

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFI

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	30-LSSOP (0.240", 6.10mm Width)
Supplier Device Package	30-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f102a8asp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

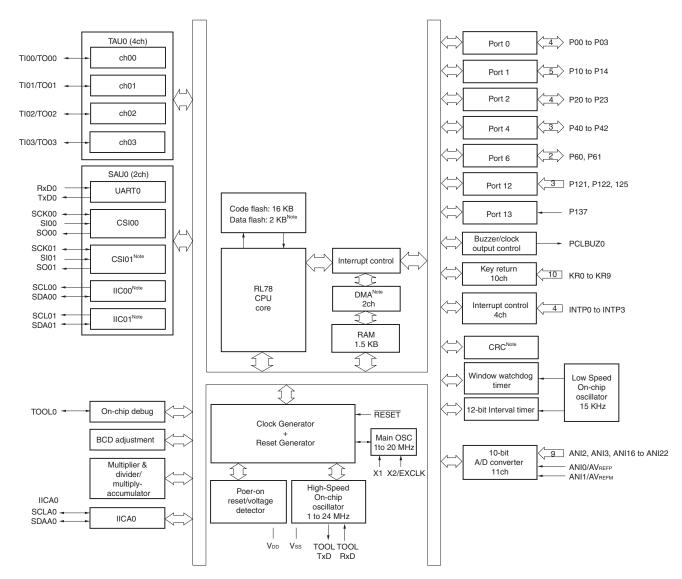
Code flash	Data flash	RAM	20 pins	24 pins	30 pins
16 KB	2 KB	2 KB	_	—	R5F102AA
	_		_	—	R5F103AA
	2 KB	1.5 KB	R5F1026A Note 1	R5F1027A ^{Note 1}	
	_		R5F1036A Note 1	R5F1037A Note 1	
12 KB	2KB	1 KB	R5F10269 Note 1	R5F10279 Note 1	R5F102A9
	_		R5F10369 Note 1	R5F10379 Note 1	R5F103A9
8 KB	2 KB	768 B	R5F10268 Note 1	R5F10278 Note 1	R5F102A8
	—		R5F10368 Note 1	R5F10378 Note 1	R5F103A8
4 KB	2KB	512 B	R5F10267	R5F10277	R5F102A7
	_		R5F10367	R5F10377	R5F103A7
2 KB	2 KB	256 B	R5F10266 Note 2		
	—		R5F10366 Note 2	—	

O ROM, RAM capacities

Notes 1. This is 640 bytes when the self-programming function or data flash function is used. (For details, see CHAPTER 3 CPU ARCHITECTURE.)

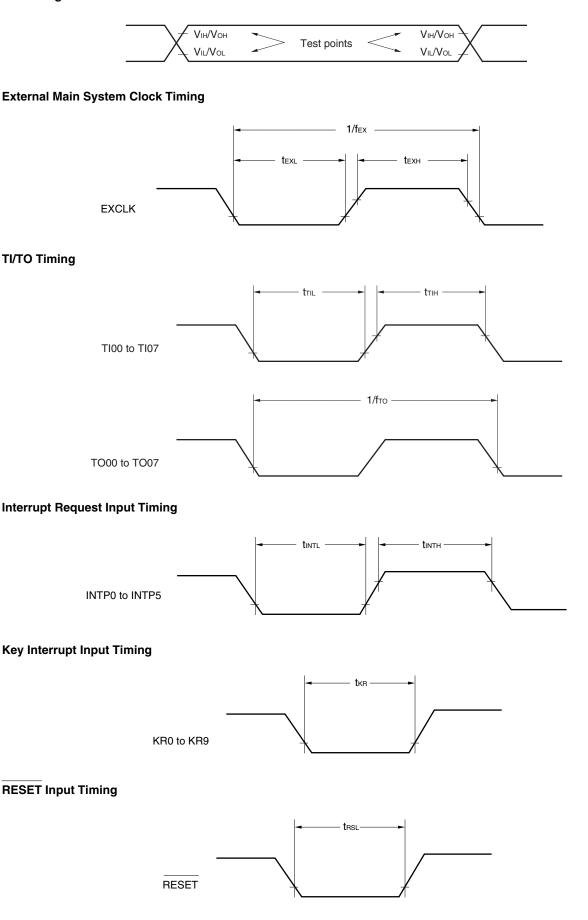
2. The self-programming function cannot be used for R5F10266 and R5F10366.

