

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFI

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	30-LSSOP (0.240", 6.10mm Width)
Supplier Device Package	30-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f102a8asp-x0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.7 Outline of Functions

This outline describes the function at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

Item		20-pin		24-pin		30-pin			
		R5F1026x	R5F1036x	R5F1027x	R5F1037x	R5F102Ax	R5F103Ax		
Code flas	h memory	2 to 16	KB ^{Note 1}		4 to 1	16 KB	•		
Data flash	n memory	2 KB	-	2 KB	-	2 KB	-		
RAM		256 B to	o 1.5 KB	512 B to	o 1.5 KB	512 B	to 2KB		
Address s	space			11	MB				
Main system clock	High-speed system clock	HS (High-spee HS (High-spee	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (High-speed main) mode : 1 to 20 MHz ($V_{DD} = 2.7$ to 5.5 V), HS (High-speed main) mode : 1 to 16 MHz ($V_{DD} = 2.4$ to 5.5 V), LS (Low-speed main) mode : 1 to 8 MHz ($V_{DD} = 1.8$ to 5.5 V)						
	High-speed on-chip oscillator clock	HS (High-speed main) mode : 1 to 24 MHz ($V_{DD} = 2.7$ to 5.5 V), HS (High-speed main) mode : 1 to 16 MHz ($V_{DD} = 2.4$ to 5.5 V), LS (Low-speed main) mode : 1 to 8 MHz ($V_{DD} = 1.8$ to 5.5 V)							
Low-spee	d on-chip oscillator clock	15 kHz (TYP)							
General-purpose register		(8-bit register \times 8) \times 4 banks							
Minimum instruction execution time		0.04167 μ s (High-speed on-chip oscillator clock: f _{IH} = 24 MHz operation)							
		0.05 µs (High-speed system clock: f _{MX} = 20 MHz operation)							
Instruction	n set	Data transfer (8/16 bits)							
		Adder and subtractor/logical operation (8/16 bits)							
		Multiplication (8 bits × 8 bits)							
	1	Rotate, barrel shift, and bit manipulation (set, reset, test, and Boolean operation), etc.							
I/O port	Total	1	8	2	2	2	6		
	CMOS I/O	(N-ch C	2 D.D. I/O nd voltage]: 4)	(N-ch C	6 D.D. I/O id voltage]: 5)		1 D.D. I/O d voltage]: 9)		
	CMOS input		4		4	;	3		
	N-ch open-drain I/O (6 V tolerance)			:	2				
Timer	16-bit timer		4 cha	annels		8 cha	nnels		
	Watchdog timer			1 cha	annel				
	12-bit Interval timer			1 cha	annel				
	Timer output	4 channels (PWM outputs: 3 ^{Note 3})			8 cha (PWM outpu				

Notes 1. The self-programming function cannot be used in the R5F10266 and R5F10366.

2. The maximum number of channels when PIOR0 is set to 1.

3. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves). (See **6.9.3 Operation as multiple PWM output function**.)

Caution When the flash memory is rewritten via a user program, the code flash area and RAM area are used because each library is used. When using the library, refer to RL78 Family Flash Self Programming Library Type01 User's Manual and RL78 Family Data Flash Library Type04 User's Manual.

2.2 Oscillator Characteristics

2.2.1 X1 oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator /	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal oscillator	$1.8~V \leq V_{\text{DD}} < 2.7~V$	1.0		8.0	

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- **Remark** When using the X1 oscillator, refer to **5.4 System Clock Oscillator**.

2.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Oscillators	Parameters	Conditions		MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		24	MHz
High-speed on-chip oscillator		R5F102 products	$T_A = -20 \text{ to } +85^\circ \text{C}$	-1.0		+1.0	%
clock frequency accuracy			$T_A = -40$ to $-20^{\circ}C$	-1.5		+1.5	%
		R5F103 products		-5.0		+5.0	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H) and bits 0 to 2 of HOCODIV register.

