

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFI

Product Status	Discontinued at Digi-Key
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	30-LSSOP (0.240", 6.10mm Width)
Supplier Device Package	30-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f102a7dsp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3 Differences between the R5F102 Products and the R5F103 Products

The following are differences between the R5F102 products and the R5F103 products.

- O Whether the data flash memory is mounted or not
- O High-speed on-chip oscillator oscillation frequency accuracy
- O Number of channels in serial interface
- O Whether the DMA function is mounted or not
- O Whether a part of the safety functions are mounted or not

1.3.1 Data Flash

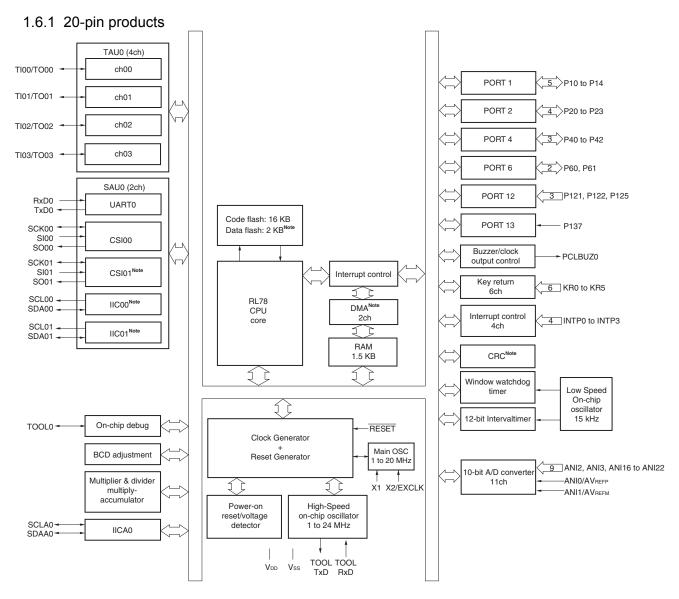
The data flash memory of 2 KB is mounted on the R5F102 products, but not on the R5F103 products.

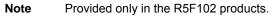
Product	Data Flash
R5F102 products	2KB
R5F1026A, R5F1027A, R5F102AA,	
R5F10269, R5F10279, R5F102A9,	
R5F10268, R5F10278, R5F102A8,	
R5F10267, R5F10277, R5F102A7,	
R5F10266 Note	
R5F103 products	Not mounted
R5F1036A, R5F1037A, R5F103AA,	
R5F10369, R5F10379, R5F103A9,	
R5F10368, R5F10378 R5F103A8,	
R5F10367, R5F10377, R5F103A7,	
R5F10366	

- **Note** The RAM in the R5F10266 has capacity as small as 256 bytes. Depending on the customer's program specification, the stack area to execute the data flash library may not be kept and data may not be written to or erased from the data flash memory.
- **Caution** When the flash memory is rewritten via a user program, the code flash area and RAM area are used because each library is used. When using the library, refer to RL78 Family Flash Self Programming Library Type01 User's Manual and RL78 Family Data Flash Library Type04 User's Manual.

1.4.2 24-pin products

<R> • 24-pin plastic HWQFN (4 × 4 mm, 0.5 mm pitch)


Note Provided only in the R5F102 products.


Remarks 1. For pin identification, see 1.5 Pin Identification.

- 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR).
- 3. It is recommended to connect an exposed die pad to Vss.

1.6 Block Diagram

2.3 DC Characteristics

2.3.1 Pin characteristics

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42 30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147				-10.0 Note 2	mA
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-30.0	mA
	1	Total of P40 to P42 30-pin products: Total of P00, P01, P40, P120 (When duty $\leq 70\%$ ^{Note 3})	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-6.0	mA
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			-4.5	mA
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-80.0	mA
	$\begin{array}{c} 1.8 \ V \leq V_{DD} < 2.7 \ V \\ \hline \text{Total of P00, P01, P40, P120} \\ (\text{When duty} \leq 70\%^{\text{Note 3}}) \end{array}$			-18.0	mA		
				-10.0	mA		
		Total of all pins (When duty $\leq 70\%^{Note 3}$)				-100	mA
	Іон2	Per pin for P20 to P23				-0.1	mA
		Total of all pins				-0.4	mA

Notes 1. value of current at which the device operation is guaranteed even if the current flows from the VDD pin to an output pin.