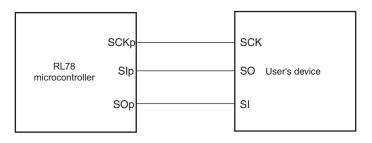
Caution When the flash memory is rewritten via a user program, the code flash area and RAM area are used because each library is used. When using the library, refer to RL78 Family Flash Self Programming Library Type01 User's Manual and RL78 Family Data Flash Library Type04 User's Manual.

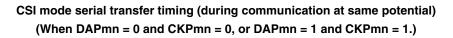


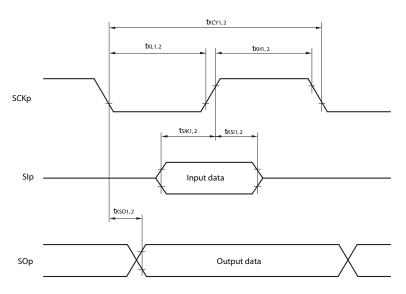
1.5 Pin Identification

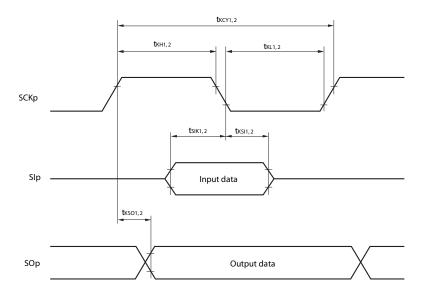
ANI0 to ANI3,		REGC:	Regulator Capacitance
ANI16 to ANI22:	Analog input	RESET:	Reset
AVREFM:	Analog Reference Voltage Minus	RxD0 to RxD2:	Receive Data
AVREFP:	Analog reference voltage plus	SCK00, SCK01, SCK11,	
EXCLK:	External Clock Input	SCK20:	Serial Clock Input/Output
	(Main System Clock)	SCL00, SCL01,	
INTP0 to INTP5	Interrupt Request From Peripheral	SCL11, SCL20, SCLA0:	Serial Clock Input/Output
KR0 to KR9:	Key Return	SDA00, SDA01, SDA11,	
P00 to P03:	Port 0	SDA20, SDAA0:	Serial Data Input/Output
P10 to P17:	Port 1	SI00, SI01, SI11, SI20:	Serial Data Input
P20 to P23:	Port 2	SO00, SO01, SO11,	
P30 to P31:	Port 3	SO20:	Serial Data Output
P40 to P42:	Port 4	TI00 to TI07:	Timer Input
P50, P51:	Port 5	TO00 to TO07:	Timer Output
P60, P61:	Port 6	TOOL0:	Data Input/Output for Tool
P120 to P122, P125:	Port 12	TOOLRxD, TOOLTxD:	Data Input/Output for External
P137:	Port 13		Device
P147:	Port 14	TxD0 to TxD2:	Transmit Data
PCLBUZ0, PCLBUZ1:	Programmable Clock Output/	VDD:	Power supply
	Buzzer Output	Vss:	Ground
		X1, X2:	Crystal Oscillator (Main System Clock)
			Olocky


1.6.2 24-pin products


Note Provided only in the R5F102 products.


AC Timing Test Point





CSI mode connection diagram (during communication at same potential)

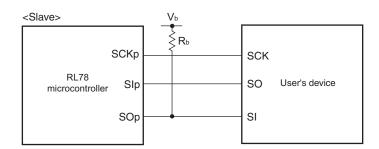
CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

(Remarks are listed on the next page.)