2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

(1/2)

2.3.2 Supply current characteristics

(1) 20-, 24-pin products

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit		
Supply	IDD1	Operating	HS(High-speed	$f_{IH}=24~MHz^{\text{Note 3}}$	Basic	$V_{DD} = 5.0 V$		1.5		mA		
current ^{Note 1}		mode	main) mode ^{№™4}		operation	V _{DD} = 3.0 V		1.5				
					Normal	$V_{DD} = 5.0 V$		3.3	5.0	mA		
					operation	$V_{DD} = 3.0 V$		3.3	5.0			
				$f_{\text{IH}} = 16 \; MHz^{\text{Note 3}}$		$V_{DD} = 5.0 V$		2.5	3.7	mA		
						$V_{DD} = 3.0 V$		2.5	3.7			
			LS(Low-speed	$f_{\text{IH}} = 8 \; MHz^{\text{Note 3}}$		$V_{DD} = 3.0 V$		1.2	1.8	mA		
		$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	main) mode ^{Note 4}			$V_{DD} = 2.0 V$		1.2	1.8			
				Square wave input		2.8	4.4	mA				
			$V_{DD} = 5.0 \text{ V}$		Resonator connection		3.0	4.6				
				$f_{MX} = 20 \text{ MHz}^{Note 2},$		Square wave input		2.8	4.4	mA		
				$V_{DD} = 3.0 \text{ V}$		Resonator connection		3.0	4.6			
				$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		1.8	2.6	mA		
				$V_{DD} = 5.0 \text{ V}$		Resonator connection		1.8	2.6			
						$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		1.8	2.6	mA
				$V_{DD} = 3.0 V$		Resonator connection		1.8	2.6			
			main) mode ^{Note4}	$f_{\text{MX}} = 8 \text{ MHz}^{\text{Note 2}},$ $V_{\text{DD}} = 3.0 \text{ V}$		Square wave input		1.1	1.7	mA		
						Resonator connection		1.1	1.7			
				$f_{\text{MX}} = 8 \text{ MHz}^{\text{Note 2}},$ $V_{\text{DD}} = 2.0 \text{ V}$		Square wave input		1.1	1.7	mA		
						Resonator connection		1.1	1.7			

Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. When high-speed on-chip oscillator clock is stopped.
- **3.** When high-speed system clock is stopped
- **4.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode: $V_{DD} = 2.7 \text{ V}$ to 5.5 V @1 MHz to 24 MHz $V_{DD} = 2.4 \text{ V}$ to 5.5 V @1 MHz to 16 MHz

- LS(Low speed main) mode: $V_{DD} = 1.8 V$ to 5.5 V @1 MHz to 8 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fil: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$.

(3) Peripheral functions (Common to all products)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed onchip oscillator operating current	FiL Note 1				0.20		μA
12-bit interval timer operating current	ITMKA Notes 1, 2, 3				0.02		μA
Watchdog timer operating current	WDT Notes 1, 2, 4	fı∟ = 15 kHz			0.22		μA
A/D converter	ADC Notes 1, 5	When conversion at	Normal mode, $AV_{REFP} = V_{DD} = 5.0 V$		1.30	1.70	mA
operating current		maximum speed	Low voltage mode, $AV_{REFP} = V_{DD} = 3.0 V$		0.50	0.70	mA
A/D converter reference voltage operating current	ADREF Note 1				75.0		μA
Temperature sensor operating current	TMPS ^{Note 1}				75.0		μA
LVD operating current	LVD Notes 1, 6				0.08		μA
Self- programming operating current	FSP Notes 1, 8				2.00	12.20	mA
BGO operating current	BGO Notes 1, 7				2.00	12.20	mA
SNOOZE	ISNOZ Note 1	ADC operation	The mode is performed Note 9		0.50	0.60	mA
operating current			The A/D conversion operations are performed, Low voltage mode, $AV_{REFP} = V_{DD} = 3.0 V$		1.20	1.44	mA
		CSI/UART operation			0.70	0.84	mA

Notes 1. Current flowing to the VDD.

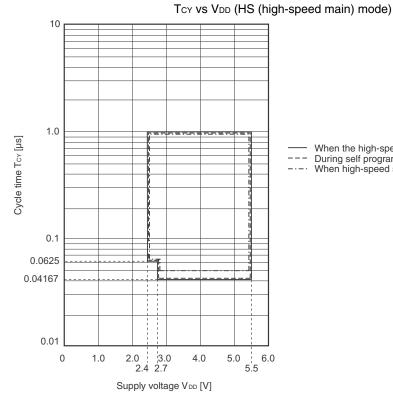
- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and IFIL and ITMKA when the 12-bit interval timer operates.
- 4. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.
- 5. Current flowing only to the A/D converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 6. Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit operates.
- 7. Current flowing only during data flash rewrite.
- 8. Current flowing only during self programming.
- 9. For shift time to the SNOOZE mode, see 17.3.3 SNOOZE mode.

