.6~V \leq V_{b} \leq 2.0~V^{\text{Note 2}}$                                    | tkcy2/2 - 50        |              | tксү2/2 – 50       |          | ns   |
| SIp setup time                                  | tsik2         | $4.0~V \leq V_{\text{DD}} \leq 5.5~V,$                                                                             | $2.7~V \leq V_{\text{DD}} \leq 4.0~V$                                            | 1/fмск + 20         |              | 1/fмск + 30        |          | ns   |
| (to SCKp↑) <sup>Note 3</sup>                    |               | $2.7~V \leq V_{\text{DD}} < 4.0~V,$                                                                                | $2.3~V \leq V_{\text{b}} \leq 2.7~V$                                             | 1/fмск + 20         |              | 1/fмск + 30        |          | ns   |
|                                                 |               | $1.8~V \leq V_{\text{DD}} < 3.3~V,$                                                                                | $1.6~V \leq V_{\text{DD}} \leq 2.0~V^{\text{Note 2}}$                            | 1/fмск + 30         |              | 1/fмск + 30        |          | ns   |
| SIp hold time<br>(from SCKp↑) <sup>Note 4</sup> | tksi2         |                                                                                                                    |                                                                                  | 1/fмск + 31         |              | 1/fмск + 31        |          | ns   |
| Delay time from                                 | tĸso2         | $4.0~V \leq V_{\text{DD}} \leq 5.5~V,$                                                                             | $2.7~V \leq V_b \leq 4.0~V,$                                                     |                     | 2/fмск +     |                    | 2/fмск + | ns   |
| SCKp↓ to SOp                                    |               | $C_b = 30 \text{ pF}, \text{ R}_b = 1.4$                                                                           | kΩ                                                                               |                     | 120          |                    | 573      |      |
| output Note 5                                   |               | $2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ |                                                                                  |                     | 2/fмск +     |                    | 2/fмск + | ns   |
|                                                 |               | $C_b = 30 \text{ pF}, \text{ R}_b = 2.7$                                                                           | kΩ                                                                               |                     | 214          |                    | 573      |      |
|                                                 |               | $1.8 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V},$                                                         | $1.6~V \leq V_{b} \leq 2.0~V^{\text{Note 2}},$                                   |                     | 2/fмск +     |                    | 2/fмск + | ns   |
|                                                 |               | C <sub>b</sub> = 30 pF, R <sub>b</sub> = 5.5                                                                       | kΩ                                                                               |                     | 573          |                    | 573      |      |

## (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) ( $T_A = -40$ to $+85^{\circ}$ C, 1.8 V $\leq$ V<sub>DD</sub> $\leq$ 5.5 V, V<sub>SS</sub> = 0 V)

Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

 $\textbf{2.} \quad \textbf{Use it with } V_{\text{DD}} \geq V_{\text{b}}.$ 

- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp<sup>↑</sup>" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Cautions 1. Select the TTL input buffer for the SIp and SCKp pins and the N-ch open drain output (Vbb tolerance) mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For ViH and ViL, see the DC characteristics with TTL input buffer selected.
  - 2. CSI01 and CSI11 cannot communicate at different potential.



#### **Notes 1.** Excludes quantization error ( $\pm 1/2$ LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When AV<sub>REFP</sub> < V<sub>DD</sub>, the MAX. values are as follows. Overall error: Add ±1.0 LSB to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>. Zero-scale error/Full-scale error: Add ±0.05%FSR to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>. Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>.
- 4. Values when the conversion time is set to 57  $\mu s$  (min.) and 95  $\mu s$  (max.).
- 5. Refer to 28.6.2 Temperature sensor/internal reference voltage characteristics.
- (2) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI22

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{AV}_{REFP}, \text{ Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$ 

