

Welcome to E-XFL.COM

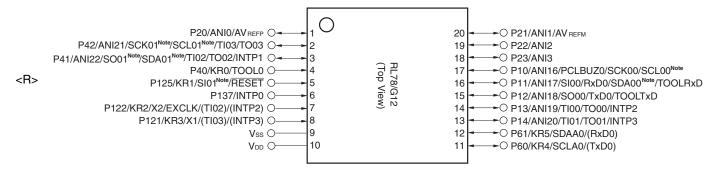
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	24-WFQFN Exposed Pad
Supplier Device Package	24-HWQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f1027agna-u5

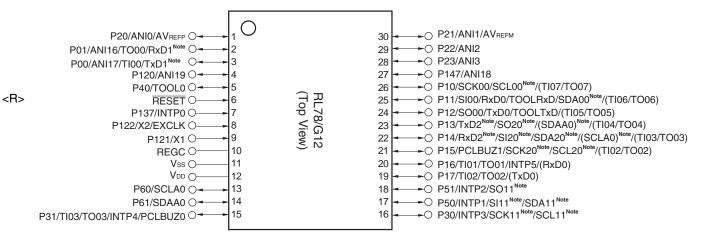

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.4 Pin Configuration (Top View)

1.4.1 20-pin products

• 20-pin plastic LSSOP (4.4 × 6.5 mm, 0.65 mm pitch)


Note Provided only in the R5F102 products.

- Remarks 1. For pin identification, see 1.5 Pin Identification.
 - 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR).

1.4.3 30-pin products

• 30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)

Note Provided only in the R5F102 products.

Caution Connect the REGC pin to Vss via capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.5 Pin Identification.

2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR).

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings (TA = 25°C)

Parameter	Symbols		Conditions	Ratings	Unit
Supply Voltage	VDD			-0.5 to + 6.5	V
REGC terminal input voltage ^{Note1}	VIREGC	REGC	REGC		V
Input Voltage	VI1	Other than P60, F	261	-0.3 to V _{DD} + $0.3^{Note 3}$	V
	VI2	P60, P61 (N-ch o	pen drain)	-0.3 to 6.5	V
Output Voltage	Vo			-0.3 to VDD + 0.3 ^{Note 3}	V
Analog input voltage	VAI	20-, 24-pin produ	cts: ANI0 to ANI3, ANI16 to ANI22	-0.3 to V _{DD} + 0.3	V
		30-pin products: A	ANIO to ANI3, ANI16 to ANI19	and –0.3 to AVREF(+)+0.3 ^{Notes 3, 4}	
Output current, high	Іон1	Per pin	Other than P20 to P23	-40	mA
		Total of all pins	All the terminals other than P20 to P23	-170	mA
			20-, 24-pin products: P40 to P42	-70	mA
			30-pin products: P00, P01, P40, P120		
			20-, 24-pin products: P00 to P03 ^{Note 5} , P10 to P14 30-pin products: P10 to P17, P30, P31, P50, P51, P147	-100	mA
	Іон2	Per pin	P20 to P23	-0.5	mA
		Total of all pins		-2	mA
Output current, low	IOL1	Per pin	Other than P20 to P23	40	mA
		Total of all pins	All the terminals other than P20 to P23	170	mA
			20-, 24-pin products: P40 to P42 30-pin products: P00, P01, P40, P120	70	mA
			20-, 24-pin products: P00 to P03 ^{Note 5} , P10 to P14, P60, P61 30-pin products: P10 to P17, P30, P31, P50, P51, P60, P61, P147	100	mA
	IOL2	Per pin	P20 to P23	1	mA
		Total of all pins	7	5	mA
Operating ambient temperature	TA			-40 to +85	°C
Storage temperature	Tstg			-65 to +150	°C

Notes 1. 30-pin product only.