- **Notes 1.** When DAP00 = 0 and CKP00 = 0, or DAP00 = 1 and CKP00 = 1
 - **2.** When DAP00 = 0 and CKP00 = 1, or DAP00 = 1 and CKP00 = 0.
- Caution Select the TTL input buffer for the SI00 pin and the N-ch open drain output (V_{DD} tolerance) mode for the SO00 pin and SCK00 pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b [Ω]:Communication line (SCK00, SO00) pull-up resistance, C_b [F]: Communication line (SCK00, SO00) load capacitance, V_b [V]: Communication line voltage
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register 0 (SPS0) and the CKS00 bit of serial mode register 00 (SMR00).)

Parameter	Symbol	C	onditions	HS (high-spo Mod	,	LS (low-spe Mod		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	t ксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	20 MHz < fmck \leq 24 MHz	12/fмск		-		ns
		$2.7~V \leq V_b \leq 4.0~V$	8 MHz < fмск ≤ 20 MHz	10/fмск		-		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	8/fмск		16/fмск		ns
			fмск \leq 4 MHz	6/fмск		10/f мск		ns
		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	20 MHz < fмск \leq 24 MHz	16/fмск		I		ns
		$2.3~V \leq V_b \leq 2.7~V$	16 MHz < fмск ≤ 20 MHz	14/fмск		ļ		ns
			8 MHz < fmck \leq 16 MHz	12/fмск		I		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	8/fмск		16/f мск		ns
			fмск ≤ 4 MHz	6/fмск		10/f мск		ns
		$1.8~V \leq V_{\text{DD}} < 3.3~V,$	20 MHz < fмск \leq 24 MHz	36/fмск		I		ns
		$1.6~V \leq V_b \leq 2.0~V_{Note~2}$	16 MHz < fмск \leq 20 MHz	32/fмск		ļ		ns
			8 MHz < fmck \leq 16 MHz	26/f мск		ļ		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	16/fмск		16/fмск		ns
			fмск \leq 4 MHz	10/fмск		10/f мск		ns
SCKp high-/low-level	tкн2, tкL2	$4.0 \ V \le V_{\text{DD}} \le 5.5 \ V, \ 2.7 \ V \le V_{\text{b}} \le 4.0 \ V$		tксү2/2 – 12		tксү2/2 – 50		ns
width		$2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V$		tkcy2/2 - 18		tксү2/2 – 50		ns
		$1.8~V \leq V_{\text{DD}} < 3.3~V,$	$1.6~V \leq V_{b} \leq 2.0~V^{\text{Note 2}}$	tkcy2/2 - 50		tксү2/2 – 50		ns
SIp setup time	tsik2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	$2.7~V \leq V_{\text{DD}} \leq 4.0~V$	1/fмск + 20		1/fмск + 30		ns
(to SCKp↑) ^{Note 3}		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	$2.3~V \leq V_{\text{b}} \leq 2.7~V$	1/fмск + 20		1/fмск + 30		ns
		$1.8~V \leq V_{\text{DD}} < 3.3~V,$	$1.6~V \leq V_{\text{DD}} \leq 2.0~V^{\text{Note 2}}$	1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) ^{Note 4}	tksi2			1/fмск + 31		1/fмск + 31		ns
Delay time from	tĸso2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	$2.7~V \leq V_b \leq 4.0~V,$		2/fмск +		2/fмск +	ns
SCKp↓ to SOp		$C_b = 30 \text{ pF}, \text{ R}_b = 1.4$	kΩ		120		573	
output Note 5		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	$2.3~V \leq V_{b} \leq 2.7~V,$		2/fмск +		2/fмск +	ns
		$C_b = 30 \text{ pF}, \text{ R}_b = 2.7$	kΩ		214		573	
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V},$	$1.6~V \leq V_{b} \leq 2.0~V^{\text{Note 2}},$		2/fмск +		2/fмск +	ns
		C _b = 30 pF, R _b = 5.5	kΩ		573		573	