| Parameter                       | Symbol | Conditio                       | ns                                  | MIN.   | TYP. | MAX.                       | Unit |
|---------------------------------|--------|--------------------------------|-------------------------------------|--------|------|----------------------------|------|
| Resolution                      | Res    |                                |                                     | 8      |      | 10                         | bit  |
| Overall error Note 1            | AINL   | 10-bit resolution              |                                     |        | 1.2  | ±5.0                       | LSB  |
|                                 |        | $AV_{REFP} = V_{DD}^{Note 3}$  |                                     |        | 1.2  | $\pm 8.5^{\text{Note 4}}$  | LSB  |
| Conversion time                 | tCONV  | 10-bit resolution              | $3.6~V \leq V \text{DD} \leq 5.5~V$ | 2.125  |      | 39                         | μS   |
|                                 |        | Target ANI pin: ANI16 to ANI22 | $2.7~V \leq V \text{DD} \leq 5.5~V$ | 3.1875 |      | 39                         | μS   |
|                                 |        |                                | $1.8~V \leq V \text{DD} \leq 5.5~V$ | 17     |      | 39                         | μs   |
|                                 |        |                                |                                     | 57     |      | 95                         | μS   |
| Zero-scale error Notes 1, 2     | EZS    | 10-bit resolution              | 10-bit resolution                   |        |      | ±0.35                      | %FSR |
|                                 |        | $AV_{REFP} = V_{DD}^{Note 3}$  |                                     |        |      | $\pm 0.60^{\text{Note 4}}$ | %FSR |
| Full-scale error Notes 1, 2     | EFS    | 10-bit resolution              |                                     |        |      | ±0.35                      | %FSR |
|                                 |        | $AV_{REFP} = V_{DD}^{Note 3}$  |                                     |        |      | $\pm 0.60^{\text{Note 4}}$ | %FSR |
| Integral linearity error Note 1 | ILE    | 10-bit resolution              |                                     |        |      | ±3.5                       | LSB  |
|                                 |        | $AV_{REFP} = V_{DD}^{Note 3}$  |                                     |        |      | $\pm 6.0^{\text{Note 4}}$  | LSB  |
| Differential linearity          | DLE    | 10-bit resolution              |                                     |        |      | ±2.0                       | LSB  |
| error <sup>Note 1</sup>         |        | $AV_{REFP} = V_{DD}^{Note 3}$  |                                     |        |      | ±2.5 <sup>Note 4</sup>     | LSB  |
| Analog input voltage            | VAIN   | ANI16 to ANI22                 |                                     | 0      |      | AVREFP                     | V    |
|                                 |        |                                |                                     |        |      | and VDD                    |      |

**Notes 1.** Excludes quantization error ( $\pm 1/2$  LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- **3.** When AV<sub>REFP</sub>  $\leq$  V<sub>DD</sub>, the MAX. values are as follows. Overall error: Add ±4.0 LSB to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>. Zero-scale error/Full-scale error: Add ±0.20%FSR to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>. Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>.
- 4. When the conversion time is set to 57  $\mu$ s (min.) and 95  $\mu$ s (max.).



# (4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AV<sub>REFM</sub> (ADREFM = 1), target pin: ANI0, ANI2, ANI3, and ANI16 to ANI22

(TA = -40 to +85°C, 2.4 V  $\leq$  V<sub>DD</sub>  $\leq$  5.5 V, V<sub>SS</sub> = 0 V, Reference voltage (+) = V<sub>BGR</sub><sup>Note 3</sup>, Reference voltage (-) = AV<sub>REFM</sub> Note <sup>4</sup> = 0 V, HS (high-speed main) mode)

| Parameter                                  | Symbol        | Conditions       | MIN. | TYP. | MAX.                               | Unit |
|--------------------------------------------|---------------|------------------|------|------|------------------------------------|------|
| Resolution                                 | Res           |                  |      | 8    |                                    | bit  |
| Conversion time                            | <b>t</b> CONV | 8-bit resolution | 17   |      | 39                                 | μs   |
| Zero-scale error <sup>Notes 1, 2</sup>     | EZS           | 8-bit resolution |      |      | ±0.60                              | %FSR |
| Integral linearity error <sup>Note 1</sup> | ILE           | 8-bit resolution |      |      | ±2.0                               | LSB  |
| Differential linearity error Note 1        | DLE           | 8-bit resolution |      |      | ±1.0                               | LSB  |
| Analog input voltage                       | VAIN          |                  | 0    |      | $V_{\text{BGR}}{}^{\text{Note 3}}$ | V    |

**Notes 1.** Excludes quantization error ( $\pm 1/2$  LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

#### 3. Refer to 28.6.2 Temperature sensor/internal reference voltage characteristics.

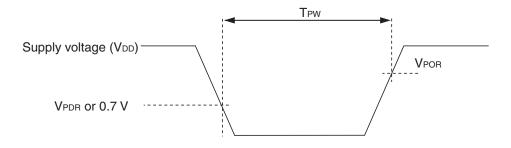
4. When reference voltage (-) = Vss, the MAX. values are as follows.

