

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	30-LSSOP (0.240", 6.10mm Width)
Supplier Device Package	30-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f102a8dsp-x0

RL78/G12 1. OUTLINE

O ROM, RAM capacities

Code flash	Data flash	RAM	20 pins	24 pins	30 pins
16 KB	2 KB	2 KB	_	_	R5F102AA
	_		_	_	R5F103AA
	2 KB	1.5 KB	R5F1026A Note 1	R5F1027A Note 1	_
	_		R5F1036A Note 1	R5F1037A Note 1	_
12 KB	2KB	1 KB	R5F10269 Note 1	R5F10279 Note 1	R5F102A9
	_		R5F10369 Note 1	R5F10379 Note 1	R5F103A9
8 KB	2 KB	768 B	R5F10268 Note 1	R5F10278 Note 1	R5F102A8
	_		R5F10368 Note 1	R5F10378 Note 1	R5F103A8
4 KB	2KB	512 B	R5F10267	R5F10277	R5F102A7
	_		R5F10367	R5F10377	R5F103A7
2 KB	2 KB	256 B	R5F10266 Note 2	_	_
	_		R5F10366 Note 2	_	_

Notes 1. This is 640 bytes when the self-programming function or data flash function is used. (For details, see CHAPTER 3 CPU ARCHITECTURE.)

2. The self-programming function cannot be used for R5F10266 and R5F10366.

Caution When the flash memory is rewritten via a user program, the code flash area and RAM area are used because each library is used. When using the library, refer to RL78 Family Flash Self Programming Library Type01 User's Manual and RL78 Family Data Flash Library Type04 User's Manual.

<R>

<R>

<R>

- <R> 2. ELECTRICAL SPECIFICATIONS ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)
- <R> This chapter describes the following electrical specifications.
 - Target products A: Consumer applications $T_A = -40 \text{ to } +85^{\circ}\text{C}$ R5F102xxAxx, R5F103xxAxx
 - D: Industrial applications T_A = -40 to +85°C R5F102xxDxx, R5F103xxDxx
 - G: Industrial applications when $T_A = -40$ to $+105^{\circ}$ C products is used in the range of $T_A = -40$ to $+85^{\circ}$ C R5F102xxGxx
 - Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product.

(2/4)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	lol1	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42				20.0 Note 2	mA
		30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147					
		Per pin for P60, P61				15.0 Note 2	mA
		20-, 24-pin products:	$4.0~V \leq V_{DD} \leq 5.5~V$			60.0	mA
		Total of P40 to P42	$2.7~V \leq V_{DD} < 4.0~V$			9.0	mA
		30-pin products: Total of P00, P01, P40, P120 (When duty ≤ 70% Note 3)	1.8 V ≤ V _{DD} < 2.7 V			1.8	mA
		20-, 24-pin products:	$4.0~V \leq V_{DD} \leq 5.5~V$			80.0	mA
		Total of P00 to P03 ^{Note 4} ,	$2.7~V \leq V_{DD} < 4.0~V$			27.0	mA
		P10 to P14, P60, P61 30-pin products: Total of P10 to P17, P30, P31, P50, P51, P60, P61, P147 (When duty ≤ 70% Note 3)	1.8 V ≤ V _{DD} < 2.7 V			5.4	mA
		Total of all pins (When duty ≤ 70% Note 3)				140	mA
	lol2	Per pin for P20 to P23				0.4	mA
		Total of all pins				1.6	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.
 - 2. However, do not exceed the total current value.
 - 3. The output current value under conditions where the duty factor $\leq 70\%$.

If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).

- Total output current of pins = $(IoL \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