- 2. However, do not exceed the total current value.
- 3. The output current value under conditions where the duty factor \leq 70%. If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).
 - Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$ <Example> Where n = 80% and IOH = -10.0 mA
 - Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

- 4. 24-pin products only.
- Caution P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24-pin products, and P00, P10 to P15, P17, and P50 for 30-pin products do not output high level in N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

TA = -40 10 + 00 C,	1.0 V \(\sigma\)	/DD ≤ 5.5 V, Vss = 0 V)		1	1	(2/4	
Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Dutput current, low ^{Note 1}	IOL1	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42 30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147				20.0 Note 2	mA
		Per pin for P60, P61				15.0 Note 2	mA
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			60.0	mA
Total of P40 to P42 30-pin products:	$2.7~V \leq V_{\text{DD}} < 4.0~V$			9.0	mA		
	20 pin producto:	$1.8~V \leq V_{\text{DD}} < 2.7~V$			1.8	mA	
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			80.0	mA
		Total of P00 to P03 ^{Note 4} ,	$2.7~V \leq V_{\text{DD}} < 4.0~V$			27.0	mA
		P10 to P14, P60, P61 30-pin products: Total of P10 to P17, P30, P31, P50, P51, P60, P61, P147 (When duty $\leq 70\%^{\text{Note 3}}$)	$1.8~V \leq V_{\text{DD}} < 2.7~V$			5.4	mA
		Total of all pins (When duty $\leq 70\%^{Note 3}$)				140	mA
	IOL2	Per pin for P20 to P23				0.4	mA
		Total of all pins				1.6	mA

(0.14)

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.

2. However, do not exceed the total current value.

3. The output current value under conditions where the duty factor \leq 70%.

If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).

• Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and $I_{OL} = 10.0$ mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \cong 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

- 4. 24-pin products only.
- Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(1) 20-, 24-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	DD2 Note 2	HALT	HS (High-speed	$f_{IH} = 24 \text{ MHz}^{Note 4}$	$V_{DD} = 5.0 V$		440	1210	μA
current Note 1		mode	main) mode ^{Note 6}		$V_{DD} = 3.0 V$		440	1210	
				fıн = 16 MHz ^{№te 4}	$V_{DD} = 5.0 V$		400	950	μA
					$V_{DD} = 3.0 V$		400	950	
			LS (Low-speed	$f_{IH} = 8 \text{ MHz}^{Note 4}$	$V_{DD} = 3.0 V$		270	542	μA
			main) mode ^{Note 6}		V _{DD} = 2.0 V		270	542	
			HS (High-speed	$f_{MX} = 20 \text{ MHz}^{Note 3},$	Square wave input		280	1000	μA
			main) mode ^{Note 6}	$V_{DD} = 5.0 V$	Resonator connection		450	1170	
				$f_{MX} = 20 \text{ MHz}^{Note 3},$	Square wave input		280	1000	μA
				$V_{DD} = 3.0 V$	Resonator connection		450	1170	
	$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$ $V_{DD} = 5.0 \text{ V}$	$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		190	590	μA		
		$V_{DD} = 5.0 V$	Resonator connection		260	660			
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		190	590	μA
				$V_{DD} = 3.0 V$	Resonator connection		260	660	
			LS (Low-speed	$f_{MX} = 8 \text{ MHz}^{Note 3},$	Square wave input		110	360	μA
			main) mode ^{Note 6}	$V_{DD} = 3.0 V$	Resonator connection		150	416	
				$f_{MX} = 8 \text{ MHz}^{Note 3},$	Square wave input		110	360	μA
				$V_{DD} = 2.0 V$	Resonator connection		150	416	
	DD3 Note 5	STOP	$T_A = -40^{\circ}C$				0.19	0.50	μA
		mode	$T_A = +25^{\circ}C$	$T_A = +25^{\circ}C$			0.24	0.50	
			$T_A = +50^{\circ}C$				0.32	0.80	
			$T_A = +70^{\circ}C$				0.48	1.20	
			T _A = +85°C				0.74	2.20	

Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. During HALT instruction execution by flash memory.
- 3. When high-speed on-chip oscillator clock is stopped.
- 4. When high-speed system clock is stopped.
- 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.
- 6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz VDD = 2.4 V to 5.5 V @1 MHz to 16 MHz

LS(Low speed main) mode: VDD = 1.8 V to 5.5 V @1 MHz to 8 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except temperature condition of the TYP. value is $T_A = 25^{\circ}C$, other than STOP mode

- 5. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
- 6. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq V_{DD} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-Cb \times Rb \times ln (1 - \frac{2.0}{Vb})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =

 $\begin{array}{c} \displaystyle \frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \\ \hline \\ \displaystyle (\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits} \end{array} \times 100 \ [\%]$ * This value is the theoretical value of the relative difference between the transmission and reception sides.

- 7. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.
- 8. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq V_DD < 3.3 V, 1.6 V \leq V_b \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =

$$\frac{1}{\text{ransfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\}$$

$$\frac{1}{(1 - \frac{1.5}{V_b})} \times 100 \,[\%]$$
Transfer rate

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- 9. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 8 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDg pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and V_{IL}, see the DC characteristics with TTL input buffer selected.

(7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCK00... internal clock output, corresponding CSI00 only)

Parameter	Symbol		Conditions	HS (hig main)	•	LS (low main)		Unit
				MIN.	MAX.	MIN.	MAX.	
SCK00 cycle time	tксү1	tĸcy1≥2/fCLK		200		1150		ns
			$\begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 20 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	300		1150		ns
SCK00 high-level width	tкнı	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.8$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 10 \text{ pF}$	5 V, 2.7 V \leq Vb \leq 4.0 V, \approx 1.4 k\Omega	tксү1/2 – 50		tксү1/2– 50		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 100 \text{ pF}$	0 V, 2.3 V ≤ V _b ≤ 2.7 V, $.2.7$ kΩ	tксү1/2 – 120		tксү1/2 – 120		ns
SCK00 low-level width	tĸ∟ı	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.8 \\ C_b = 20 \ pF, \ R_b = \end{array}$	5 V, 2.7 V \leq Vb \leq 4.0 V, \approx 1.4 k\Omega	tксү1/2 – 7		tксү1/2 – 50		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		tксү1/2 – 10		tксү1/2 – 50		ns
SI00 setup time (to SCK00↑) ^{Note 1}	tsik1 4.0 V \leq V_{DD} \leq 5.5 V, 2.7 V C_b = 20 pF, R_b = 1.4 k\Omega			58		479		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 100 \text{ F}$	0 V, 2.3 V ≤ V _b ≤ 2.7 V, \approx 2.7 kΩ	121		479		ns
SI00 hold time (from SCK00↑) ^{Note 1}	tksii $4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq$ Cb = 20 pF, R		$5~V,~2.7~V \leq V_b \leq 4.0~V,$: 1.4 kΩ	10		10		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 100 \text{ pF}$	0 V, 2.3 V ≤ V _b ≤ 2.7 V, $.2.7$ kΩ	10		10		ns
Delay time from SCK00↓ to SO00 output ^{Note 1}	tkso1	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.8$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 100 \text{ pF}$	5 V, 2.7 V \leq Vb \leq 4.0 V, \approx 1.4 k\Omega		60		60	ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 100 \text{ F}$	0 V, 2.3 V ≤ V _b ≤ 2.7 V, : 2.7 kΩ		130		130	ns
SI00 setup time (to SCK00↓) ^{Note 2}	tsıĸı	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.8$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 100 \text{ pF}$	5 V, 2.7 V \leq Vb \leq 4.0 V, \approx 1.4 k\Omega	23		110		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 100 \text{ F}$	0 V, 2.3 V \leq V _b \leq 2.7 V, : 2.7 kΩ	33		110		ns
SI00 hold time (from SCK00↓) ^{Note 2}	tksi1	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.8$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 100 \text{ F}$	$5~V,~2.7~V \leq V_b \leq 4.0~V,$: 1.4 kΩ	10		10		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 100 \text{ F}$	0 V, 2.3 V \leq V _b \leq 2.7 V, : 2.7 kΩ	10		10		ns
Delay time from SCK00↑ to SO00 output ^{Note 2}	t _{KSO1}	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.8$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 10 \text{ pF}$	5 V, 2.7 V \leq V_b \leq 4.0 V, : 1.4 k\Omega		10		10	ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ C}_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 10 \text{ pF}$	$\label{eq:Vb} \begin{array}{l} V, \ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ \mathfrak{c}. \ 2.7 \ k\Omega \end{array}$		10		10	ns