Zero-scale error: Add  $\pm 0.35\%$ FSR to the MAX. value when reference voltage (–) = AV<sub>REFM</sub>. Integral linearity error: Add  $\pm 0.5$  LSB to the MAX. value when reference voltage (–) = AV<sub>REFM</sub>. Differential linearity error: Add  $\pm 0.2$  LSB to the MAX. value when reference voltage (–) = AV<sub>REFM</sub>.



## 2.6.2 Temperature sensor/internal reference voltage characteristics

| Parameter                         | Symbol  | Conditions                                                              | MIN. | TYP. | MAX. | Unit  |
|-----------------------------------|---------|-------------------------------------------------------------------------|------|------|------|-------|
| Temperature sensor output voltage | VTMPS25 | Setting ADS register = 80H,<br>TA = +25°C                               |      | 1.05 |      | V     |
| Internal reference voltage        | VBGR    | Setting ADS register = 81H                                              | 1.38 | 1.45 | 1.50 | V     |
| Temperature coefficient           | Fvtmps  | Temperature sensor output<br>voltage that depends on the<br>temperature |      | -3.6 |      | mV/°C |
| Operation stabilization wait time | tamp    |                                                                         | 5    |      |      | μs    |


## (T<sub>A</sub> = -40 to +85°C, 2.4 V $\leq$ V<sub>DD</sub> $\leq$ 5.5 V, V<sub>SS</sub> = 0 V, HS (high-speed main) mode

## 2.6.3 POR circuit characteristics

## $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ V}_{\text{SS}} = 0 \text{ V})$

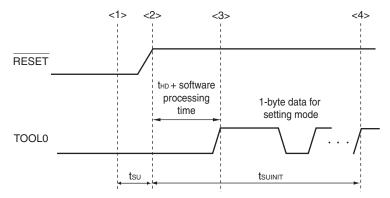
| Parameter                | Symbol | Conditions             | MIN. | TYP. | MAX. | Unit |
|--------------------------|--------|------------------------|------|------|------|------|
| Detection voltage        | VPOR   | Power supply rise time | 1.47 | 1.51 | 1.55 | V    |
|                          | VPDR   | Power supply fall time | 1.46 | 1.50 | 1.54 | V    |
| Minimum pulse width Note | TPW    |                        | 300  |      |      | μS   |

**Note** Minimum time required for a POR reset when V<sub>DD</sub> exceeds below V<sub>PDR</sub>. This is also the minimum time required for a POR reset from when V<sub>DD</sub> exceeds below 0.7 V to when V<sub>DD</sub> exceeds V<sub>POR</sub> while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).





## 2.9 Dedicated Flash Memory Programmer Communication (UART)


| Parameter     | Symbol | Symbol Conditions         |         | TYP. | MAX.      | Unit |  |  |
|---------------|--------|---------------------------|---------|------|-----------|------|--|--|
| Transfer rate |        | During serial programming | 115,200 |      | 1,000,000 | bps  |  |  |

## $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

## 2.10 Timing of Entry to Flash Memory Programming Modes

## $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

| Parameter                                                                                                                                                             | Symbol  | Conditions                                                         | MIN. | TYP. | MAX. | Unit |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------|------|------|------|------|
| Time to complete the communication for the initial setting after the external reset is released                                                                       | tsuinit | POR and LVD reset are<br>released before external<br>reset release |      |      | 100  | ms   |
| Time to release the external reset after the TOOL0 pin is set to the low level                                                                                        | ts∪     | POR and LVD reset are<br>released before external<br>reset release | 10   |      |      | μS   |
| Time to hold the TOOL0 pin at the low level after<br>the external reset is released<br>(excluding the processing time of the firmware to<br>control the flash memory) | tно     | POR and LVD reset are<br>released before external<br>reset release | 1    |      |      | ms   |



- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
  - $t_{\text{SU}}$ : Time to release the external reset after the TOOL0 pin is set to the low level
  - the: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)



## 3.2 Oscillator Characteristics

#### 3.2.1 X1 oscillator characteristics

#### $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

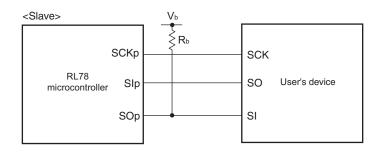
| Parameter                      | Resonator           | Conditions                            | MIN. | TYP. | MAX. | Unit |
|--------------------------------|---------------------|---------------------------------------|------|------|------|------|
| X1 clock oscillation           | Ceramic resonator / | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$ | 1.0  |      | 20.0 | MHz  |
| frequency (fx) <sup>Note</sup> | crystal oscillator  | $2.4~V \leq V_{\text{DD}} < 2.7~V$    | 1.0  |      | 8.0  |      |

