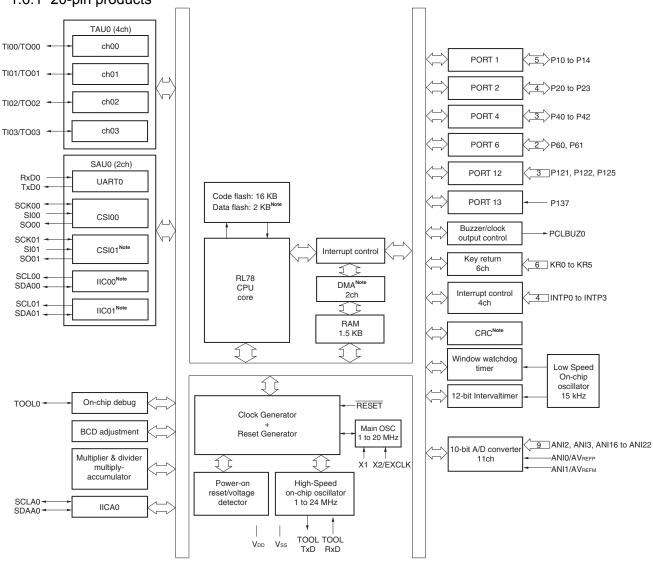


Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

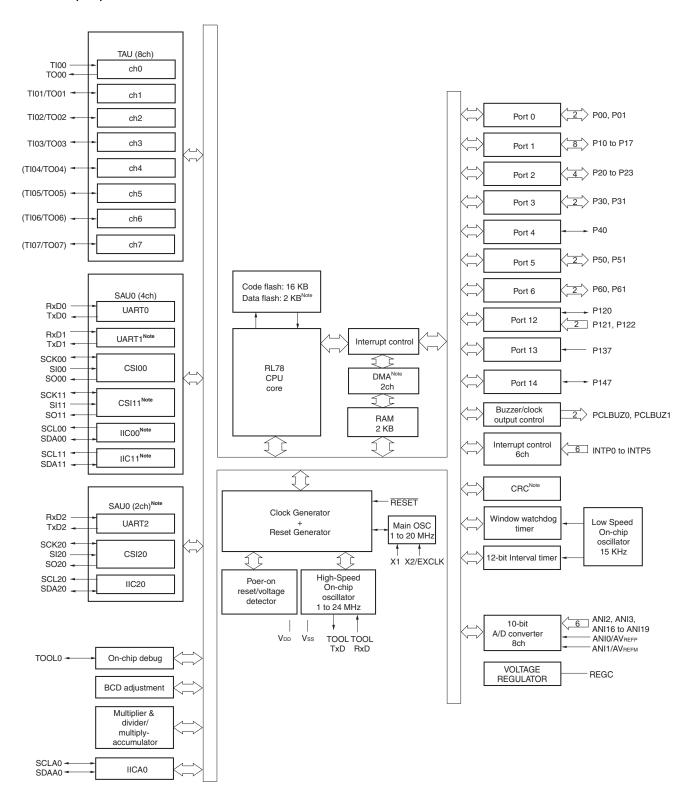
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	30-LSSOP (0.240", 6.10mm Width)
Supplier Device Package	30-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f102a9dsp-x0

RL78/G12 1. OUTLINE

1.6 Block Diagram


1.6.1 20-pin products

Note Provided only in the R5F102 products.

RL78/G12 1. OUTLINE

1.6.3 30-pin products

Note Provided only in the R5F102 products.

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See **Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR)**.

2.2 Oscillator Characteristics

2.2.1 X1 oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator /	$2.7~V \leq V_{DD} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal oscillator	1.8 V ≤ V _{DD} < 2.7 V	1.0		8.0	

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator, refer to 5.4 System Clock Oscillator.

2.2.2 On-chip oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Oscillators	Parameters	Conditions		MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		24	MHz
High-speed on-chip oscillator		R5F102 products	$T_A = -20 \text{ to } +85^{\circ}\text{C}$	-1.0		+1.0	%
clock frequency accuracy			$T_A = -40 \text{ to } -20^{\circ}\text{C}$	-1.5		+1.5	%
		R5F103 products		-5.0		+5.0	%
Low-speed on-chip oscillator clock frequency	fıL				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H) and bits 0 to 2 of HOCODIV register.