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

(Notes, Caution, and Remarks are listed on the next page.)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3)

Parameter	Symbol		Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү1	$t_{KCY1} \geq 4/f_{CLK}$	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	300		1150		ns
			$2.7~V \leq V_b \leq 4.0~V,$					
			$C_{b}=30 \text{ pF}, \text{R}_{b}=1.4 \text{k}\Omega$					
			$2.7~V \leq V_{\text{DD}} < 4.0~V,$	500		1150		ns
			$2.3~V \leq V_b \leq 2.7~V,$					
			$C_{b}=30 \text{ pF}, \text{R}_{b}=2.7 \text{k}\Omega$					
			$1.8~V \leq V_{\text{DD}} < 3.3~V,$	1150		1150		ns
			1.6 V \leq V_b \leq 2.0 V $^{\text{Note}}$,					
			C_b = 30 pF, R_b = 5.5 k Ω					
SCKp high-level width	tкнı	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V,$		tксү1/2 –75		tксү1/2-75		ns
		$C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$						
		$2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V,$		tkcy1/2-170		tксү1/2–170		ns
		$C_b = 30 \text{ pF}, \text{ R}$	b = 2.7 kΩ					
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} <$	3.3 V, 1.6 V \leq V_b \leq 2.0 V $^{\text{Note}}$,	tксү1/2 –458		tксү1/2-458		ns
		$C_b = 30 \text{ pF}, \text{ R}$	$h_{b} = 5.5 \text{ k}\Omega$					
SCKp low-level width	tĸ∟1	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V, 2.7 V \leq V_b \leq 4.0 V,	tксү1/2 −12		tксү1/2–50		ns
		$C_b = 30 \text{ pF}, \text{ R}$	b = 1.4 kΩ					
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} <$	$4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$	tксү1/2-18		tксү1/2–50		ns
		$C_b = 30 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$						
		$1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V^{\text{Note}},$		tксү1/2 –50		tксү1/2–50		ns
		$C_{b} = 30 \text{ pF}, \text{ R}$	$h_{\rm b} = 5.5 \ {\rm k}\Omega$					

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

 $\label{eq:Note} \textbf{Note} \quad \textbf{Use it with } V_{\text{DD}} \geq V_{\text{b}}.$

- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.
- **Remarks 1.** R_b [Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b [F]: Communication line (SCKp, SOp) load capacitance, V_b [V]: Communication line voltage
 - **2.** p: CSI number (p = 00, 20)