**Note** Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

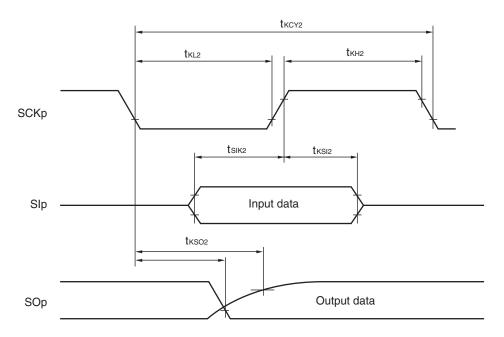
- **Caution** Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- Remark When using the X1 oscillator, refer to 5.4 System Clock Oscillator.

#### 3.2.2 On-chip oscillator characteristics

#### $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

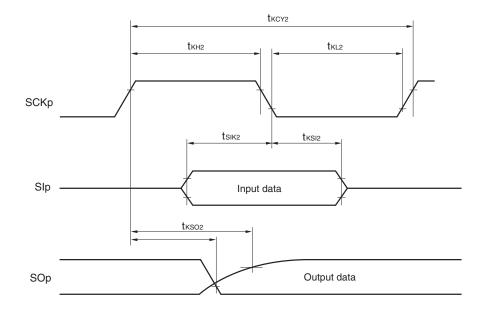

| Oscillators                                              | Parameters | Conditions      |                                |      | TYP. | MAX. | Unit |
|----------------------------------------------------------|------------|-----------------|--------------------------------|------|------|------|------|
| High-speed on-chip oscillator clock frequency Notes 1, 2 | fін        |                 |                                | 1    |      | 24   | MHz  |
| High-speed on-chip oscillator                            |            | R5F102 products | T <sub>A</sub> = -20 to +85°C  | -1.0 |      | +1.0 | %    |
| clock frequency accuracy                                 |            |                 | $T_A = -40$ to $-20^{\circ}C$  | -1.5 |      | +1.5 | %    |
|                                                          |            |                 | T <sub>A</sub> = +85 to +105°C | -2.0 |      | +2.0 | %    |
| Low-speed on-chip oscillator<br>clock frequency          | fı∟        |                 |                                |      | 15   |      | kHz  |
| Low-speed on-chip oscillator<br>clock frequency accuracy |            |                 |                                | -15  |      | +15  | %    |

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H) and bits 0 to 2 of HOCODIV register.


2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.



#### CSI mode connection diagram (during communication at different potential)




CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)



- Remarks 1.Rb [Ω]: Communication line (SOp) pull-up resistance, Cb [F]: Communication line (SOp) load capacitance,<br/>Vb [V]: Communication line voltage
  - **2.** p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)
  - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn))





## CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

**Remark** p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)



- **Notes 1.** Excludes quantization error ( $\pm 1/2$  LSB).
  - **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
  - 3. When AV<sub>REFP</sub> < V<sub>DD</sub>, the MAX. values are as follows. Overall error: Add  $\pm 1.0$  LSB to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>. Zero-scale error/Full-scale error: Add  $\pm 0.05\%$ FSR to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>. Integral linearity error/ Differential linearity error: Add  $\pm 0.5$  LSB to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>.
  - 4. Refer to 29.6.2 Temperature sensor/internal reference voltage characteristics.
- (2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI22

| $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{\text{REFP}}, \text{Reference voltage (-)} = 100^{\circ}\text{C}, 1$ |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| AVREFM = 0 V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