4. 24-pin products only.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(2) 30-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2 Note 2	HALT	HS (High-speed	fin = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		440	1280	μА
current Note 1		mode	main) mode Note 6		V _{DD} = 3.0 V		440	1280	
				fin = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		400	1000	μА
					V _{DD} = 3.0 V		400	1000	
			LS (Low-speed	fih = 8 MHz ^{Note 4}	V _{DD} = 3.0 V		260	530	μA
			main) mode Note 6		V _{DD} = 2.0 V		260	530	
			HS (High-speed	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		280	1000	μА
			main) mode Note 6	V _{DD} = 5.0 V	Resonator connection		450	1170	
				$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		280	1000	μA
				V _{DD} = 3.0 V	Resonator connection		450	1170	
			$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		190	600	μА	
				$V_{DD} = 5.0 \text{ V}$	Resonator connection		260	670	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$ $V_{DD} = 3.0 \text{ V}$	Square wave input		190	600	μΑ
					Resonator connection		260	670	
			LS (Low-speed	fmx = 8 MHz ^{Note 3} ,	Square wave input		95	330	μΑ
			main) mode Note 6	V _{DD} = 3.0 V	Resonator connection		145	380	
				fmx = 8 MHz ^{Note 3}	Square wave input		95	330	μΑ
				V _{DD} = 2.0 V	Resonator connection		145	380	
	IDD3 ^{Note 5}	STOP	$T_A = -40^{\circ}C$				0.18	0.50	μΑ
		mode	T _A = +25°C				0.23	0.50	
			T _A = +50°C				0.30	1.10	
			T _A = +70°C				0.46	1.90	
			T _A = +85°C				0.75	3.30	

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator clock is stopped.
 - 4. When high-speed system clock is stopped.
 - 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **6.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS (High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz

 $V_{DD} = 2.4 \text{ V to } 5.5 \text{ V } @ 1 \text{ MHz to } 16 \text{ MHz}$

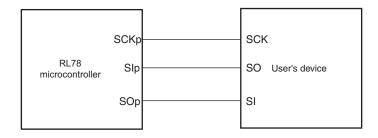
LS (Low speed main) mode: VDD = 1.8 V to 5.5 V @1 MHz to 8 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except STOP mode, temperature condition of the TYP. value is $T_A = 25$ °C.

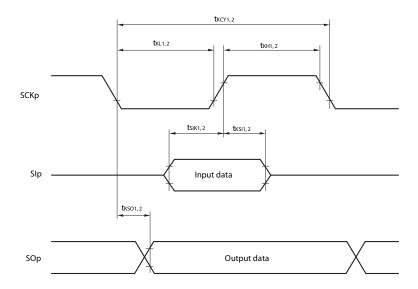
(2) During communication at same potential (CSI mode) (master mode, SCK00... internal clock output, corresponding CSI00 only)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

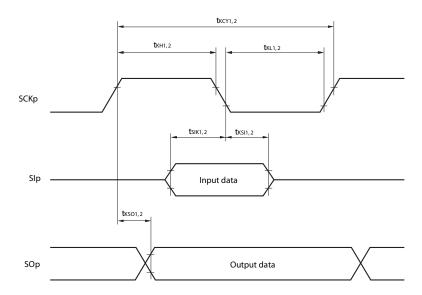
Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-sp	Unit	
			MIN.	MAX.	MIN.	MAX.	
SCK00 cycle time	tkCY1	tkcy1 ≥ 2/fclk	83.3		250		ns
SCK00 high-/low-	t кн1,	$4.0~V \leq V_{DD} \leq 5.5~V$	tkcy1/2-7		tkcy1/2-50		ns
level width tkl-	t _{KL1}	$2.7~V \leq V_{DD} \leq 5.5~V$	tkcy1/2-10		tkcy1/2-50		ns
SI00 setup time	tsıĸı	$4.0~V \leq V_{DD} \leq 5.5~V$	23		110		ns
(to SCK00↑) Note 1		$2.7~V \leq V_{DD} \leq 5.5~V$	33		110		ns
SI00 hold time (from SCK00↑) Note2	tksi1		10		10		ns
Delay time from SCK00↓ to SO00 output Note 3	tkso1	C = 20 pF Note 4		10		10	ns


- **Notes 1.** When DAP00 = 0 and CKP00 = 0, or DAP00 = 1 and CKP00 = 1. The SI00 setup time becomes "to $SCK00\downarrow$ " when DAP00 = 0 and CKP00 = 1, or DAP00 = 1 and CKP00 = 0.
 - 2. When DAP00 = 0 and CKP00 = 0, or DAP00 = 1 and CKP00 = 1. The SI00 hold time becomes "from SCK00 \downarrow " when DAP00 = 0 and CKP00 = 1, or DAP00 = 1 and CKP00 = 0.
 - 3. When DAP00 = 0 and CKP00 = 0, or DAP00 = 1 and CKP00 = 1. The delay time to SO00 output becomes "from SCK00 \uparrow " when DAP00 = 0 and CKP00 = 1, or DAP00 = 1 and CKP00 = 0.
 - 4. C is the load capacitance of the SCK00 and SO00 output lines.