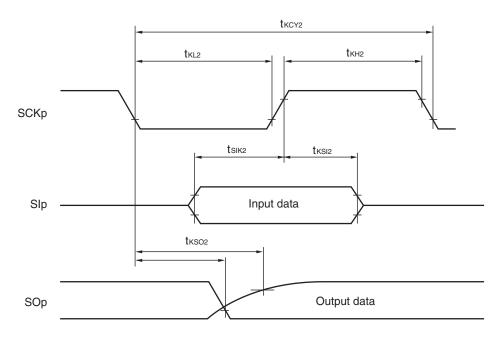
(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) ($T_A = -40$ to $+85^{\circ}$ C, 1.8 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)


Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

 $\textbf{2.} \quad \textbf{Use it with } V_{\text{DD}} \geq V_{\text{b}}.$

- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Cautions 1. Select the TTL input buffer for the SIp and SCKp pins and the N-ch open drain output (Vbb tolerance) mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For ViH and ViL, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.

CSI mode connection diagram (during communication at different potential)



Remarks 1. R_b [Ω]: Communication line (SOp) pull-up resistance, C_b [F]: Communication line (SOp) load capacitance, V_b [V]: Communication line voltage

2. p: CSI number (
$$p = 00, 20$$
), m: Unit number ($m = 0, 1$), n: Channel number ($n = 0$)

 fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 10))

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

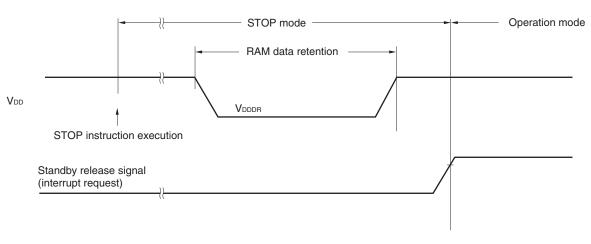
LVD detection voltage of interrupt & reset n	node
$(T_{4} - 10 t_{0} + 85^{\circ}C)$ Van $< Van < 5.5 V$ Van $= ($	N 1/1

Parameter	Symbol		Con	ditions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVDB0	VPOC2,	VPOC1, VPOC0 = 0, 0, 1, fa	ling reset voltage	1.80	1.84	1.87	V
mode	VLVDB1		LVIS1, LVIS0 = 1, 0	Rising reset release voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB2		LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB3		LVIS1, LVIS0 = 0, 0	Rising reset release voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDC0	VPOC2,	VPOC1, VPOC0 = 0, 1, 0, fa	ling reset voltage	2.40	2.45	2.50	V
	VLVDC1		LVIS1, LVIS0 = 1, 0	Rising reset release voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDC3		LVIS1, LVIS0 = 0, 0	Rising reset release voltage	3.68	3.75	3.82	V
				Falling interrupt voltage	3.60	3.67	3.74	V
	VLVDD0	VPOC2,	VPOC1, VPOC1 = 0, 1, 1, fa	ling reset voltage	2.70	2.75	2.81	V
	VLVDD1		LVIS1, LVIS0 = 1, 0	Rising reset release voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2		LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V
	V LVDD3		LVIS1, LVIS0 = 0, 0	Rising reset release voltage	3.98	4.06	4.14	V
				Falling interrupt voltage	3.90	3.98	4.06	V

2.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms


Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 28.4 AC Characteristics.

<R> 2.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

T _A = -40 to +85°C, Vss = 0 V)						
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vdddr		1.46 ^{Note}		5.5	V

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

2.8 Flash Memory Programming Characteristics

<r></r>	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	System clock frequency	fclĸ		1		24	MHz
	Code flash memory rewritable times	Cerwr	Retained for 20 years	1,000			Times
	Notes 1, 2, 3		$T_A = 85^{\circ}C$				
	Data flash memory rewritable times		Retained for 1 year		1,000,000		
	Notes 1, 2, 3		$T_A = 25^{\circ}C$				
			Retained for 5 years	100,000			
			$T_A = 85^{\circ}C$				
			Retained for 20 years	10,000			
			$T_A = 85^{\circ}C$				

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

<R> 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS $T_A = -40$ to +105°C)

<R> This chapter describes the following electrical specifications.