- 2. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value determines the absolute maximum rating of the REGC pin. Do not use it with voltage applied.
- **3.** Must be 6.5 V or lower.
- 4. Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.
- **5.** 24-pin products only.
- **Caution** Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** AVREF(+) : + side reference voltage of the A/D converter.
 - 3. Vss : Reference voltage

(1/2)

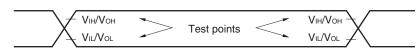
2.3.2 Supply current characteristics

(1) 20-, 24-pin products

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit						
Supply	IDD1	Operating	HS(High-speed	$f_{IH}=24~MHz^{\text{Note 3}}$	Basic	$V_{DD} = 5.0 V$		1.5		mA						
current ^{Note 1}		mode	main) mode ^{№te4}		operation	V _{DD} = 3.0 V		1.5								
					Normal	$V_{DD} = 5.0 V$		3.3	5.0	mA						
					operation	$V_{DD} = 3.0 V$		3.3	5.0							
				$f_{\text{IH}} = 16 \; MHz^{\text{Note 3}}$		$V_{DD} = 5.0 V$		2.5	3.7	mA						
						$V_{DD} = 3.0 V$		2.5	3.7							
			LS(Low-speed	$f_{\text{IH}} = 8 \; MHz^{\text{Note 3}}$		$V_{DD} = 3.0 V$		1.2	1.8	mA						
			main) mode ^{™e₄}			$V_{DD} = 2.0 V$		1.2	1.8							
			HS(High-speed	$f_{MX} = 20 \text{ MHz}^{Note 2},$		Square wave input		2.8	4.4	mA						
			main) mode ^{№064}	$V_{\text{DD}} = 5.0 \text{ V}$	$V_{DD} = 5.0 V$	VDD = 5.0 V	VDD = 5.0 V	$V_{DD} = 5.0 V$	$V_{DD} = 5.0 V$	VDD = 5.0 V		Resonator connection		3.0	4.6	
				$f_{MX} = 20 \text{ MHz}^{Note 2},$		Square wave input		2.8	4.4	mA						
				$V_{DD} = 3.0 V$		Resonator connection		3.0	4.6							
				$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		1.8	2.6	mA						
				$V_{DD} = 5.0 V$		Resonator connection		1.8	2.6							
				$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		1.8	2.6	mA						
				$V_{DD} = 3.0 V$		Resonator connection		1.8	2.6							
			LS(Low-speed	$f_{MX} = 8 MHz^{Note2}$,		Square wave input		1.1	1.7	mA						
			main) mode ^{№te4}	$V_{DD} = 3.0 V$		Resonator connection		1.1	1.7							
				$f_{MX} = 8 MHz^{Note 2},$		Square wave input		1.1	1.7	mA						
				VDD = 2.0 V		Resonator connection		1.1	1.7							

Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. When high-speed on-chip oscillator clock is stopped.
- **3.** When high-speed system clock is stopped
- **4.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.


HS(High speed main) mode: $V_{DD} = 2.7 \text{ V}$ to 5.5 V @1 MHz to 24 MHz $V_{DD} = 2.4 \text{ V}$ to 5.5 V @1 MHz to 16 MHz

- LS(Low speed main) mode: $V_{DD} = 1.8 V$ to 5.5 V @1 MHz to 8 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fil: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$.

2.5 Peripheral Functions Characteristics

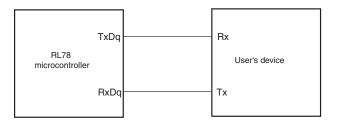
AC Timing Test Point

2.5.1 Serial array unit

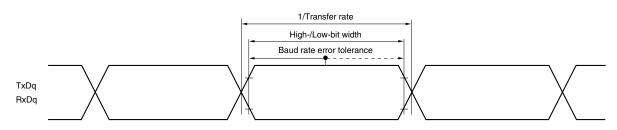
(1) During communication at same potential (UART mode) ($T_A = -40$ to $+85^{\circ}$ C, 1.8 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

(1A = 10.10	,						
Parameter	Symbol	Conditions		h-speed Mode	•	/-speed Mode	Unit
			MIN.	MAX.	MIN.	MAX.	
Transfer rate				fмск/6		fмск/6	bps
Note 1		Theoretical value of the maximum transfer rate $f_{\text{CLK}} = f_{\text{MCK}}{}^{\text{Note2}}$		4.0		1.3	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.