Remarks 1. fil: Low-speed on-chip oscillator clock frequency

2. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

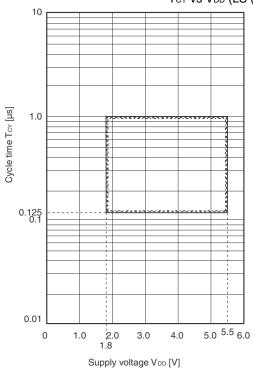
2.4 AC Characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$


Items	Symbol		Condition	IS	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсч	Main system	HS (High-	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.04167		1	μS
instruction execution time)		clock (fmain) operation	speed main) mode	$2.4~V \leq V_{\text{DD}} < 2.7~V$	0.0625		1	μS
			LS (Low- speed main) mode	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	0.125		1	μS
		During self	HS (High-	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.04167		1	μS
		programming	speed main) mode	$2.4~V \leq V_{\text{DD}} < 2.7~V$	0.0625		1	μS
			LS (Low- speed main) mode	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	0.125		1	μS
External main system clock	fex	$2.7 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$			1.0		20.0	MHz
frequency		$2.4~V \leq V_{\text{DD}} < 2.7~V$			1.0		16.0	MHz
		$1.8~V \leq V_{\text{DD}} < 2$.4 V		1.0		8.0	MHz
External main system clock	texн, texL	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			24			ns
input high-level width, low- level width		$2.4~V \leq V_{\text{DD}} < 2.7~V$			30			ns
		$1.8~V \leq V_{\text{DD}} < 2.4~V$			60			ns
TI00 to TI07 input high-level width, low-level width	t⊓∺, t⊓∟				1/fмск + 10			ns
TO00 to TO07 output	fто	$4.0~V \leq V_{\text{DD}} \leq 5$.5 V				12	MHz
frequency		$2.7~V \leq V_{\text{DD}} < 4$			8	MHz		
		$1.8~V \leq V_{\text{DD}} < 2.7~V$					4	MHz
PCLBUZ0, or PCLBUZ1	f PCL	$4.0~V \leq V_{\text{DD}} \leq 5$.5 V				16	MHz
output frequency		$2.7~V \leq V_{\text{DD}} < 4$.0 V				8	MHz
		$1.8~V \leq V_{\text{DD}} < 2.7~V$					4	MHz
INTP0 to INTP5 input high- level width, low-level width	tın⊤н, tın⊤∟				1			μS
KR0 to KR9 input available width	tкя				250			ns
RESET low-level width	tRSL				10			μs

Remark fMCK: Timer array unit operation clock frequency

(Operation clock to be set by the timer clock select register 0 (TPS0) and the CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7))


Minimum Instruction Execution Time during Main System Clock Operation

When the high-speed on-chip oscillator clock is selected During self programming When high-speed system clock is selected ___

_ . _ .

TCY vs VDD (LS (low-speed main) mode)

When the high-speed on-chip oscillator clock is selected

--- During self programming ---. When high-speed system clock is selected

- **Remarks 1.** p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products.)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products.))

(5)	During communication at same potential (simplified I ² C mode)
(T ₄	x = -40 to +85°C. 1.8 V < Vpp < 5.5 V. Vss = 0 V)