Target products G: Industrial applications $T_A = -40$ to $+105^{\circ}C$

<R> R5F102xxGxx

- **Cautions 1.** The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product.
 - **3.** Please contact Renesas Electronics sales office for derating of operation under $T_A = +85^{\circ}C$ to $+105^{\circ}C$. Derating is the systematic reduction of load for the sake of improved reliability.

Remark When the RL78 microcontroller is used in the range of T_A = -40 to +85 °C, see CHAPTER 28 <R> ELECTRICAL SPECIFICATIONS (A: T_A = -40 to +85 °C).

There are following differences between the products "G: Industrial applications ($T_A = -40$ to $+105^{\circ}C$)" and the products "A: Consumer applications, and D: Industrial applications".

Parameter	Арр	lication
	A: Consumer applications, D: Industrial applications	G: Industrial applications
Operating ambient temperature	T _A = -40 to +85°C	T _A = -40 to +105°C
Operating mode	HS (high-speed main) mode:	HS (high-speed main) mode only:
Operating voltage range	$2.7~V \leq V_{\text{DD}} \leq 5.5~V@1~MHz$ to 24 MHz	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$ @ 1 MHz to 24 MHz
	$2.4~V \leq V_{\text{DD}} \leq 5.5~V@1~\text{MHz}$ to 16 MHz	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$ @1 MHz to 16 MHz
	LS (low-speed main) mode:	
	1.8 V \leq V_{DD} \leq 5.5 V@1 MHz to 8 MHz	
High-speed on-chip oscillator clock	R5F102 products, 1.8 V \leq V_DD \leq 5.5 V:	R5F102 products, 2.4 V \leq V _{DD} \leq 5.5 V:
accuracy	±1.0%@ T _A = -20 to +85°C	±2.0%@ T _A = +85 to +105°C
	$\pm 1.5\%$ @ T _A = -40 to -20°C	±1.0%@ T _A = -20 to +85°C
	R5F103 products, 1.8 V \leq V_DD \leq 5.5 V:	±1.5% @ T _A = -40 to -20°C
	±5.0%@ T _A = -40 to +85°C	
Serial array unit	UART	UART
	CSI: fcLK/2 (supporting 12 Mbps), fcLK/4	CSI: fclk/4
	Simplified I ² C communication	Simplified I ² C communication
Voltage detector	Rise detection voltage: 1.88 V to 4.06 V	Rise detection voltage: 2.61 V to 4.06 V
	(12 levels)	(8 levels)
	Fall detection voltage: 1.84 V to 3.98 V	Fall detection voltage: 2.55 V to 3.98 V
	(12 levels)	(8 levels)

Remark The electrical characteristics of the products G: Industrial applications (T_A = -40 to +105°C) are different from those of the products "A: Consumer applications, and D: Industrial applications". For details, refer to 29.1 to 29.10.