2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are: HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 5.5 V)

16 MHz (2.4 V
$$\leq$$
 VDD \leq 5.5 V)


LS (low-speed main) mode: 8 MHz (1.8 V
$$\leq$$
 VDD \leq 5.5 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

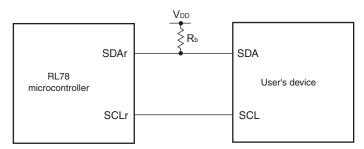
Remarks 1. q: UART number (q = 0 to 2), g: PIM, POM number (g = 0, 1)

2. fMCK: Serial array unit operation clock frequency

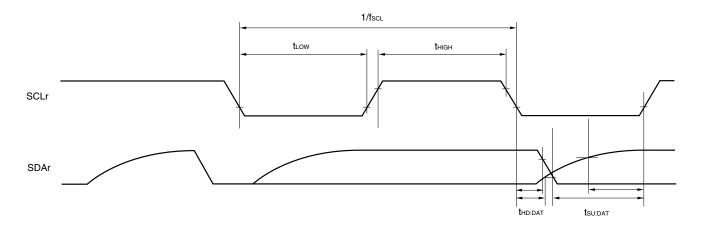
(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

(2) During communication at same potential (CSI mode) (master mode, SCK00... internal clock output, corresponding CSI00 only)


Parameter	Symbol	Conditions	× • •	HS (high-speed main) Mode		LS (low-speed main) Mode		
			MIN.	MAX.	MIN.	MAX.		
SCK00 cycle time	tксү1	tκcγ1 ≥ 2/fc∟κ	83.3		250		ns	
SCK00 high-/low-	tкнı,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	tксү1/ 2 –7		tксү1/2–50		ns	
level width	tĸ∟1	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	tксү1/2–10		tксү1/2–50		ns	
SI00 setup time	tsik1	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	23		110		ns	
(to SCK00↑) ^{Note 1}		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	33		110		ns	
SI00 hold time (from SCK00↑) ^{Note2}	tksi1		10		10		ns	
Delay time from SCK00↓ to SO00 output ^{Note 3}	tkso1	C = 20 pF ^{Note 4}		10		10	ns	

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$


- **Notes 1.** When DAP00 = 0 and CKP00 = 0, or DAP00 = 1 and CKP00 = 1. The SI00 setup time becomes "to $SCK00\downarrow$ " when DAP00 = 0 and CKP00 = 1, or DAP00 = 1 and CKP00 = 0.
 - 2. When DAP00 = 0 and CKP00 = 0, or DAP00 = 1 and CKP00 = 1. The SI00 hold time becomes "from SCK00↓" when DAP00 = 0 and CKP00 = 1, or DAP00 = 1 and CKP00 = 0.
 - **3.** When DAP00 = 0 and CKP00 = 0, or DAP00 = 1 and CKP00 = 1. The delay time to SO00 output becomes "from SCK00∱" when DAP00 = 0 and CKP00 = 1, or DAP00 = 1 and CKP00 = 0.
 - 4. C is the load capacitance of the SCK00 and SO00 output lines.
- **Caution** Select the normal input buffer for the SI00 pin and the normal output mode for the SO00 and SCK00 pins by using port input mode register 1 (PIM1) and port output mode register 1 (POM1).
- Remarks 1. This specification is valid only when CSI00's peripheral I/O redirect function is not used.
 - 2. fMCK: Serial array unit operation clock frequency
 - (Operation clock to be set by the serial clock select register 0 (SPS0) and the CKS00 bit of serial mode register 00 (SMR00).)

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- 2. r: IIC number (r = 00, 01, 11, 20), h: = POM number (h = 0, 1, 4, 5)
- fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (0, 1, 3))
- **4.** Simplified I²C mode is supported only by the R5F102 products.

- 5. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
- 6. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq V_DD < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-Cb \times Rb \times ln (1 - \frac{2.0}{Vb})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =

 $\begin{array}{c} \displaystyle \frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \\ \hline \\ \displaystyle (\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits} \end{array} \times 100 \ [\%]$ * This value is the theoretical value of the relative difference between the transmission and reception sides.