Parameter	Symbol	C	onditions	HS (high-spo Mod	,	LS (low-spe Mod		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	t ксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	20 MHz < fmck \leq 24 MHz	12/fмск		-		ns
		$2.7~V \leq V_b \leq 4.0~V$	8 MHz < fмск ≤ 20 MHz	10/fмск		-		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	8/fмск		16/fмск		ns
			fмск \leq 4 MHz	6/fмск		10/f мск		ns
		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	20 MHz < fмск \leq 24 MHz	16/fмск		I		ns
		$2.3~V \leq V_b \leq 2.7~V$	16 MHz < fмск \leq 20 MHz	14/fмск		ļ		ns
			8 MHz < fmck \leq 16 MHz	12/fмск		I		ns
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	8/fмск		16/f мск		ns
			fмск ≤ 4 MHz	6/fмск		10/f мск		ns
		$1.8~V \leq V_{\text{DD}} < 3.3~V,$	20 MHz < fмск \leq 24 MHz	36/fмск		I		ns
		$1.6~V \leq V_b \leq 2.0~V$	16 MHz < fмск \leq 20 MHz	32/fмск		ļ		ns
		Note 2	8 MHz < fmck \leq 16 MHz	26/f мск		ļ		ns
			4 MHz < fмск ≤ 8 MHz	16/fмск		16/fмск		ns
			fмск \leq 4 MHz	10/fмск		10/f мск		ns
SCKp high-/low-level	tкн2,	$4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V$		tксү2/2 – 12		tксү2/2 – 50		ns
width	tĸl2	$2.7~V \leq V_{\text{DD}} < 4.0~V,$	$2.3~V \leq V_{b} \leq 2.7~V$	tkcy2/2 - 18		tксү2/2 – 50		ns
		$1.8~V \leq V_{\text{DD}} < 3.3~V,$	$1.6~V \leq V_{b} \leq 2.0~V^{\text{Note 2}}$	tkcy2/2 - 50		tксү2/2 – 50		ns
SIp setup time	tsik2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	$2.7~V \leq V_{\text{DD}} \leq 4.0~V$	1/fмск + 20		1/fмск + 30		ns
(to SCKp↑) ^{Note 3}		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	$2.3~V \leq V_{\text{b}} \leq 2.7~V$	1/fмск + 20		1/fмск + 30		ns
		$1.8~V \leq V_{\text{DD}} < 3.3~V,$	$1.6~V \leq V_{\text{DD}} \leq 2.0~V^{\text{Note 2}}$	1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) ^{Note 4}	tksi2			1/fмск + 31		1/fмск + 31		ns
Delay time from	tĸso2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	$2.7~V \leq V_b \leq 4.0~V,$		2/fмск +		2/fмск +	ns
SCKp↓ to SOp		$C_b = 30 \text{ pF}, \text{ R}_b = 1.4$	kΩ		120		573	
output Note 5		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	$2.3~V \leq V_{b} \leq 2.7~V,$		2/fмск +		2/fмск +	ns
		$C_b = 30 \text{ pF}, \text{ R}_b = 2.7$	kΩ		214		573	
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V},$	$1.6~V \leq V_{b} \leq 2.0~V^{\text{Note 2}},$		2/fмск +		2/fмск +	ns
		C _b = 30 pF, R _b = 5.5	kΩ		573		573	

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) ($T_A = -40$ to $+85^{\circ}$ C, 1.8 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

 $\textbf{2.} \quad \textbf{Use it with } V_{\text{DD}} \geq V_{\text{b}}.$

- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Cautions 1. Select the TTL input buffer for the SIp and SCKp pins and the N-ch open drain output (Vbb tolerance) mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For ViH and ViL, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AV_{REFM} (ADREFM = 1), target pin: ANI0, ANI2, ANI3, and ANI16 to ANI22

(TA = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, Reference voltage (+) = V_{BGR}^{Note 3}, Reference voltage (-) = AV_{REFM} Note ⁴ = 0 V, HS (high-speed main) mode)

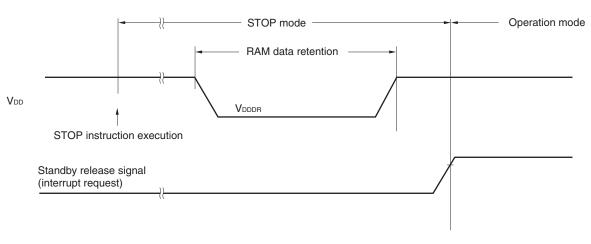
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		bit
Conversion time	t CONV	8-bit resolution	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	8-bit resolution			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution			±1.0	LSB
Analog input voltage	VAIN		0		$V_{\text{BGR}}{}^{\text{Note 3}}$	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. Refer to 28.6.2 Temperature sensor/internal reference voltage characteristics.

4. When reference voltage (-) = Vss, the MAX. values are as follows.


Zero-scale error: Add $\pm 0.35\%$ FSR to the MAX. value when reference voltage (–) = AV_{REFM}. Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (–) = AV_{REFM}. Differential linearity error: Add ± 0.2 LSB to the MAX. value when reference voltage (–) = AV_{REFM}.