3.1 Absolute Maximum Ratings

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbols		Conditions	Ratings	Unit
Supply Voltage	VDD			-0.5 to + 6.5	V
REGC terminal input voltage ^{Note1}	VIREGC	REGC		-0.3 to +2.8 and -0.3 to V _{DD} + 0.3 _{Note 2}	V
Input Voltage	VI1	Other than P60, F	261	-0.3 to V _{DD} + 0.3 ^{Note 3}	V
	VI2	P60, P61 (N-ch o	pen drain)	-0.3 to 6.5	V
Output Voltage	Vo			-0.3 to V _{DD} + 0.3 ^{Note 3}	V
Analog input voltage	VAI	20, 24-pin produc	ts: ANI0 to ANI3, ANI16 to ANI22	-0.3 to V _{DD} + 0.3	V
		30-pin products: A	ANIO to ANI3, ANI16 to ANI19	and -0.3 to AVREF(+)+0.3 ^{Notes 3, 4}	
Output current, high	Іон1	Per pin	Other than P20 to P23	-40	mA
		Total of all pins	All the terminals other than P20 to P23	-170	mA
			20-, 24-pin products: P40 to P42	-70	mA
			30-pin products: P00, P01, P40, P120		
			20-, 24-pin products: P00 to P03 ^{Note 5} , P10 to P14 30-pin products: P10 to P17, P30, P31, P50, P51, P147	-100	mA
	Іон2	Per pin P20 to P23		-0.5	mA
		Total of all pins		-2	mA
Output current, low	IOL1	Per pin	Other than P20 to P23	40	mA
		Total of all pins	All the terminals other than P20 to P23	$\begin{array}{c c c c c c c } & & & & & & \\ \hline & & & & & & \\ \hline & & & &$	mA
			20-, 24-pin products: P40 to P42 30-pin products: P00, P01, P40, P120	70	mA
			20-, 24-pin products: P00 to P03 ^{Note 5} , P10 to P14, P60, P61 30-pin products: P10 to P17, P30, P31, P50, P51, P60, P61, P147	100	mA
	I _{OL2}	Per pin	P20 to P23	1	mA
		Total of all pins		5	mA
Operating ambient temperature	TA			-40 to +105	°C
Storage temperature	Tstg			-65 to +150	°C

Notes 1. 30-pin product only.

- 2. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value determines the absolute maximum rating of the REGC pin. Do not use it with voltage applied.
- 3. Must be 6.5 V or lower.
- 4. Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.
- 5. 24-pin products only.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** AVREF(+) : + side reference voltage of the A/D converter.
 - 3. Vss : Reference voltage

3.2 Oscillator Characteristics

3.2.1 X1 oscillator characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
	Ceramic resonator /	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
	crystal oscillator	$2.4~V \leq V_{\text{DD}} < 2.7~V$	1.0		8.0	

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

- **Caution** Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- Remark When using the X1 oscillator, refer to 5.4 System Clock Oscillator.

3.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Oscillators	Parameters	Conditions			TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		24	MHz
High-speed on-chip oscillator		R5F102 products	T _A = -20 to +85°C	-1.0		+1.0	%
clock frequency accuracy			$T_A = -40$ to $-20^{\circ}C$	-1.5		+1.5	%
			T _A = +85 to +105°C	-2.0		+2.0	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H) and bits 0 to 2 of HOCODIV register.

2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

(4/4)

Parameter	Symbol	ol Conditions				TYP.	MAX.	Unit
Output voltage, low	V _{OL1}	20-, 24-pin products: P00 to P03 ^{№0®} , P10 to P14, P40 to P42 30-pin products: P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147		$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.5 \ mA \end{array} \label{eq:DD}$			0.7	V
				$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 3.0 \ mA \end{array} \end{array} \label{eq:DD}$			0.6	V
				$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 1.5 \ mA \end{array} \label{eq:DD}$			0.4	V
			$\begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 0.6 \ mA \end{array} \end{array} \label{eq:DD}$			0.4	V	
	V _{OL2}	P20 to P23		Ιοι2 = 400 μΑ			0.4	V
	Vol3	Vol3 P60, P61		$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 15.0 \ mA \end{array} \label{eq:DD}$			2.0	V
				$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 5.0 \ mA \end{array} \label{eq:DD}$			0.4	V
			$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 3.0 \ \text{mA} \end{array}$			0.4	V	
				$\begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 2.0 \ mA \end{array} \label{eq:DD}$			0.4	V
Input leakage current, high	Іцні	Other than P121, $V_I = V_{DD}$ P122					1	μA
	Ilih2	P121, P122 (X1, X2/EXCLK)	VI = VDD	Input port or external clock input			1	μA
				When resonator connected			10	μA
Input leakage current, low	ILIL1	Other than P121, P122	VI = Vss				-1	μA
	Ilile	P121, P122 (X1, X2/EXCLK)	VI = Vss	Input port or external clock input			-1	μA
				When resonator connected			-10	μA
On-chip pull-up resistance	Rυ	Ru 20-, 24-pin products: P00 to P03 ^{Note} , P10 to P14, P40 to P42, P125, RESET 30-pin products: P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147		VI = Vss, input port	10	20	100	kΩ