Caution Select the normal input buffer for the SI00 pin and the normal output mode for the SO00 and SCK00 pins by using port input mode register 1 (PIM1) and port output mode register 1 (POM1).


Remarks 1. This specification is valid only when CSI00's peripheral I/O redirect function is not used.

 fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register 0 (SPS0) and the CKS00 bit of serial mode register 00 (SMR00).)


CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

(Remarks are listed on the next page.)

- This value as an example is calculated when the conditions described in the "Conditions" column are met.
 Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
- **6.** The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq VDD < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

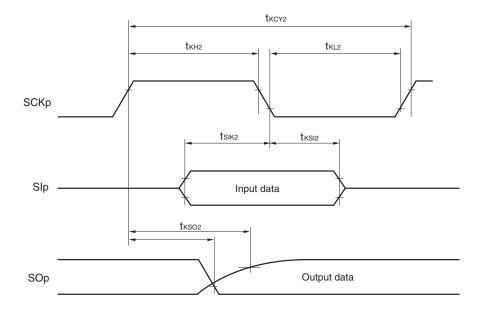
Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

$$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 6** above to calculate the maximum transfer rate under conditions of the customer.
- 8. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq V_{DD} < 3.3 V, 1.6 V \leq V_b \leq 2.0 V

$$\label{eq:maximum transfer rate} \text{Maximum transfer rate} = \frac{1}{\{-C_b \times R_b \times \text{In } (1-\frac{1.5}{V_b})\} \times 3} \quad \text{[bps]}$$


Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{\frac{1}{(\text{Transfer rate}) \times \text{Number of transferred bits}}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **9.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 8** above to calculate the maximum transfer rate under conditions of the customer.

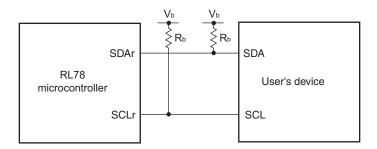
Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

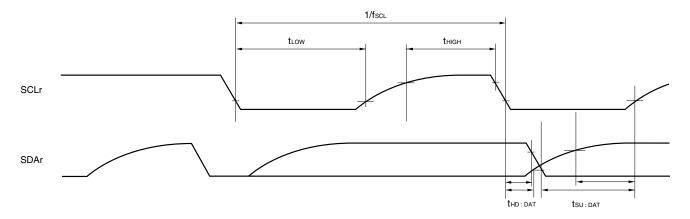
Remark p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$


Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$ 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, $ $ C_b = 100 \ pF, \ R_b = 2.8 \ k\Omega $		400 ^{Note1}		300 ^{Note1}	kHz
		$ 2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, $ $ C_{\text{b}} = 100 \text{ pF}, \ R_{\text{b}} = 2.7 \text{ k}\Omega $		400 ^{Note1}		300 ^{Note1}	kHz
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}, \\ C_{\text{b}} = 100 \text{ pF}, \ R_{\text{b}} = 5.5 \text{ k}\Omega$		300 ^{Note1}		300 ^{Note1}	kHz
Hold time when SCLr = "L"	tLOW	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, R_{\text{b}} = 2.8 \text{ k}\Omega$	1150		1550		ns
		$ 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, $ $ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega $	1150		1550		ns
			1550		1550		ns
Hold time when SCLr = "H"	tнідн	$4.0~V \leq V_{DD} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$ $C_b = 100~pF,~R_b = 2.8~k\Omega$	675		610		ns
		$ 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, $ $ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega $	600		610		ns
		$ \begin{aligned} &1.8 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}, \end{aligned}^{\text{Note2}} \\ &C_{\text{b}} = 100 \text{ pF}, \ R_{\text{b}} = 5.5 \text{ k}\Omega \end{aligned} $	610		610		ns
Data setup time (reception)	tsu:dat	$4.0~V \leq V_{DD} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$ $C_b = 100~pF,~R_b = 2.8~k\Omega$	1/fmck + 190 Note3		1/f _{MCK} + 190 _{Note3}		ns
		$2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V,$ $C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega$	1/fmck + 190 Note3		1/fмск + 190 _{Note3}		ns
		$1.8~V \leq V_{DD} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V, \label{eq:vb}$ $C_b = 100~pF,~R_b = 5.5~k\Omega$	1/fмск + 190 Note3		1/f _{MCK} + 190 _{Note3}		ns
Data hold time (transmission)	thd:dat	$4.0~V \leq V_{DD} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$ $C_b = 100~pF,~R_b = 2.8~k\Omega$	0	355	0	355	ns
		$ 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, $ $ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega $	0	355	0	355	ns
		$ \begin{aligned} &1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V, \end{aligned} $ $ &C_{b} = 100 \ pF, \ R_{b} = 5.5 \ k\Omega $	0	405	0	405	ns