| Parameter                                         | Symbol        | Conditio                                                                    | ns                                  | MIN.   | TYP. | MAX.              | Unit |
|---------------------------------------------------|---------------|-----------------------------------------------------------------------------|-------------------------------------|--------|------|-------------------|------|
| Resolution                                        | Res           |                                                                             |                                     |        |      | 10                | bit  |
| Overall error Note 1                              | AINL          | 10-bit resolution<br>AV <sub>REFP</sub> = $V_{DD}^{Note 3}$                 |                                     |        | 1.2  | ±5.0              | LSB  |
| Conversion time                                   | <b>t</b> CONV | 10-bit resolution                                                           | $3.6~V \leq V \text{DD} \leq 5.5~V$ | 2.125  |      | 39                | μS   |
|                                                   |               | Target ANI pin: ANI16 to ANI22                                              | $2.7~V \leq V \text{DD} \leq 5.5~V$ | 3.1875 |      | 39                | μS   |
|                                                   |               | _                                                                           | $2.4~V \le V \text{DD} \le 5.5~V$   | 17     |      | 39                | μs   |
| Zero-scale error Notes 1, 2                       | EZS           | 10-bit resolution<br>AV <sub>REFP</sub> = V <sub>DD</sub> <sup>Note 3</sup> |                                     |        |      | ±0.35             | %FSR |
| Full-scale error Notes 1, 2                       | EFS           | 10-bit resolution<br>AV <sub>REFP</sub> = V <sub>DD</sub> <sup>Note 3</sup> |                                     |        |      | ±0.35             | %FSR |
| Integral linearity error Note 1                   | ILE           | 10-bit resolution<br>AV <sub>REFP</sub> = V <sub>DD</sub> <sup>Note 3</sup> |                                     |        |      | ±3.5              | LSB  |
| Differential linearity<br>error <sup>Note 1</sup> | DLE           | 10-bit resolution<br>AV <sub>REFP</sub> = V <sub>DD</sub> <sup>Note 3</sup> |                                     |        |      | ±2.0              | LSB  |
| Analog input voltage                              | VAIN          | ANI16 to ANI22                                                              |                                     | 0      |      | AVREFP<br>and VDD | V    |

**Notes 1.** Excludes quantization error ( $\pm 1/2$  LSB).

**2.** This value is indicated as a ratio (%FSR) to the full-scale value.

**3.** When  $AV_{REFP} \leq V_{DD}$ , the MAX. values are as follows.

Overall error: Add  $\pm 4.0$  LSB to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>.

Zero-scale error/Full-scale error: Add  $\pm 0.20\%$ FSR to the MAX. value when AV\_{REFP} = V\_{DD}.

Integral linearity error/ Differential linearity error: Add  $\pm 2.0$  LSB to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>.



# (4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AV<sub>REFM</sub> (ADREFM = 1), target pin: ANI0, ANI2, ANI3, and ANI16 to ANI22

(T<sub>A</sub> = -40 to +105°C, 2.4 V  $\leq$  V<sub>DD</sub>  $\leq$  5.5 V, V<sub>SS</sub> = 0 V, Reference voltage (+) = V<sub>BGR</sub><sup>Note 3</sup>, Reference voltage (-) = AV<sub>REFM</sub><sup>Note 4</sup> = 0 V, HS (high-speed main) mode)

| Parameter                                  | Symbol | Conditions       | MIN. | TYP. | MAX.                               | Unit |
|--------------------------------------------|--------|------------------|------|------|------------------------------------|------|
| Resolution                                 | Res    |                  |      | 8    |                                    | bit  |
| Conversion time                            | tCONV  | 8-bit resolution | 17   |      | 39                                 | μs   |
| Zero-scale error <sup>Notes 1, 2</sup>     | EZS    | 8-bit resolution |      |      | ±0.60                              | %FSR |
| Integral linearity error <sup>Note 1</sup> | ILE    | 8-bit resolution |      |      | ±2.0                               | LSB  |
| Differential linearity error Note 1        | DLE    | 8-bit resolution |      |      | ±1.0                               | LSB  |
| Analog input voltage                       | VAIN   |                  | 0    |      | $V_{\text{BGR}}{}^{\text{Note 3}}$ | V    |

**Notes 1.** Excludes quantization error ( $\pm 1/2$  LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

#### 3. Refer to 29.6.2 Temperature sensor/internal reference voltage characteristics.

4. When reference voltage (-) = Vss, the MAX. values are as follows.

Zero-scale error: Add  $\pm 0.35\%$ FSR to the MAX. value when reference voltage (–) = AV<sub>REFM</sub>. Integral linearity error: Add  $\pm 0.5$  LSB to the MAX. value when reference voltage (–) = AV<sub>REFM</sub>. Differential linearity error: Add  $\pm 0.2$  LSB to the MAX. value when reference voltage (–) = AV<sub>REFM</sub>.