Parameter	Symbol	Conditions	HS (high-speed	main) Mode	Unit	
			LS (low-speed	LS (low-speed main) Mode		
			MIN.	MAX.		
SCLr clock frequency	fsc∟	$1.8~V \leq V_{\text{DD}} \leq 5.5~V,$		400 Note 1	kHz	
		$C_{b} = 100 \text{ pF}, \text{R}_{b} = 3 \text{k} \Omega$				
		$1.8~V \leq V_{\text{DD}} < 2.7~V,$		300 Note 1	kHz	
		C_b = 100 pF, R_b = 5 k Ω				
Hold time when SCLr = "L"	t∟ow	$1.8~V \leq V_{\text{DD}} \leq 5.5~V,$	1150		ns	
		$C_{b}=100 \text{ pF}, \text{R}_{b}=3 \text{k}\Omega$				
		$1.8~V \leq V_{\text{DD}} < 2.7~V,$	1550		ns	
		C_b = 100 pF, R_b = 5 k Ω				
Hold time when SCLr = "H"	tніgн	$1.8~V \leq V_{\text{DD}} \leq 5.5~V,$	1150		ns	
		$C_{b}=100 \text{ pF}, \text{R}_{b}=3 \text{k}\Omega$				
		$1.8~V \leq V_{\text{DD}} < 2.7~V,$	1550		ns	
		C_b = 100 pF, R_b = 5 k Ω				
Data setup time (reception)	tsu:dat	$1.8~V \leq V_{\text{DD}} \leq 5.5~V,$	1/fмск + 145 Note 2		ns	
		$C_{b}=100 \text{ pF}, \text{R}_{b}=3 \text{k}\Omega$				
		$1.8~V \leq V_{\text{DD}} < 2.7~V,$	1/fмск + 230 Note 2		ns	
		C_b = 100 pF, R_b = 5 k Ω				
Data hold time (transmission)	thd:dat	$1.8~V \leq V_{\text{DD}} \leq 5.5~V,$	0	355	ns	
		$C_{b}=100 \text{ pF}, \text{R}_{b}=3 \text{k}\Omega$				
		$1.8~V \leq V_{\text{DD}} < 2.7~V,$	0	405	ns	
		$C_b = 100 \text{ pF}, \text{R}_b = 5 \text{ k}\Omega$				

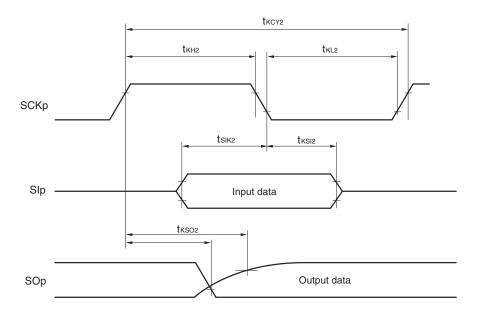
Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

2. Set tsu:DAT so that it will not exceed the hold time when SCLr = "L" or SCLr = "H".

Caution Select the N-ch open drain output (VDD tolerance) mode for SDAr by using port output mode register h (POMh).

(Remarks are listed on the next page.)

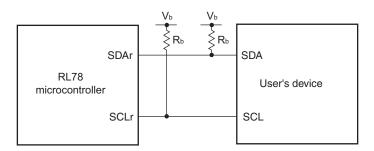
Parameter	Symbol	C	onditions	HS (high-spo Mod	,	LS (low-spe Mod		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	t ксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	20 MHz < fmck \leq 24 MHz	12/fмск		-		ns
		$2.7~V \leq V_b \leq 4.0~V$	8 MHz < fмск ≤ 20 MHz	10/fмск		-		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	8/fмск		16/fмск		ns
			fмск \leq 4 MHz	6/fмск		10/f мск		ns
		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	20 MHz < fмск \leq 24 MHz	16/fмск		I		ns
		$2.3~V \leq V_b \leq 2.7~V$	16 MHz < fмск \leq 20 MHz	14/fмск		ļ		ns
			8 MHz < fmck \leq 16 MHz	12/fмск		I		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	8/fмск		16/f мск		ns
			fмск ≤ 4 MHz	6/fмск		10/f мск		ns
		$1.8~V \leq V_{\text{DD}} < 3.3~V,$	20 MHz < fмск \leq 24 MHz	36/fмск		I		ns
		$\begin{array}{l} 1.6 \ V \leq V_b \leq 2.0 \ V \\ \mbox{Note 2} \end{array}$	16 MHz < fмск \leq 20 MHz	32/fмск		ļ		ns
			8 MHz < fmck \leq 16 MHz	26/f мск		ļ		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	16/fмск		16/fмск		ns
			fмск \leq 4 MHz	10/fмск		10/f мск		ns
SCKp high-/low-level	tкн2,	$4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V$		tксү2/2 – 12		tксү2/2 – 50		ns
width	tĸl2	$2.7~V \leq V_{\text{DD}} < 4.0~V,$	$2.3~V \leq V_{b} \leq 2.7~V$	tkcy2/2 - 18		tксү2/2 – 50		ns
		$1.8~V \leq V_{\text{DD}} < 3.3~V,$	$1.6~V \leq V_{b} \leq 2.0~V^{\text{Note 2}}$	tkcy2/2 - 50		tксү2/2 – 50		ns
SIp setup time	tsik2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	$2.7~V \leq V_{\text{DD}} \leq 4.0~V$	1/fмск + 20		1/fмск + 30		ns
(to SCKp↑) ^{Note 3}		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	$2.3~V \leq V_{\text{b}} \leq 2.7~V$	1/fмск + 20		1/fмск + 30		ns
		$1.8~V \leq V_{\text{DD}} < 3.3~V,$	$1.6~V \leq V_{\text{DD}} \leq 2.0~V^{\text{Note 2}}$	1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) ^{Note 4}	tksi2			1/fмск + 31		1/fмск + 31		ns
Delay time from	tĸso2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	$2.7~V \leq V_b \leq 4.0~V,$		2/fмск +		2/fмск +	ns
SCKp↓ to SOp output ^{Note 5}		$C_b = 30 \text{ pF}, \text{ R}_b = 1.4$	kΩ		120		573	
		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	$2.3~V \leq V_{b} \leq 2.7~V,$		2/fмск +		2/fмск +	ns
		$C_b = 30 \text{ pF}, \text{ R}_b = 2.7$	kΩ		214		573	
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V},$	$1.6~V \leq V_{b} \leq 2.0~V^{\text{Note 2}},$		2/fмск +		2/fмск +	ns
		C _b = 30 pF, R _b = 5.5	kΩ		573		573	