- Notes 1. The value must also be equal to or less than fmck/4.
 - 2. Use it with $V_{DD} \ge V_b$.
 - 3. Set tsu:DAT so that it will not exceed the hold time when SCLr = "L" or SCLr = "H".
- Cautions 1. Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
 - 2. IIC01 and IIC11 cannot communicate at different potential.


(Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** Rb $[\Omega]$: Communication line (SDAr, SCLr) pull-up resistance, Cb [F]: Communication line (SDAr, SCLr) load capacitance, Vb [V]: Communication line voltage
 - **2.** r: IIC Number (r = 00, 20)
 - fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 - m: Unit number (m = 0,1), n: Channel number (n = 0)
 - 4. Simplified I²C mode is supported only by the R5F102 products.

<R>

<R>

<R> 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS $T_A = -40$ to +105°C)

- <R> This chapter describes the following electrical specifications.
 - Target products G: Industrial applications $T_A = -40 \text{ to } +105^{\circ}\text{C}$ R5F102xxGxx
 - **Cautions 1.** The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product.
 - 3. Please contact Renesas Electronics sales office for derating of operation under $T_A = +85^{\circ}C$ to $+105^{\circ}C$. Derating is the systematic reduction of load for the sake of improved reliability.

Remark When the RL78 microcontroller is used in the range of $T_A = -40$ to +85 °C, see CHAPTER 28 ELECTRICAL SPECIFICATIONS (A: $T_A = -40$ to +85 °C).

There are following differences between the products "G: Industrial applications ($T_A = -40 \text{ to } +105^{\circ}\text{C}$)" and the products "A: Consumer applications, and D: Industrial applications".

Parameter	Appli	cation
	A: Consumer applications, D: Industrial applications	G: Industrial applications
Operating ambient temperature	T _A = -40 to +85°C	T _A = -40 to +105°C
Operating mode	HS (high-speed main) mode:	HS (high-speed main) mode only:
Operating voltage range	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @ 1 \text{ MHz to } 24 \text{ MHz}$	$2.7~V \le V_{DD} \le 5.5~V @ 1~MHz$ to $24~MHz$
	$2.4~V \le V_{DD} \le 5.5~V@1~MHz$ to $16~MHz$	$2.4~V \le V_{DD} \le 5.5~V @ 1~MHz$ to $16~MHz$
	LS (low-speed main) mode:	
	1.8 V ≤ V _{DD} ≤ 5.5 V@1 MHz to 8 MHz	
High-speed on-chip oscillator clock	R5F102 products, 1.8 V ≤ V _{DD} ≤ 5.5 V:	R5F102 products, 2.4 V \leq V _{DD} \leq 5.5 V:
accuracy	±1.0%@ T _A = -20 to +85°C	±2.0%@ T _A = +85 to +105°C
	±1.5%@ T _A = -40 to -20°C	±1.0%@ T _A = -20 to +85°C
	R5F103 products, 1.8 V ≤ V _{DD} ≤ 5.5 V:	±1.5%@ T _A = -40 to -20°C
	±5.0%@ T _A = -40 to +85°C	
Serial array unit	UART	UART
	CSI: fcLk/2 (supporting 12 Mbps), fcLk/4	CSI: fclk/4
	Simplified I ² C communication	Simplified I ² C communication
Voltage detector	Rise detection voltage: 1.88 V to 4.06 V	Rise detection voltage: 2.61 V to 4.06 V
	(12 levels)	(8 levels)
	Fall detection voltage: 1.84 V to 3.98 V	Fall detection voltage: 2.55 V to 3.98 V
	(12 levels)	(8 levels)

Remark The electrical characteristics of the products G: Industrial applications (T_A = -40 to +105°C) are different from those of the products "A: Consumer applications, and D: Industrial applications". For details, refer to **29.1** to **29.10**.