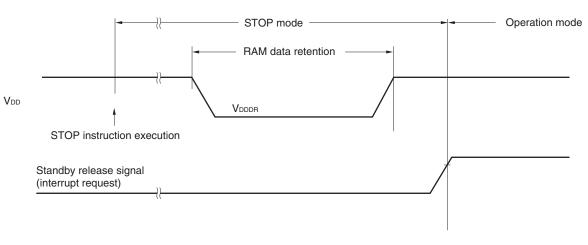


## 3.6.4 LVD circuit characteristics

# LVD Detection Voltage of Reset Mode and Interrupt Mode (T<sub>A</sub> = -40 to +105°C, V<sub>PDR</sub> $\leq$ V<sub>DD</sub> $\leq$ 5.5 V, V<sub>SS</sub> = 0 V)

| Parameter                | Symbol            | Conditions             | MIN. | TYP. | MAX. | Unit |
|--------------------------|-------------------|------------------------|------|------|------|------|
| Detection supply voltage | VLVDO             | Power supply rise time | 3.90 | 4.06 | 4.22 | V    |
|                          |                   | Power supply fall time | 3.83 | 3.98 | 4.13 | V    |
|                          | VLVD1             | Power supply rise time | 3.60 | 3.75 | 3.90 | V    |
|                          |                   | Power supply fall time | 3.53 | 3.67 | 3.81 | V    |
|                          | VLVD2             | Power supply rise time | 3.01 | 3.13 | 3.25 | V    |
|                          |                   | Power supply fall time | 2.94 | 3.06 | 3.18 | V    |
|                          | V <sub>LVD3</sub> | Power supply rise time | 2.90 | 3.02 | 3.14 | V    |
|                          |                   | Power supply fall time | 2.85 | 2.96 | 3.07 | V    |
|                          | VLVD4             | Power supply rise time | 2.81 | 2.92 | 3.03 | V    |
|                          |                   | Power supply fall time | 2.75 | 2.86 | 2.97 | V    |
|                          | VLVD5             | Power supply rise time | 2.70 | 2.81 | 2.92 | v    |
|                          |                   | Power supply fall time | 2.64 | 2.75 | 2.86 | v    |
|                          | VLVD6             | Power supply rise time | 2.61 | 2.71 | 2.81 | V    |
|                          |                   | Power supply fall time | 2.55 | 2.65 | 2.75 | V    |
|                          | VLVD7             | Power supply rise time | 2.51 | 2.61 | 2.71 | V    |
|                          |                   | Power supply fall time | 2.45 | 2.55 | 2.65 | V    |
| Minimum pulse width      | tıw               |                        | 300  |      |      | μs   |
| Detection delay time     |                   |                        |      |      | 300  | μs   |




<R>

## <R> 3.7 RAM Data Retention Characteristics

#### $(T_A = -40 \text{ to } +105^{\circ}\text{C}, V_{SS} = 0 \text{ V})$

| Parameter                     | Symbol | Conditions | MIN.                 | TYP. | MAX. | Unit |
|-------------------------------|--------|------------|----------------------|------|------|------|
| Data retention supply voltage | Vdddr  |            | 1.44 <sup>Note</sup> |      | 5.5  | V    |

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.



## 3.8 Flash Memory Programming Characteristics

| Parameter                                        | Symbol | Conditions                                             | MIN.    | TYP.      | MAX. | Unit  |
|--------------------------------------------------|--------|--------------------------------------------------------|---------|-----------|------|-------|
| System clock frequency                           | fськ   |                                                        | 1       |           | 24   | MHz   |
| Code flash memory rewritable times Notes 1, 2, 3 | Cerwr  | Retained for 20 years<br>$T_A = 85^{\circ}C^{Notes 4}$ | 1,000   |           |      | Times |
| Data flash memory rewritable times Notes 1, 2, 3 |        | Retained for 1 year<br>$T_A = 25^{\circ}C^{Notes 4}$   |         | 1,000,000 |      |       |
|                                                  |        | Retained for 5 years<br>$T_A = 85^{\circ}C^{Notes 4}$  | 100,000 |           |      |       |
|                                                  |        | Retained for 20 years<br>$T_A = 85^{\circ}C^{Notes 4}$ | 10,000  |           |      |       |

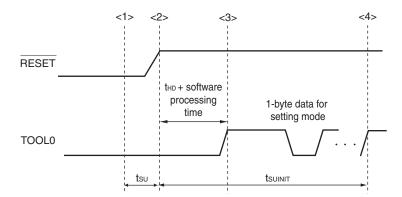
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$ 

**Notes 1.** 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.
- 4. This temperature is the average value at which data are retained.