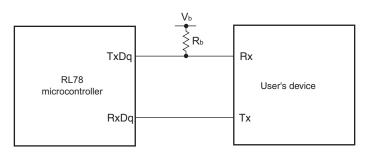
- 7. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.
- 8. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq V_DD < 3.3 V, 1.6 V \leq V_b \leq 2.0 V

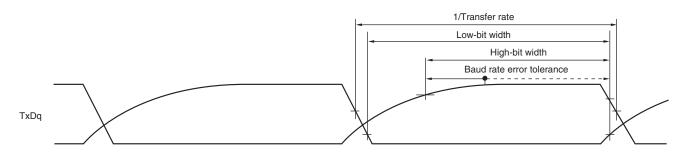
Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

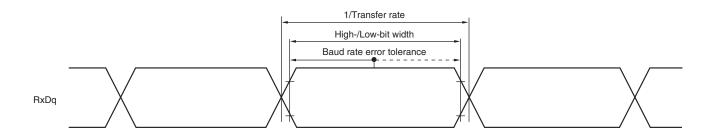
Baud rate error (theoretical value) =

$$\frac{1}{\text{ransfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\}$$

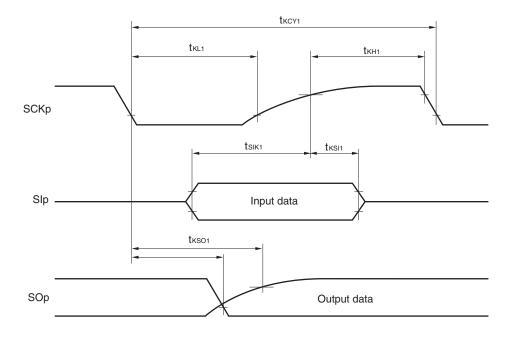

$$\frac{1}{(1 - \frac{1.5}{V_b})} \times 100 \,[\%]$$
Transfer rate

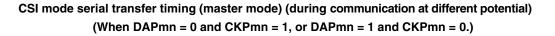
* This value is the theoretical value of the relative difference between the transmission and reception sides.

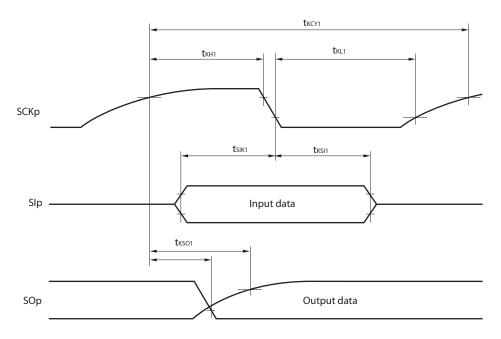

- 9. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 8 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDg pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and V_{IL}, see the DC characteristics with TTL input buffer selected.



UART mode connection diagram (during communication at different potential)


UART mode bit width (during communication at different potential) (reference)




- **Remarks 1.** R_b[Ω]: Communication line (TxDq) pull-up resistance, C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)
 - fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 - m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))
 - **4.** UART0 of the 20- and 24-pin products supports communication at different potential only when the peripheral I/O redirection function is not used.

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1)

Parameter	Symbol	C	onditions	HS (high-spo Mod	,	LS (low-spe Mod		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	t ксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	20 MHz < fmck \leq 24 MHz	12/fмск		-		ns
		$2.7~V \leq V_b \leq 4.0~V$	8 MHz < fмск ≤ 20 MHz	10/fмск		-		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	8/fмск		16/fмск		ns
			fмск \leq 4 MHz	6/fмск		10/f мск		ns
		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	20 MHz < fмск \leq 24 MHz	16/fмск		I		ns
		$2.3~V \leq V_b \leq 2.7~V$	16 MHz < fмск \leq 20 MHz	14/fмск		ļ		ns
			8 MHz < fmck \leq 16 MHz	12/fмск		I		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	8/fмск		16/f мск		ns
			fмск ≤ 4 MHz	6/fмск		10/f мск		ns
		$1.8~V \leq V_{\text{DD}} < 3.3~V,$	20 MHz < fмск \leq 24 MHz	36/fмск		I		ns
		$\begin{array}{l} 1.6 \ V \leq V_b \leq 2.0 \ V \\ _{Note \ 2} \end{array}$	16 MHz < fмск \leq 20 MHz	32/fмск		ļ		ns
			8 MHz < fmck \leq 16 MHz	26/f мск		ļ		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	16/fмск		16/fмск		ns
			fмск \leq 4 MHz	10/fмск		10/f мск		ns
SCKp high-/low-level	t кн2,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	$2.7~V \leq V_b \leq 4.0~V$	tксү2/2 – 12		tксү2/2 – 50		ns
width	tĸl2	$2.7~V \leq V_{\text{DD}} < 4.0~V,$	$2.3~V \leq V_{b} \leq 2.7~V$	tkcy2/2 - 18		tксү2/2 – 50		ns
		$1.8~V \leq V_{\text{DD}} < 3.3~V,$	$1.6~V \leq V_{b} \leq 2.0~V^{\text{Note 2}}$	tkcy2/2 - 50		tксү2/2 – 50		ns
SIp setup time	tsik2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	$2.7~V \leq V_{\text{DD}} \leq 4.0~V$	1/fмск + 20		1/fмск + 30		ns
(to SCKp↑) ^{Note 3}		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	$2.3~V \leq V_{\text{b}} \leq 2.7~V$	1/fмск + 20		1/fмск + 30		ns
		$1.8~V \leq V_{\text{DD}} < 3.3~V,$	$1.6~V \leq V_{\text{DD}} \leq 2.0~V^{\text{Note 2}}$	1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) ^{Note 4}	tksi2			1/fмск + 31		1/fмск + 31		ns
Delay time from	tĸso2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	$2.7~V \leq V_b \leq 4.0~V,$		2/fмск +		2/fмск +	ns
SCKp↓ to SOp		$C_b = 30 \text{ pF}, \text{ R}_b = 1.4$	kΩ		120		573	
output Note 5		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	$2.3~V \leq V_{b} \leq 2.7~V,$		2/fмск +		2/fмск +	ns
		$C_b = 30 \text{ pF}, \text{ R}_b = 2.7$	kΩ		214		573	
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V},$	$1.6~V \leq V_{b} \leq 2.0~V^{\text{Note 2}},$		2/fмск +		2/fмск +	ns
		C _b = 30 pF, R _b = 5.5	kΩ		573		573	