3.3 DC Characteristics

3.3.1 Pin characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/4)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Output current, high ^{Note 1}	Іон1	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42				-3.0 Note 2	mA
		30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147					
		20-, 24-pin products:	$4.0~V \leq V_{DD} \leq 5.5~V$			-9.0	mA
		Total of P40 to P42	$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$			-6.0	mA
		30-pin products: Total of P00, P01, P40, P120 (When duty ≤ 70% Note 3)	2.4 V ≤ V _{DD} < 2.7 V			-4.5	mA
		20-, 24-pin products:	$4.0~V \leq V_{DD} \leq 5.5~V$			-27.0	mA
		Total of P00 to P03 ^{Note 4} , P10 to P14	$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$			-18.0	mA
		30-pin products: Total of P10 to P17, P30, P31, P50, P51, P147 (When duty ≤ 70% Note 3)	2.4 V ≤ V _{DD} < 2.7 V			-10.0	mA
		Total of all pins (When duty $\leq 70\%^{\text{Note 3}}$)				-36.0	mA
	І ОН2	Per pin for P20 to P23				-0.1	mA
		Total of all pins				-0.4	mA

- **Notes 1**. value of current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin.
 - 2. However, do not exceed the total current value.
 - 3. The output current value under conditions where the duty factor ≤ 70%.
 If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).
 - Total output current of pins = $(loh \times 0.7)/(n \times 0.01)$
 - <Example> Where n = 80% and IoH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

4. 24-pin products only.

Caution P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24-pin products, and P00, P10 to P15, P17, and P50 for 30-pin products do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

 $(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le VDD \le 5.5 \text{ V}, Vss = 0 \text{ V})$

(4/4)

Parameter	Symbol		Conditio	ns	MIN.	TYP.	MAX.	Unit
Output voltage, low	V _{OL1}		20-, 24-pin products: 4 P00 to P03 ^{Note} , P10 to P14, Id				0.7	V
				$2.7~V \leq V_{DD} \leq 5.5~V,$ $I_{OL1} = 3.0~mA$			0.6	V
		P10 to P17, P30, F P50, P51, P120, P		$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $\text{IoL1} = 1.5 \text{ mA}$			0.4	V
				$2.4~V \leq V_{DD} \leq 5.5~V,$ $I_{OL1} = 0.6~mA$			0.4	٧
	V _{OL2}	P20 to P23		Ιοι2 = 400 μΑ			0.4	V
	Vol3	P60, P61		$4.0~V \leq V_{DD} \leq 5.5~V,$ $I_{OL1} = 15.0~mA$			2.0	V
				$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 5.0 \text{ mA}$			0.4	V
				$2.7~V \leq V_{DD} \leq 5.5~V,$ $I_{OL1} = 3.0~mA$			0.4	V
				$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 2.0 \text{ mA}$			0.4	V
Input leakage current, high	Ішн1	Other than P121, $V_I = V_{DD}$ P122					1	μА
	ILIH2	P121, P122 (X1, X2/EXCLK)	VI = VDD	Input port or external clock input			1	μА
				When resonator connected			10	μΑ
Input leakage current, low	ILIL1	Other than P121, P122	Vı = Vss				-1	μА
	ILIL2	P121, P122 (X1, X2/EXCLK)	Vı = Vss	Input port or external clock input			-1	μΑ
				When resonator connected			-10	μΑ
On-chip pull-up resistance	Rυ	20-, 24-pin product P00 to P03 ^{Note} , P10 P40 to P42, P125,) to P14,	V _I = V _{SS} , input port	10	20	100	kΩ
		30-pin products: P0 P10 to P17, P30, F P50, P51, P120, P	P31, P40,					

Note 24-pin products only.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(1) 20-, 24-pin products