(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) ($T_A = -40$ to $+85^{\circ}$ C, 1.8 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

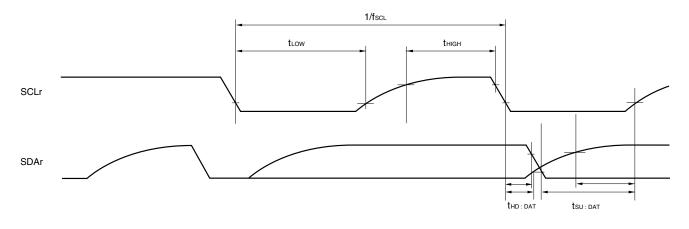
Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

 $\textbf{2.} \quad \textbf{Use it with } V_{\text{DD}} \geq V_{\text{b}}.$

- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Cautions 1. Select the TTL input buffer for the SIp and SCKp pins and the N-ch open drain output (Vbb tolerance) mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For ViH and ViL, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.



CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)


Remark p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b [Ω]: Communication line (SDAr, SCLr) pull-up resistance, C_b [F]: Communication line (SDAr, SCLr) load capacitance, V_b [V]: Communication line voltage
 - **2.** r: IIC Number (r = 00, 20)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number (m = 0,1), n: Channel number (n = 0))
 - 4. Simplified l^2 C mode is supported only by the R5F102 products.

LVD detection voltage of interrupt & reset n	node
$(T_{4} - 10 t_{0} + 85^{\circ}C)$ Van $< Van < 5.5 V$ Van $= ($	N 1/1

Parameter	Symbol		Con	ditions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVDB0	VPOC2,	VPOC1, VPOC0 = 0, 0, 1, fa	ling reset voltage	1.80	1.84	1.87	V
mode	VLVDB1		LVIS1, LVIS0 = 1, 0	Rising reset release voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB2		LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB3		LVIS1, LVIS0 = 0, 0	Rising reset release voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDC0	VPOC2,	VPOC1, VPOC0 = 0, 1, 0, fa	ling reset voltage	2.40	2.45	2.50	V
	VLVDC1		LVIS1, LVIS0 = 1, 0	Rising reset release voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDC3		LVIS1, LVIS0 = 0, 0	Rising reset release voltage	3.68	3.75	3.82	V
				Falling interrupt voltage	3.60	3.67	3.74	V
	VLVDD0	VPOC2,	VPOC1, VPOC1 = 0, 1, 1, fa	ling reset voltage	2.70	2.75	2.81	V
	VLVDD1		LVIS1, LVIS0 = 1, 0	Rising reset release voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2		LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V
	V LVDD3		LVIS1, LVIS0 = 0, 0	Rising reset release voltage	3.98	4.06	4.14	V
				Falling interrupt voltage	3.90	3.98	4.06	V

2.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 28.4 AC Characteristics.