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) ($T_A = -40$ to $+85^{\circ}$ C, 1.8 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

 $\textbf{2.} \quad \textbf{Use it with } V_{\text{DD}} \geq V_{\text{b}}.$

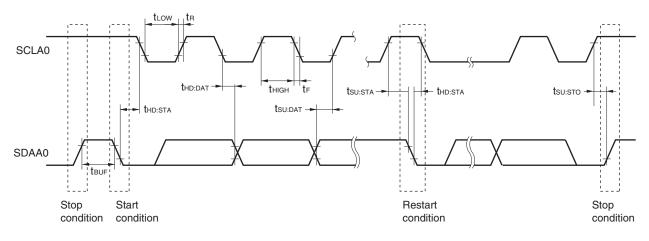
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Cautions 1. Select the TTL input buffer for the SIp and SCKp pins and the N-ch open drain output (Vbb tolerance) mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For ViH and ViL, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.

2.5.2 Serial interface IICA

Parameter	Symbol	Conditions	HS	HS (high-speed main) mode				
			LS	(low-spee				
			Standa	rd Mode	Fast	Mode		
			MIN.	MAX.	MIN.	MAX.		
SCLA0 clock frequency	fsc∟	Fast mode: fclk≥ 3.5 MHz			0	400	kHz	
		Normal mode: fcLK≥ 1 MHz	0	100			kHz	
Setup time of restart condition	tsu:sta		4.7		0.6		μS	
Hold time ^{Note 1}	thd:sta		4.0		0.6		μS	
Hold time when SCLA0 = "L"	tLOW		4.7		1.3		μs	
Hold time when SCLA0 = "H"	tніgн		4.0		0.6		μs	
Data setup time (reception)	tsu:dat		250		100		ns	
Data hold time (transmission) ^{Note 2}	thd:dat		0	3.45	0	0.9	μs	
Setup time of stop condition	tsu:sto		4.0		0.6		μs	
Bus-free time	t BUF		4.7		1.3		μs	

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

<R>


The first clock pulse is generated after this period when the start/restart condition is detected. Notes 1.