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit		
Supply	IDD2 Note 2	HALT	HS (High-speed	f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		440	2230	μА		
current ^{Note 1}		mode	e main) mode Note 6 fil = 16 MHz Note 4	V _{DD} = 3.0 V		440	2230				
				fih = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		400	1650	μА		
					V _{DD} = 3.0 V		400	1650			
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		280	1900	μА		
				V _{DD} = 5.0 V	Resonator connection		450	2000			
						f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		280	1900	μA
				$V_{DD} = 3.0 \text{ V}$	Resonator connection		450	2000			
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		190	1010	μА		
				$V_{DD} = 5.0 \text{ V}$ $f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Resonator connection		260	1090			
					Square wave input		190	1010	μA		
				V _{DD} = 3.0 V	Resonator connection		260	1090			
	IDD3 Note 5	STOP	T _A = -40°C				0.19	0.50	μA		
		mode	T _A = +25°C				0.24	0.50			
			T _A = +50°C				0.32	0.80			
			T _A = +70°C	A = +70°C			0.48	1.20			
			T _A = +85°C			0.74	2.20				
		T _A = +105°C				1.50	10.20				

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator clock is stopped.
 - 4. When high-speed system clock is stopped.
 - 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **6.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS (High speed main) mode: $V_{DD} = 2.7 \text{ V to } 5.5 \text{ V}$ @1 MHz to 24 MHz $V_{DD} = 2.4 \text{ V to } 5.5 \text{ V}$ @1 MHz to 16 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except temperature condition of the TYP. value is $T_A = 25$ °C, other than STOP mode

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-spee	d main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fcLk	$2.7~V \leq V_{DD} \leq 5.5~V$	334		ns
			$2.4~V \leq V_{DD} \leq 5.5~V$	500		ns
SCKp high-/low-level width	t кн1,	4.0 V ≤ V _{DD} ≤ 5	.5 V	tkcy1/2-24		ns
	t _{KL1}	2.7 V ≤ V _{DD} ≤ 5	$2.7~V \leq V_{DD} \leq 5.5~V$			ns
		2.4 V ≤ V _{DD} ≤ 5	.5 V	tkcy1/2-76		ns
SIp setup time (to SCKp↑) Note 1	tsıĸı	4.0 V ≤ V _{DD} ≤ 5	.5 V	66		ns
		2.7 V ≤ V _{DD} ≤ 5	.5 V	66		ns
		2.4 V ≤ V _{DD} ≤ 5.5 V		113		ns
SIp hold time (from SCKp↑) Note 2	tksi1			38		ns
Delay time from SCKp↓ to SOp output Note 3	tkso1	C = 30 pF Note4			50	ns

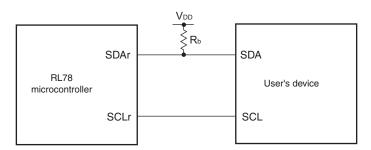
- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp and SCKp pins by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).

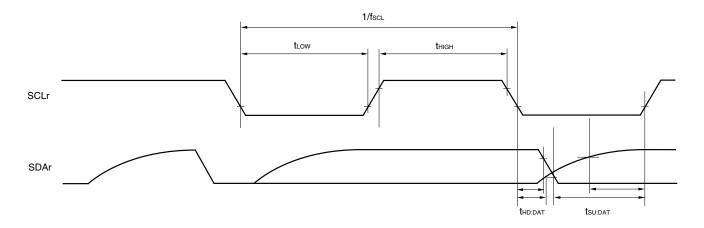
Remarks 1. p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3)

2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3))

(4) During communication at same potential (simplified I²C mode)

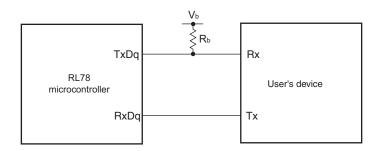

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

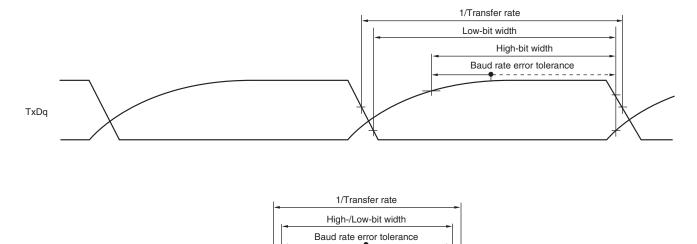
Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
SCLr clock frequency	fscL	$C_b=100~pF,~R_b=3~k\Omega$		100 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$C_b=100~pF,~R_b=3~k\Omega$	4600		ns
Hold time when SCLr = "H"	thigh	$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	4600		ns
Data setup time (reception)	tsu:dat	$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	1/fmck + 580 Note 2		ns
Data hold time (transmission)	thd:dat	$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	0	1420	ns