3.2 Oscillator Characteristics

3.2.1 X1 oscillator characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator /	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal oscillator	$2.4~V \leq V_{\text{DD}} < 2.7~V$	1.0		8.0	

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

- **Caution** Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- Remark When using the X1 oscillator, refer to 5.4 System Clock Oscillator.

3.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Oscillators	Parameters	Conditions			TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		24	MHz
High-speed on-chip oscillator		R5F102 products	T _A = -20 to +85°C	-1.0		+1.0	%
clock frequency accuracy			$T_A = -40$ to $-20^{\circ}C$	-1.5		+1.5	%
			T _A = +85 to +105°C	-2.0		+2.0	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H) and bits 0 to 2 of HOCODIV register.

2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

(4/4)

Parameter	Symbol		Conditio	ons	MIN.	TYP.	MAX.	Unit
Output voltage, low	V _{OL1}	20-, 24-pin product P00 to P03 ^{Note} , P10		$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.5 \ mA \end{array} \label{eq:DD}$			0.7	V
		P40 to P42 30-pin products: P0		$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 3.0 \ mA \end{array} \end{array} \label{eq:DD}$			0.6	V
		P10 to P17, P30, P31, P40, P50, P51, P120, P147		$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 1.5 \ mA \end{array} \label{eq:DD}$			0.4	V
			-				0.4	V
	V _{OL2}	P20 to P23		Ιοι2 = 400 μΑ			0.4	V
	V _{OL3}			$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 15.0 \ \text{mA} \end{array}$			2.0	V
			2				0.4	V
				$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 3.0 \ mA \end{array} \label{eq:DD}$			0.4	V
							0.4	V
Input leakage current, high	Іцні	Other than P121, $V_I = V_{DD}$ P122					1	μA
	Ilih2	P121, P122 (X1, X2/EXCLK)	VI = VDD	Input port or external clock input			1	μA
				When resonator connected			10	μA
Input leakage current, low	ILIL1	Other than P121, P122	VI = Vss				-1	μA
	Ilile	P121, P122 (X1, X2/EXCLK)	VI = Vss	Input port or external clock input			-1	μA
				When resonator connected			-10	μA
On-chip pull-up resistance	Rυ	R∪ 20-, 24-pin products: P00 to P03 ^{Note} , P10 to P14, P40 to P42, P125, RESET		VI = Vss, input port	10	20	100	kΩ
		30-pin products: P0 P10 to P17, P30, F P50, P51, P120, P	P31, P40,					

Note 24-pin products only.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(2) 30-pin products

$A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = 0^{-1}$	V)
--	----

(T _A = -40 to	+105°C,	$2.4 V \leq V_D$	□ ≤ 5.5 V, V ss =	= 0 V)						(1/2)
Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply		Operating	HS (High-speed	$f_{IH} = 24 \ MHz^{Note 3}$	Basic	VDD = 5.0 V		1.5		mA
current ^{Note 1}		mode	main) mode ^{№084}		operation	VDD = 3.0 V		1.5		
					Normal	V _{DD} = 5.0 V		3.7	5.8	mA
					operation	VDD = 3.0 V		3.7	5.8	
				$f_{IH} = 16 \text{ MHz}^{Note 3}$		V _{DD} = 5.0 V		2.7	4.2	mA
						VDD = 3.0 V		2.7	4.2	
				$f_{MX} = 20 \text{ MHz}^{Note 2},$		Square wave input		3.0	4.9	mA
				$V_{DD} = 5.0 V$		Resonator connection		3.2	5.0	
				$f_{MX} = 20 \text{ MHz}^{Note 2},$		Square wave input		3.0	4.9	mA
				$V_{\text{DD}} = 3.0 \text{ V}$		Resonator connection		3.2	5.0	
				$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		1.9	2.9	mA
	$\frac{V_{DD} = 5.0 \text{ V}}{f_{MX} = 10 \text{ MHz}^{Nois2},}$		Resonator connection		1.9	2.9				
		$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		1.9	2.9	mA		
				$V_{DD} = 3.0 \text{ V}$		Resonator connection		1.9	2.9	

Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. When high-speed on-chip oscillator clock is stopped.
- 3. When high-speed system clock is stopped
- 4. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz VDD = 2.4 V to 5.5 V @1 MHz to 16 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$.