2. The maximum value (MAX.) of thD:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution Only in the 30-pin products, the values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Normal mode:	$C_b = 400 \text{ pF}, \text{ Rb} = 2.7 \text{ k}\Omega$
Fast mode:	C_b = 320 pF, Rb = 1.1 k Ω

IICA serial transfer timing

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When AV_{REFP} < V_{DD}, the MAX. values are as follows. Overall error: Add ±1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.05%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.
- 4. Values when the conversion time is set to 57 μs (min.) and 95 μs (max.).
- 5. Refer to 28.6.2 Temperature sensor/internal reference voltage characteristics.
- (2) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI22

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{AV}_{REFP}, \text{ Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

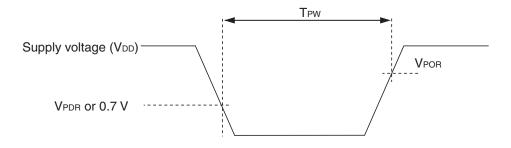
Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error Note 1	AINL	10-bit resolution			1.2	±5.0	LSB
		$AV_{REFP} = V_{DD}^{Note 3}$			1.2	$\pm 8.5^{\text{Note 4}}$	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \le V \text{DD} \le 5.5~V$	2.125		39	μS
		Target ANI pin: ANI16 to ANI22	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μS
			$1.8~V \le V \text{DD} \le 5.5~V$	17		39	μS
				57		95	μS
Zero-scale error Notes 1, 2	EZS	10-bit resolution				±0.35	%FSR
		$AV_{REFP} = V_{DD}^{Note 3}$				$\pm 0.60^{\text{Note 4}}$	%FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution				±0.35	%FSR
		$AV_{REFP} = V_{DD}^{Note 3}$				$\pm 0.60^{\text{Note 4}}$	%FSR
Integral linearity error Note 1	ILE	10-bit resolution				±3.5	LSB
		$AV_{REFP} = V_{DD}^{Note 3}$				$\pm 6.0^{\text{Note 4}}$	LSB
Differential linearity	DLE	10-bit resolution				±2.0	LSB
error ^{Note 1}		$AV_{REFP} = V_{DD}^{Note 3}$				±2.5 ^{Note 4}	LSB
Analog input voltage	VAIN	ANI16 to ANI22		0		AVREFP and VDD	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- **3.** When AV_{REFP} \leq V_{DD}, the MAX. values are as follows. Overall error: Add ±4.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.20%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.
- 4. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).

2.6.2 Temperature sensor/internal reference voltage characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.50	V
Temperature coefficient	Fvtmps	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

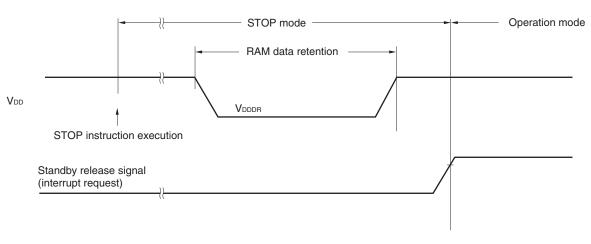

(T_A = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, HS (high-speed main) mode

2.6.3 POR circuit characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.47	1.51	1.55	V
	VPDR	Power supply fall time	1.46	1.50	1.54	V
Minimum pulse width Note	TPW		300			μS

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).



<R> 2.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$						
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vdddr		1.46 ^{Note}		5.5	V

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

2.8 Flash Memory Programming Characteristics

<r></r>	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	System clock frequency	fclĸ		1		24	MHz
	Code flash memory rewritable times	Cerwr	Retained for 20 years	1,000			Times
Notes 1, 2, 3			$T_A = 85^{\circ}C$				
	Data flash memory rewritable times Notes 1, 2, 3		Retained for 1 year		1,000,000		
			$T_A = 25^{\circ}C$				
			Retained for 5 years	100,000			
			$T_A = 85^{\circ}C$				
			Retained for 20 years	10,000			
			$T_A = 85^{\circ}C$				

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

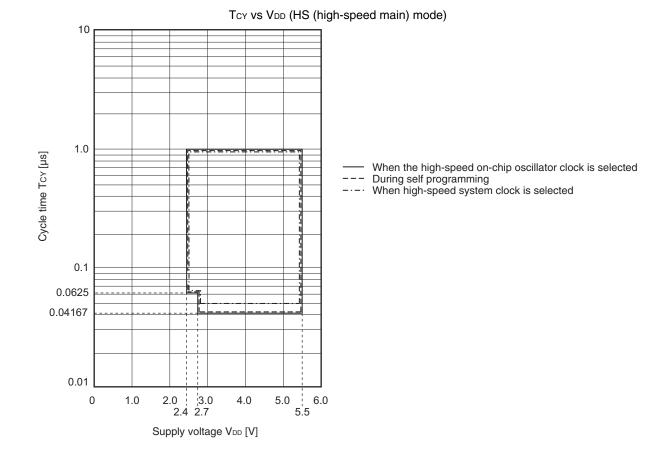
- 2. When using flash memory programmer and Renesas Electronics self programming library
- 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