Note 24-pin products only.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Parameter Symbol	Conditions		HS (high- M	Unit		
				MIN.	MAX.	
Transfer rate Note4		Reception			fмск/12 Note 1	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		2.0	Mbps
			$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$		fмск/12 Note 1	bps
Trar		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} {}^{Note \ 2}$		2.0	Mbps	
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_{b} \leq 2.0 \ V \end{array}$		fмск/12 Note 1	bps	
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		2.0	Mbps	
	Transmission			Note 3	bps	
		Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, V_b = 2.7 \text{ V}$		2.0 Note 4	Mbps	
			$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ \\ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \end{array}$		Note 5	bps
		Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$		1.2 Note 6	Mbps	
			$2.4 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$		Notes 2, 7	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, \text{ R}_b = 5.5 \text{ k}\Omega, \text{ V}_b = 1.6 \text{ V}$		0.43 Note 8	Mbps

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

 $(T_A = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq V_{DD} \leq 5.5 V) 16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)

3. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq V_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =

$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =

$$) = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \,[\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- 4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
- 5. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq VDD < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =

 $\begin{array}{c} \displaystyle \frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \\ \hline \\ \displaystyle (\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits} \end{array} \times 100 \ [\%]$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- 6. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 5** above to calculate the maximum transfer rate under conditions of the customer.
- 7. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.4 V \leq V_DD < 3.3 V, 1.6 V \leq V_b \leq 2.0 V

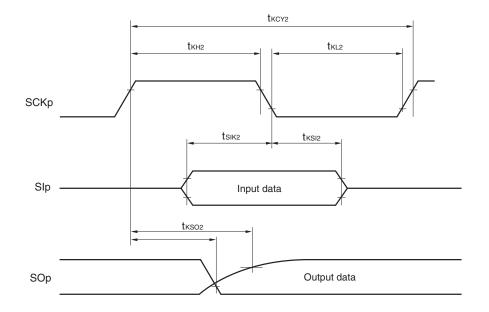
Maximum transfer rate =

$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = $\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \,[\%]$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 7 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3)


Parameter	Symbol	Conditions	HS (high-spee	HS (high-speed main) Mode		
			MIN.	MAX.		
SIp setup time (to SCKp↑) _{Note}	tsikı	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 1.4 \ k\Omega \end{array}$	162		ns	
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$	354		ns	
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 5.5 \ k\Omega \end{array}$	958		ns	
Slp hold time (from SCKp↑) ^{№te}	tksii	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$	38		ns	
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$	38		ns	
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	38		ns	
Delay time from SCKp↓ to SOp output ^{Note}	tkso1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$		200	ns	
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$		390	ns	
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 5.5 \ k\Omega \end{array}$		966	ns	

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

Note When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

(Cautions and Remarks are listed on the next page.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AV_{REFM} (ADREFM = 1), target pin: ANI0, ANI2, ANI3, and ANI16 to ANI22

(T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, Reference voltage (+) = V_{BGR}^{Note 3}, Reference voltage (-) = AV_{REFM}^{Note 4} = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		bit
Conversion time	t CONV	8-bit resolution	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	8-bit resolution			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution			±1.0	LSB
Analog input voltage	VAIN		0		$V_{\text{BGR}}{}^{\text{Note 3}}$	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. Refer to 29.6.2 Temperature sensor/internal reference voltage characteristics.

4. When reference voltage (-) = Vss, the MAX. values are as follows.

Zero-scale error: Add $\pm 0.35\%$ FSR to the MAX. value when reference voltage (–) = AV_{REFM}. Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (–) = AV_{REFM}. Differential linearity error: Add ± 0.2 LSB to the MAX. value when reference voltage (–) = AV_{REFM}.

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.