(3) Peripheral functions (Common to all products)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed onchip oscillator operating current	FIL Note 1				0.20		μA
12-bit interval timer operating current	ITMKA Notes 1, 2, 3				0.02		μA
Watchdog timer operating current	WDT Notes 1, 2, 4	fı∟ = 15 kHz	fı∟ = 15 kHz		0.22		μA
A/D converter	IADC	When conversion	Normal mode, AV _{REFP} = V _{DD} = 5.0 V		1.30	1.70	mA
operating current	Notes 1, 5	at maximum speed	Low voltage mode, AV _{REFP} = V _{DD} = 3.0 V		0.50	0.70	mA
A/D converter reference voltage operating current	IADREF Note 1				75.0		μA
Temperature sensor operating current	ITMPS Note 1				75.0		μA
LVD operating current	ILVD Notes 1, 6				0.08		μA
Self-programming operating current	IFSP Notes 1, 8				2.00	12.20	mA
BGO operating current	BGO Notes 1, 7				2.00	12.20	mA
SNOOZE operating	Isnoz	ADC operation	The mode is performed Note 9		0.50	1.10	mA
current	Note 1		The A/D conversion operations are performed, Low voltage mode, $AV_{REFP} = V_{DD} = 3.0 \text{ V}$		1.20	2.04	mA
		CSI/UART operation	<u>ו</u>		0.70	1.54	mA

Notes 1. Current flowing to the VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and IFIL and ITMKA when the 12-bit interval timer operates.
- 4. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.
- 5. Current flowing only to the A/D converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 6. Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit operates.
- 7. Current flowing only during data flash rewrite.
- **8.** Current flowing only during self programming.
- 9. For shift time to the SNOOZE mode, see 17.3.3 SNOOZE mode.

Remarks 1. fill: Low-speed on-chip oscillator clock frequency

2. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

3.4 AC Characteristics

$(T_A = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Items	Symbol		Condition	IS	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсч	Main system	HS (High-	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.04167		1	μs
instruction execution time)		clock (fMAIN) operation	speed main) mode	$2.4~V \leq V_{\text{DD}} < 2.7~V$	0.0625		1	μs
		During self	HS (High-	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.04167		1	μs
		programming	speed main) mode	$2.4~V \leq V_{\text{DD}} < 2.7~V$	0.0625		1	μS
External main system clock	fex	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			1.0		20.0	MHz
frequency		$2.4~V \leq V_{\text{DD}} < 2.7~V$		1.0		16.0	MHz	
External main system clock	texh, texl	$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V \\ \\ 2.4 \ V \leq V_{\text{DD}} < 2.7 \ V \end{array}$			24			ns
input high-level width, low- level width					30			ns
TI00 to TI07 input high-level width, low-level width	t⊓н, tт⊾				1/fмск + 10			ns
TO00 to TO07 output	f _{то}	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$					12	MHz
frequency		$2.7~V \leq V_{\text{DD}} < 4.4$.0 V				8	MHz
		$2.4~V \leq V_{\text{DD}} < 2.7~V$					4	MHz
PCLBUZ0, or PCLBUZ1	f PCL	$4.0~V \leq V_{\text{DD}} \leq 5$.5 V				16	MHz
output frequency		$2.7~V \leq V_{\text{DD}} < 4$.0 V				8	MHz
		$2.4~V \leq V_{\text{DD}} < 2$.7 V				4	MHz
INTP0 to INTP5 input high- level width, low-level width	tinth, tintl				1			μs
KR0 to KR9 input available width	tкя				250			ns
RESET low-level width	tRSL				10			μs

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the timer clock select register 0 (TPS0) and the CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7))