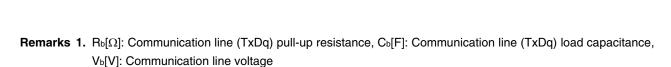

- Notes 1. The value must also be equal to or less than fmck/4.
 - 2. Set tsu:DAT so that it will not exceed the hold time when SCLr = "L" or SCLr = "H".

Caution Select the N-ch open drain output (V_{DD} tolerance) mode for SDAr by using port output mode register h (POMh).

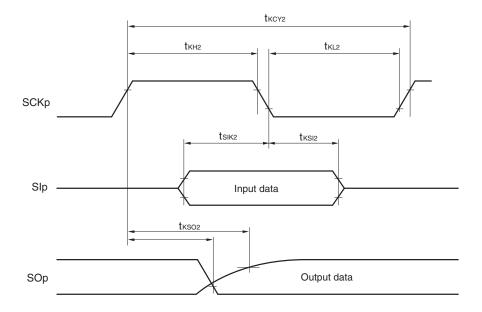
Simplified I²C mode connection diagram (during communication at same potential)


Simplified I²C mode serial transfer timing (during communication at same potential)


- **Remarks 1.** $\mathsf{R}_\mathsf{b}\left[\Omega\right]$:Communication line (SDAr) pull-up resistance
 - Cb [F]: Communication line (SCLr, SDAr) load capacitance
 - 2. r: IIC number (r = 00, 01, 11, 20), h: = POM number (h = 0, 1, 4, 5)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 - m: Unit number (m = 0, 1), n: Channel number (0, 1, 3))


RxDq

UART mode connection diagram (during communication at different potential)


UART mode bit width (during communication at different potential) (reference)

- 2. q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)
- 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 - m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))
- **4.** UART0 of the 20- and 24-pin products supports communication at different potential only when the peripheral I/O redirection function is not used.

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - **3.** When $AV_{REFP} < V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.05\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.

4. Refer to 29.6.2 Temperature sensor/internal reference voltage characteristics.

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI22

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution AVREFP = VDD Note 3			1.2	±5.0	LSB
Conversion time	tconv	10-bit resolution Target ANI pin: ANI16 to ANI22	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μS
			$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μS
Zero-scale error Notes 1, 2	EZS	10-bit resolution AVREFP = VDD Note 3				±0.35	%FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution AVREFP = VDD Note 3				±0.35	%FSR
Integral linearity error Note 1	ILE	10-bit resolution AVREFP = VDD Note 3				±3.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution AVREFP = VDD Note 3				±2.0	LSB
Analog input voltage	Vain	ANI16 to ANI22		0		AV _{REFP}	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- **3.** When $AV_{REFP} \leq V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 4.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.20\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AVREFP = VDD.

(3) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V_{SS} (ADREFM = 0), target pin: ANI0 to ANI3, ANI16 to ANI22, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V}, \text{Reference voltage (+)} = V_{DD}, \text{ Reference voltage (-)} = V_{SS})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution			1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution Target pin: ANI0 to ANI3, ANI16 to ANI22	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
			$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Conversion time	tconv	10-bit resolution Target pin: internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μs
			$2.7 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	3.5625		39	μs
			$2.4~\textrm{V} \leq \textrm{VDD} \leq 5.5~\textrm{V}$	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution				±0.60	%FSR
Full-scale errorNotes 1, 2	EFS	10-bit resolution				±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution				±4.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution				±2.0	LSB
Analog input voltage	VAIN	ANI0 to ANI3, ANI16 to ANI22		0		V _{DD}	٧
	Internal reference voltage (HS (high-speed main) mode)				VBGR Note 3		V
		Temperature sensor output v (HS (high-speed main) mode)	3	V _{TMPS25} Note 3			V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 29.6.2 Temperature sensor/internal reference voltage characteristics.