## 3.9 Dedicated Flash Memory Programmer Communication (UART)


| Parameter     | Symbol | ol Conditions             |         | TYP. | MAX.      | Unit |  |  |  |
|---------------|--------|---------------------------|---------|------|-----------|------|--|--|--|
| Transfer rate |        | During serial programming | 115,200 |      | 1,000,000 | bps  |  |  |  |

## $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

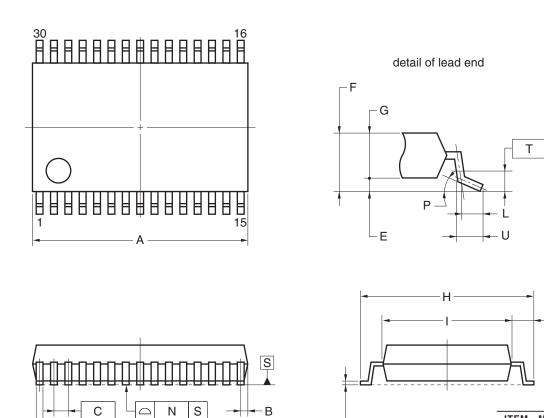
## 3.10 Timing of Entry to Flash Memory Programming Modes

#### $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

| Parameter                                                                                       | Symbol  | Conditions                                             | MIN. | TYP. | MAX. | Unit |
|-------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------|------|------|------|------|
| Time to complete the communication for the initial setting after the external reset is released | tsuinit | POR and LVD reset are released before external release |      |      | 100  | ms   |
| Time to release the external reset after the TOOL0 pin is set to the low level                  | tsu     | POR and LVD reset are released before external release | 10   |      |      | μS   |
| Time to hold the TOOL0 pin at the low level after the external reset is released                | tно     | POR and LVD reset are released before external release | 1    |      |      | ms   |
| (excluding the processing time of the firmware to control the flash memory)                     |         |                                                        |      |      |      |      |



- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
  - $t_{\text{su:}}$  Time to release the external reset after the TOOL0 pin is set to the low level
  - the: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)




<R>

## 4.3 30-pin products

R5F102AAASP, R5F102A9ASP, R5F102A8ASP, R5F102A7ASP R5F103AAASP, R5F103A9ASP, R5F103A8ASP, R5F103A7ASP R5F102AADSP, R5F102A9DSP, R5F102A8DSP, R5F102A7DSP R5F103AADSP, R5F103A9DSP, R5F103A8DSP, R5F103A7DSP R5F102AAGSP, R5F102A9GSP, R5F102A8GSP, R5F102A7GSP

| JEITA Package Code  | RENESAS Code | Previous Code  | MASS (TYP.) [g] |
|---------------------|--------------|----------------|-----------------|
| P-LSSOP30-0300-0.65 | PLSP0030JB-B | S30MC-65-5A4-3 | 0.18            |



## NOTE

DI⊕

MM

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

| ITEM | MILLIMETERS              |  |
|------|--------------------------|--|
| А    | 9.85±0.15                |  |
| В    | 0.45 MAX.                |  |
| С    | 0.65 (T.P.)              |  |
| D    | $0.24^{+0.08}_{-0.07}$   |  |
| E    | 0.1±0.05                 |  |
| F    | 1.3±0.1                  |  |
| G    | 1.2                      |  |
| Н    | 8.1±0.2                  |  |
| I    | 6.1±0.2                  |  |
| J    | 1.0±0.2                  |  |
| К    | 0.17±0.03                |  |
| L    | 0.5                      |  |
| М    | 0.13                     |  |
| Ν    | 0.10                     |  |
| Р    | 3° <sup>+5°</sup><br>-3° |  |
| Т    | 0.25                     |  |
| U    | 0.6±0.15                 |  |
|      |                          |  |

J

©2012 Renesas Electronics Corporation. All rights reserved.