Parameter	Symbol	Conditions			speed main) Iode	Unit
				MIN.	MAX.	
Transfer rate ^{Note4}		Reception			fмск/12 Note 1	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		2.0	Mbps
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$		fмск/12 Note 1	bps	
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} {}^{Note \ 2}$		2.0	Mbps	
		$\begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_{b} \leq 2.0 \ V \end{array}$		fмск/12 Note 1	bps	
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		2.0	Mbps
		Transmission			Note 3	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, V_b = 2.7 \text{ V}$		2.0 Note 4	Mbps
			$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ \\ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \end{array}$		Note 5	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$		1.2 Note 6	Mbps
			$2.4 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$		Notes 2, 7	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, \text{ R}_b = 5.5 \text{ k}\Omega, \text{ V}_b = 1.6 \text{ V}$		0.43 Note 8	Mbps

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

 $(T_A = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq V_{DD} \leq 5.5 V) 16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)

3. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq V_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =

$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3)

Parameter	Symbol	Conditions	HS (high-spee	ed main) Mode	Unit
			MIN.	MAX.	
SIp setup time (to SCKp↑) _{Note}	tsikı	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 1.4 \ k\Omega \end{array}$	162		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$	354		ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 5.5 \ k\Omega \end{array}$	958		ns
SIp hold time (from SCKp↑) ^{№te}	tksi1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$	38		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$	38		ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	38		ns
Delay time from SCKp↓ to SOp output ^{Note}	tkso1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$		200	ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$		390	ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 5.5 \ k\Omega \end{array}$		966	ns

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

Note When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

(Cautions and Remarks are listed on the next page.)

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

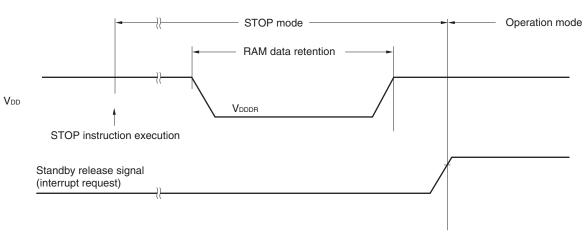
Input channel		Reference Voltage						
	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = VDD Reference voltage (-) = Vss	Reference voltage (+) = VBGR Reference voltage (-) = AVREFM					
ANI0 to ANI3	Refer to 29.6.1 (1).	Refer to 29.6.1 (3).	Refer to 29.6.1 (4).					
ANI16 to ANI22	Refer to 29.6.1 (2) .							
Internal reference voltage	Refer to 29.6.1 (1).		-					
Temperature sensor output voltage								

(1) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin: ANI2, ANI3, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AV}_{REFP} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Cor	MIN.	TYP.	MAX.	Unit	
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}			1.2	±3.5	LSB
Conversion time	t CONV	10-bit resolution Target pin: ANI2, ANI3	$3.6~V \leq V\text{DD} \leq 5.5~V$	2.125		39	μS
			$2.7~V \leq V\text{DD} \leq 5.5~V$	3.1875		39	μS
			$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μS
		10-bit resolution Target pin: Internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$3.6~V \leq V\text{DD} \leq 5.5~V$	2.375		39	μS
			$2.7~V \leq V\text{DD} \leq 5.5~V$	3.5625		39	μS
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±0.25	%FSR
Full-scale error ^{Notes 1, 2}	EFS	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±0.25	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±2.5	LSB
Differential linearity error	DLE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±1.5	LSB
Analog input voltage	VAIN	ANI2, ANI3		0		AVREFP	V
		Internal reference voltage (HS (high-speed main) mode)		VBGR ^{Note 4}			V
		Femperature sensor output voltage HS (high-speed main) mode)		VTMPS25 Note 4			V

(Notes are listed on the next page.)


<R>

<R> 3.7 RAM Data Retention Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vdddr		1.44 ^{Note}		5.5	V

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

3.8 Flash Memory Programming Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclк		1		24	MHz
Code flash memory rewritable times Notes 1, 2, 3	Cerwr	Retained for 20 years $T_A = 85^{\circ}C^{Notes 4}$	1,000			Times
Data flash memory rewritable times Notes 1, 2, 3		Retained for 1 year T _A = $25^{\circ}C^{Notes 4}$		1,000,000		
		Retained for 5 years $T_A = 85^{\circ}C^{Notes 4}$	100,000			
		Retained for 20 years T _A = $85^{\circ}C^{Notes 4}$	10,000			

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.
- 4. This temperature is the average value at which data are retained.