<R> 2.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$						
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vdddr		1.46 ^{Note}		5.5	V

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

2.8 Flash Memory Programming Characteristics

<r></r>	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	System clock frequency	fclĸ		1		24	MHz
	Code flash memory rewritable times	Cerwr	Retained for 20 years	1,000			Times
	Notes 1, 2, 3 Data flash memory rewritable times Notes 1, 2, 3	_	$T_A = 85^{\circ}C$				
			Retained for 1 year		1,000,000		
			$T_A = 25^{\circ}C$				
			Retained for 5 years	100,000			
			$T_A = 85^{\circ}C$				
			Retained for 20 years	10,000			
			$T_A = 85^{\circ}C$				

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

3.3 DC Characteristics

3.3.1 Pin characteristics

Γ _A = –40 to +105°C,	2.4 V ≤	$4.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}, \text{ Vss} = 0 \text{ V}$						
Parameter	Symbol	Conditions			TYP.	MAX.	Unit	
Output current, high ^{Note 1}		20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42 30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147				-3.0 I	mA	
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-9.0	mA	
		Total of P40 to P42	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-6.0	mA	
		30-pin products: Total of P00, P01, P40, P120 (When duty $\leq 70\%^{\text{Note 3}}$)	$2.4~V \leq V_{DD} < 2.7~V$			-4.5	mA	
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-27.0	mA	
		Total of P00 to P03 ^{Note 4} , P10 to P14	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-18.0	mA	
		30-pin products: Total of P10 to P17, P30, P31, P50, P51, P147 (When duty \leq 70% ^{Note 3})	$2.4~V \leq V_{\text{DD}} < 2.7~V$			-10.0	mA	
		Total of all pins (When duty $\leq 70\%^{Note 3}$)				-36.0	mA	
	Іон2	Per pin for P20 to P23				-0.1	mA	
		Total of all pins				-0.4	mA	

Notes 1. value of current at which the device operation is guaranteed even if the current flows from the VDD pin to an output pin.

- 2. However, do not exceed the total current value.
- 3. The output current value under conditions where the duty factor \leq 70%. If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).
 - Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$ <Example> Where n = 80% and $I_{OH} = -10.0$ mA
 - Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

- 4. 24-pin products only.
- Caution P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24-pin products, and P00, P10 to P15, P17, and P50 for 30-pin products do not output high level in N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

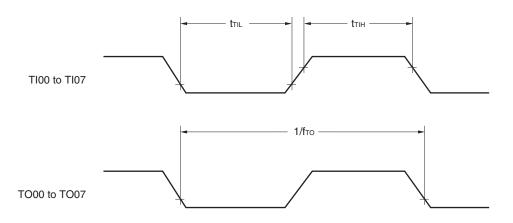
3.3.2 Supply current characteristics

(1) 20-, 24-pin products

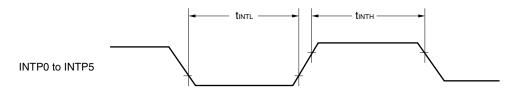
<u>(1A = 10 to</u>	1100 0,		<u> </u>	•••						(""")
Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply		Operating	HS (High-speed	$f_{\text{IH}} = 24 \text{ MHz}^{\text{Note 3}}$	Basic	$V_{DD} = 5.0 V$		1.5		mA
current ^{Note 1}	ent ^{Note 1} mode	mode	e main) mode ^{№®4}		operation	VDD = 3.0 V		1.5		
					Normal	$V_{DD} = 5.0 V$		3.3	5.3	mA
					operation	$V_{DD} = 3.0 V$		3.3	5.3	
				$f_{\text{IH}} = 16 \; MHz^{\text{Note 3}}$		$V_{DD} = 5.0 V$		2.5	3.9	mA
						$V_{DD} = 3.0 V$		2.5	3.9	
				$f_{MX} = 20 \text{ MHz}^{Note 2},$		Square wave input		2.8	4.7	mA
				Vdd = 5.0 V		Resonator connection		3.0	4.8	
				$f_{MX} = 20 \text{ MHz}^{Note 2},$		Square wave input		2.8	4.7	mA
				VDD = 3.0 V		Resonator connection		3.0	4.8	
				$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		1.8	2.8	mA
				Vdd = 5.0 V		Resonator connection		1.8	2.8	
				$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		1.8	2.8	mA
				$V_{DD} = 3.0 V$		Resonator connection		1.8	2.8	

Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

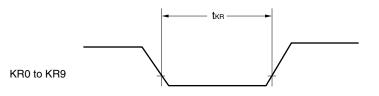
- 2. When high-speed on-chip oscillator clock is stopped.
- **3.** When high-speed system clock is stopped
- 4. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

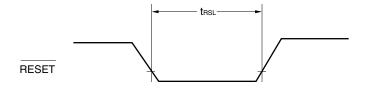

HS(High speed main) mode: $V_{DD} = 2.7$ V to 5.5 V @1 MHz to 24 MHz V_{DD} = 2.4 V to 5.5 V @1 MHz to 16 MHz

- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$.



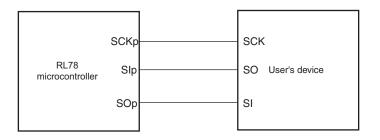
(1/2)


TI/TO Timing

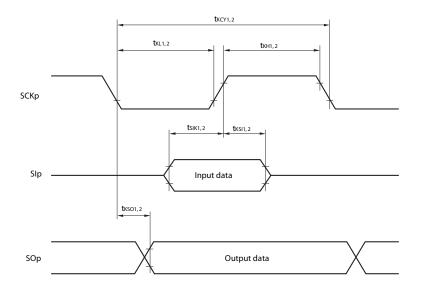

Interrupt Request Input Timing

Key Interrupt Input Timing

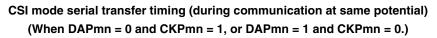
RESET Input Timing

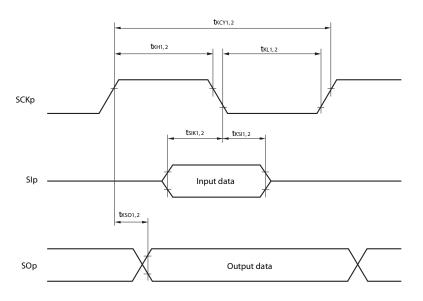


Parameter	Symbol	Con	HS (high-speed	Unit		
				MIN.	MAX.	
SCKp cycle time Note4	tксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	20 MHz < fмск	16/fмск		ns
			fмск ≤ 20 MHz	12/fмск		ns
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	16 MHz < fмск	16/fмск		ns
			fмск ≤ 16 MHz	12/fмск		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		12/fмск		ns
				and 1000		
SCKp high-/low-level width	tкн2,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	tксү2/2–14		ns	
	tĸ∟2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	tксү2/2–16		ns	
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2–36		ns
SIp setup time (to SCKp↑) Note 1	tsik2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск + 40		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск + 60		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi2			1/fмск + 62		ns
Delay time from SCKp \downarrow to	tĸso2	C = 30 pF Note4	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		2/fмск + 66	ns
SOp output Note 3			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		2/fмск + 113	ns


(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- **Caution** Select the normal input buffer for the SIp and SCKp pins and the normal output mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).

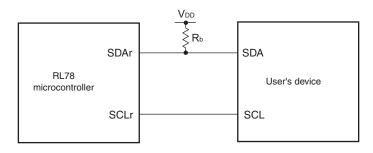

CSI mode connection diagram (during communication at same potential)



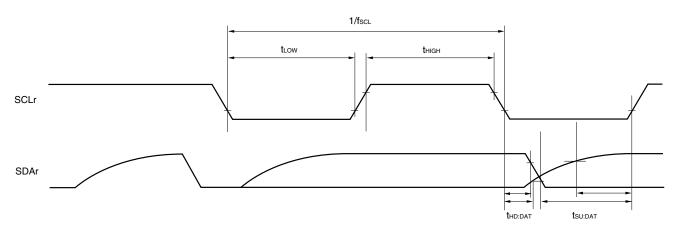
CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- Remarks 1. p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3)
 2. fMCK: Serial array unit operation clock frequency
 - (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3))