3.1 Absolute Maximum Ratings

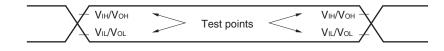
Absolute Maximum Ratings (T_A = 25°C)

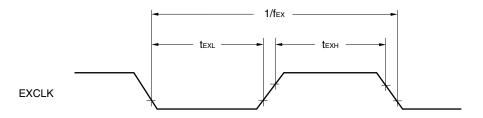
Parameter	Symbols		Conditions	Ratings	Unit
Supply Voltage	VDD			-0.5 to + 6.5	V
REGC terminal input voltage ^{Note1}	VIREGC	REGC		-0.3 to +2.8 and -0.3 to V _{DD} + 0.3 _{Note 2}	V
Input Voltage	VI1	Other than P60, F	261	-0.3 to V _{DD} + 0.3 ^{Note 3}	V
	VI2	P60, P61 (N-ch o	pen drain)	-0.3 to 6.5	V
Output Voltage	Vo			-0.3 to V _{DD} + 0.3 ^{Note 3}	V
Analog input voltage VAI	VAI	20, 24-pin produc	ts: ANI0 to ANI3, ANI16 to ANI22	-0.3 to V _{DD} + 0.3	V
		30-pin products: A	ANIO to ANI3, ANI16 to ANI19	and -0.3 to AVREF(+)+0.3 ^{Notes 3, 4}	
Output current, high	Іон1	Per pin	Other than P20 to P23	-40	mA
		Total of all pins	All the terminals other than P20 to P23	-170	mA
			20-, 24-pin products: P40 to P42	-70	mA
			30-pin products: P00, P01, P40, P120		
			20-, 24-pin products: P00 to P03 ^{Note 5} , P10 to P14 30-pin products: P10 to P17, P30, P31, P50, P51, P147	-100	mA
	Iон2 Per pin		P20 to P23	-0.5	mA
		Total of all pins		-2	mA
Output current, low IOL1	IOL1	Per pin	Other than P20 to P23	40	mA
		Total of all pins	All the terminals other than P20 to P23	170	mA
			20-, 24-pin products: P40 to P42 30-pin products: P00, P01, P40, P120	70	mA
I _{OL2}			20-, 24-pin products: P00 to P03 ^{Note 5} , P10 to P14, P60, P61 30-pin products: P10 to P17, P30, P31, P50, P51, P60, P61, P147	100	mA
	I _{OL2}	Per pin	P20 to P23	1	mA
		Total of all pins		5	mA
Operating ambient temperature	TA			-40 to +105	°C
Storage temperature	Tstg			-65 to +150	°C

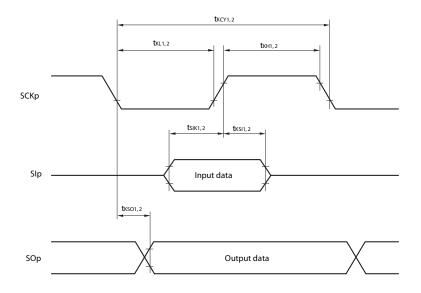
Notes 1. 30-pin product only.

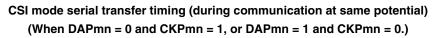

- 2. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value determines the absolute maximum rating of the REGC pin. Do not use it with voltage applied.
- 3. Must be 6.5 V or lower.
- 4. Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.
- 5. 24-pin products only.

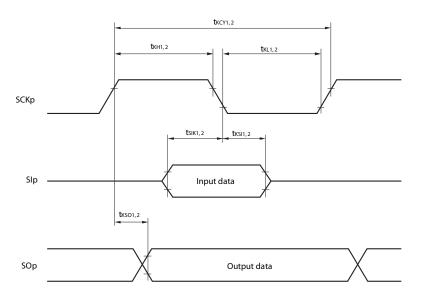
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.


- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** AVREF(+) : + side reference voltage of the A/D converter.
 - 3. Vss : Reference voltage


Minimum Instruction Execution Time during Main System Clock Operation


AC Timing Test Point


External Main System Clock Timing



CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- Remarks 1. p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3)
 2. fMCK: Serial array unit operation clock frequency
 - (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3))

(3) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V_{ss} (ADREFM = 0), target pin: ANI0 to ANI3, ANI16 to ANI22, internal reference voltage, and temperature sensor output voltage

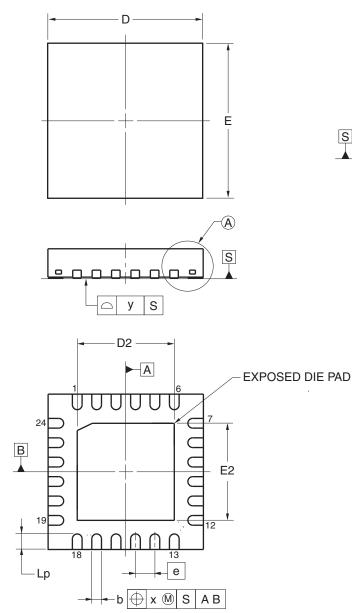
Parameter	Symbol	Condition	ns	MIN.	TYP.	MAX.	Unit
Resolution	Res					10	bit
Overall error ^{Note 1}	AINL	10-bit resolution			1.2	±7.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μs
		Target pin: ANI0 to ANI3,	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μs
		ANI16 to ANI22	rget pin: ANI0 to ANI3, II16 to ANI22 $2.7 \ V \le V_{DD} \le 5.5 \ V$ 2.4 $V \le V_{DD} \le 5.5 \ V$ $2.4 \ V \le V_{DD} \le 5.5 \ V$ -bit resolution $3.6 \ V \le V_{DD} \le 5.5 \ V$ rget pin: internal reference Itage, and temperature nsor output voltage (HS gh-speed main) mode) $2.7 \ V \le V_{DD} \le 5.5 \ V$ -bit resolution $2.7 \ V \le V_{DD} \le 5.5 \ V$ -bit resolution $2.4 \ V \le V_{DD} \le 5.5 \ V$	17		39	μs
Conversion time	tconv	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.375		39	μs
		voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.7 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	3.5625		39	μs
			$2.4~V \le V_{DD} \le 5.5~V$	17		39	μS
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution			±0.60	%FSR	
Full-scale error ^{Notes 1, 2}	EFS	10-bit resolution			±0.60	%FSR	
Integral linearity error ^{Note 1}	ILE	10-bit resolution				±4.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution				±2.0	LSB
Analog input voltage	VAIN	ANI0 to ANI3, ANI16 to ANI2	2	0		VDD	V
		Internal reference voltage (HS (high-speed main) mode) Temperature sensor output voltage (HS (high-speed main) mode)		VBGR Note 3			V
					VTMPS25 Note 3		V

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V})$	$V_{ee} = 0 V Beference voltage (+) = V_{ee}$	Reference voltage (_) – Vee)
$(1A = -40 \ 10 \ +105 \ 0; \ 2.4 \ V \ \le \ V \ DD \ \le \ 5.5 \ V$	$v_{SS} = 0 v$, herefore voltage (+) = v_{DD}	, menerence vonage $(-) = v_{33}$

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. Refer to 29.6.2 Temperature sensor/internal reference voltage characteristics.


4.2 24-pin products

R5F1027AANA, R5F10279ANA, R5F10278ANA, R5F10277ANA R5F1037AANA, R5F10379ANA, R5F10378ANA, R5F10377ANA R5F1027ADNA, R5F10279DNA, R5F10278DNA, R5F10277DNA R5F1037ADNA, R5F10379DNA, R5F10378DNA, R5F10377DNA R5F1027AGNA, R5F10279GNA, R5F10278GNA, R5F10277GNA

<R>

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-HWQFN24-4x4-0.50	PWQN0024KE-A	P24K8-50-CAB-1	0.04

S

(UNIT:mm) DIMENSIONS ITEM D $4.00\pm\!0.05$ Е 4.00 ± 0.05 А 0.75±0.05 0.25 + 0.05 - 0.07b 0.50 е Lp $0.40\pm\!0.10$ х 0.05 у 0.05

l r	ITEM		D2			E2		
			MIN	NOM	MAX	MIN	NOM	MAX
EXPO DIE PA VARIA		А	2.45	2.50	2.55	2.45	2.50	2.55

DETAIL OF (A) PART

©2012 Renesas Electronics Corporation. All rights reserved.