Κ

**Revision History** 

## RL78/G12 Data Sheet

|      |              |                                                | Description                                                                                      |  |  |
|------|--------------|------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|
| Rev. | Date         | Page                                           | Summary                                                                                          |  |  |
| 1.00 | Dec 10, 2012 | -                                              | First Edition issued                                                                             |  |  |
| 2.00 | Sep 06, 2013 | 1                                              | Modification of 1.1 Features                                                                     |  |  |
|      | 3            | Modification of 1.2 List of Part Numbers       |                                                                                                  |  |  |
|      |              | 4                                              | Modification of Table 1-1. List of Ordering Part Numbers, Note, and Caution                      |  |  |
|      | 7 to 9       | Modification of package name in 1.4.1 to 1.4.3 |                                                                                                  |  |  |
|      |              | 14                                             | Modification of tables in 1.7 Outline of Functions                                               |  |  |
|      |              | 17                                             | Modification of description of table in 2.1 Absolute Maximum Ratings (TA = 25°C)                 |  |  |
|      |              | 18                                             | Modification of table, Note, and Caution in 2.2.1 X1 oscillator characteristics                  |  |  |
|      |              | 18<br>19                                       | Modification of table in 2.2.2 On-chip oscillator characteristics                                |  |  |
|      |              | 20                                             | Modification of Note 3 in 2.3.1 Pin characteristics (1/4)                                        |  |  |
|      |              |                                                | Modification of Note 3 in 2.3.1 Pin characteristics (2/4)                                        |  |  |
|      |              | 23                                             | Modification of Notes 1 and 2 in (1) 20-, 24-pin products (1/2)                                  |  |  |
|      |              | 24                                             | Modification of Notes 1 and 3 in (1) 20-, 24-pin products (2/2)                                  |  |  |
|      |              | 25                                             | Modification of Notes 1 and 2 in (2) 30-pin products (1/2)                                       |  |  |
|      |              | 26                                             | Modification of Notes 1 and 3 in (2) 30-pin products (2/2)                                       |  |  |
|      |              | 27                                             | Modification of (3) Peripheral functions (Common to all products)                                |  |  |
|      |              | 28                                             | Modification of table in 2.4 AC Characteristics                                                  |  |  |
|      |              | 29                                             | Addition of Minimum Instruction Execution Time during Main System Clock Operation                |  |  |
|      |              | 30                                             | Modification of figures of AC Timing Test Point and External Main System Clock Timing            |  |  |
|      |              | 31                                             | Modification of figure of AC Timing Test Point                                                   |  |  |
|      |              | 31                                             | Modification of description and Note 2 in (1) During communication at same potential (UART mode) |  |  |
|      |              | 32                                             | Modification of description in (2) During communication at same potential (CSI mode)             |  |  |
|      |              | 33                                             | Modification of description in (3) During communication at same potential (CSI mode)             |  |  |
|      |              | 34                                             | Modification of description in (4) During communication at same potential (CSI mode)             |  |  |
|      |              | 36                                             | Modification of table and Note 2 in (5) During communication at same potential                   |  |  |
|      |              |                                                | (simplified l <sup>2</sup> C mode)                                                               |  |  |
|      |              | 38, 39                                         | Modification of table and Notes 1 to 9 in (6) Communication at different potential               |  |  |
|      |              | 00,00                                          | (1.8 V, 2.5 V, 3 V) (UART mode)                                                                  |  |  |
|      |              | 40                                             | Modification of Remarks 1 to 3 in (6) Communication at different potential (1.8 V,               |  |  |
|      | 10           | 2.5 V, 3 V) (UART mode)                        |                                                                                                  |  |  |
|      |              | 41                                             | Modification of table in (7) Communication at different potential (2.5 V, 3 V) (CSI mode)        |  |  |
|      |              | 42                                             | Modification of Caution in (7) Communication at different potential (2.5 V, 3 V) (CSI mode)      |  |  |
|      |              | 43                                             | Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI       |  |  |
|      | 40           | mode) (1/3)                                    |                                                                                                  |  |  |
|      |              | 44                                             | Modification of table and Notes 1 and 2 in (8) Communication at different potential (1.8         |  |  |
|      | 44           | V, 2.5 V, 3 V) (CSI mode) (2/3)                |                                                                                                  |  |  |
|      |              | 45                                             | Modification of table, Note 1, and Caution 1 in (8) Communication at different potential         |  |  |
|      | 45           | (1.8  V, 2.5  V, 3  V) (CSI mode) (3/3)        |                                                                                                  |  |  |
|      |              | 47                                             | Modification of table in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI       |  |  |
|      |              | 47                                             | mode)                                                                                            |  |  |
|      |              | 50                                             | Modification of table, Note 1, and Caution 1 in (10) Communication at different potential        |  |  |
|      |              | 50                                             | (1.8  V, 2.5  V, 3  V) (simplified I <sup>2</sup> C mode)                                        |  |  |
|      |              | 50                                             | Modification of Remark in 2.5.2 Serial interface IICA                                            |  |  |
|      |              | 52                                             | Addition of table to 2.6.1 A/D converter characteristics                                         |  |  |
|      |              | 53                                             |                                                                                                  |  |  |
|      |              | 53                                             | Modification of description in 2.6.1 (1)                                                         |  |  |
|      |              | 54                                             | Modification of Notes 3 to 5 in 2.6.1 (1)                                                        |  |  |
|      |              | 54                                             | Modification of description and Notes 2 to 4 in 2.6.1 (2)                                        |  |  |