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
SCLr clock frequency	fsc∟	$C_{\text{b}} = 100 \text{ pF}, \text{R}_{\text{b}} = 3 \text{k} \Omega$		100 Note 1	kHz
Hold time when SCLr = "L"	tLOW	C_b = 100 pF, R_b = 3 k Ω	4600		ns
Hold time when SCLr = "H"	tнıgн	C_b = 100 pF, R_b = 3 k Ω	4600		ns
Data setup time (reception)	tsu:dat	$C_{\rm b}=100~pF,~R_{\rm b}=3~k\Omega$	1/fмск + 580 ^{Note 2}		ns
Data hold time (transmission)	thd:dat	$C_b = 100 \text{ pF}, \text{ R}_b = 3 \text{ k}\Omega$	0	1420	ns


(4) During communication at same potential (simplified I²C mode)

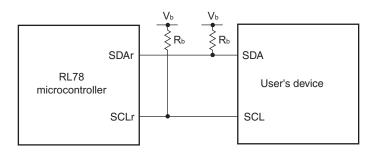
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$


Notes 1. The value must also be equal to or less than fmck/4.

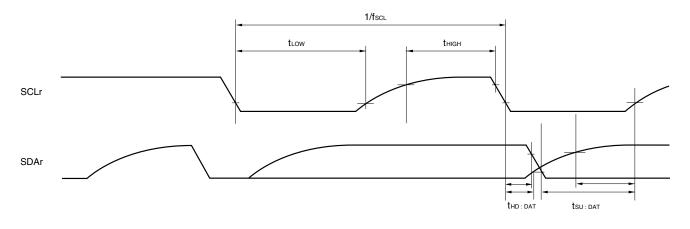
- Set tsu:DAT so that it will not exceed the hold time when SCLr = "L" or SCLr = "H". 2.
- Caution Select the N-ch open drain output (VDD tolerance) mode for SDAr by using port output mode register h (POMh).

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)


- **Remarks 1.** R_b [Ω]:Communication line (SDAr) pull-up resistance Cb [F]: Communication line (SCLr, SDAr) load capacitance
 - 2. r: IIC number (r = 00, 01, 11, 20), h: = POM number (h = 0, 1, 4, 5)

3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

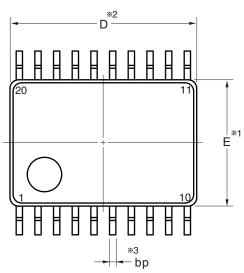

m: Unit number (m = 0, 1), n: Channel number (0, 1, 3)

Simplified I²C mode connection diagram (during communication at different potential)

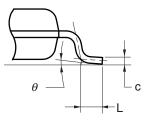
Simplified I²C mode serial transfer timing (during communication at different potential)

- Remarks 1. Rb [Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb [F]: Communication line (SDAr, SCLr) load capacitance, Vb [V]: Communication line voltage
 - **2.** r: IIC Number (r = 00, 20)
 - 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number (m = 0,1), n: Channel number (n = 0))


4. PACKAGE DRAWINGS

4.1 20-pin products


R5F1026AASP, R5F10269ASP, R5F10268ASP, R5F10267ASP, R5F10266ASP R5F1036AASP, R5F10369ASP, R5F10368ASP, R5F10367ASP, R5F10366ASP R5F1026ADSP, R5F10269DSP, R5F10268DSP, R5F10267DSP, R5F10266DSP R5F1036ADSP, R5F10369DSP, R5F10368DSP, R5F10367DSP, R5F10366DSP R5F1026AGSP, R5F10269GSP, R5F10268GSP, R5F10267GSP, R5F10266GSP

<R>

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]	
P-LSSOP20-4.4x6.5-0.65	PLSP0020JB-A	P20MA-65-NAA-1	0.1	

 detail of lead end

	(UNIT:mm)
ITEM	DIMENSIONS
D	6.50±0.10
E	4.40±0.10
HE	6.40±0.20
А	1.45 MAX.
A1	0.10±0.10
A2	1.15
е	0.65±0.12
bp	0.22 + 0.10 - 0.05
С	0.15 + 0.05 - 0.02
L	0.50±0.20
У	0.10
θ	0° to 10°

©2012 Renesas Electronics Corporation. All rights reserved.

1.Dimensions "%1" and "%2" do not include mold flash.

2.Dimension "X3" does not include trim offset.