2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

2.4 AC Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Items	Symbol		Condition	S	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Tcy	Main system	HS (High-	$2.7~V \leq V_{DD} \leq 5.5~V$	0.04167		1	μS
instruction execution time)		clock (fMAIN) operation	speed main) mode	$2.4~\textrm{V} \leq \textrm{V}_\textrm{DD} < 2.7~\textrm{V}$	0.0625		1	μS
			LS (Low- speed main) mode	$1.8~V \leq V_{DD} \leq 5.5~V$	0.125		1	μs
		During self	HS (High-	$2.7~V \leq V_{DD} \leq 5.5~V$	0.04167		1	μS
		programming	speed main) mode	$2.4~V \leq V_{DD} < 2.7~V$	0.0625		1	μS
			LS (Low- speed main) mode	$1.8~V \le V_{DD} \le 5.5~V$	0.125		1	μs
External main system clock	fex	$2.7~V \leq V_{DD} \leq 5$.5 V		1.0		20.0	MHz
frequency		$2.4~V \leq V_{DD} < 2$.7 V		1.0		16.0	MHz
		$1.8~V \leq V_{DD} < 2$	$1.8~V \le V_{DD} < 2.4~V$				8.0	MHz
External main system clock	texh, texl	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			24			ns
input high-level width, low-level width		$2.4~V \leq V_{DD} < 2$.7 V		30			ns
level width		$1.8~V \leq V_{DD} < 2$.4 V		60			ns
TI00 to TI07 input high-level width, low-level width	тпн, тп∟				1/fмск + 10			ns
TO00 to TO07 output	fто	4.0 V ≤ V _{DD} ≤ 5	.5 V				12	MHz
frequency		$2.7~V \leq V_{DD} < 4$.0 V				8	MHz
		1.8 V ≤ V _{DD} < 2	.7 V				4	MHz
PCLBUZ0, or PCLBUZ1	f PCL	4.0 V ≤ V _{DD} ≤ 5	.5 V				16	MHz
output frequency		$2.7~V \leq V_{DD} < 4$.0 V				8	MHz
		1.8 V ≤ V _{DD} < 2	.7 V				4	MHz
INTP0 to INTP5 input high- level width, low-level width	tinth, tintl							μS
KR0 to KR9 input available width	tkr				250			ns
RESET low-level width	trsl				10			μS

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the timer clock select register 0 (TPS0) and the CKS0n bit of timer mode register 0 (TMR0n). n: Channel number (n = 0 to 7))

(2) During communication at same potential (CSI mode) (master mode, SCK00... internal clock output, corresponding CSI00 only)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-spo	,	LS (low-sp	Unit	
			MIN.	MAX.	MIN.	MAX.	
SCK00 cycle time	tkCY1	tkcy1 ≥ 2/fclk	83.3		250		ns
SCK00 high-/low-	t кн1,	$4.0~V \leq V_{DD} \leq 5.5~V$	tkcy1/2-7		tkcy1/2-50		ns
level width tkl1	$2.7~V \leq V_{DD} \leq 5.5~V$	tkcy1/2-10		tkcy1/2-50		ns	
SI00 setup time	tsıĸı	$4.0~V \leq V_{DD} \leq 5.5~V$	23		110		ns
(to SCK00↑) Note 1		$2.7~V \leq V_{DD} \leq 5.5~V$	33		110		ns
SI00 hold time (from SCK00↑) Note2	tksi1		10		10		ns
Delay time from SCK00↓ to SO00 output Note 3	tkso1	C = 20 pF Note 4		10		10	ns

- **Notes 1.** When DAP00 = 0 and CKP00 = 0, or DAP00 = 1 and CKP00 = 1. The SI00 setup time becomes "to $SCK00\downarrow$ " when DAP00 = 0 and CKP00 = 1, or DAP00 = 1 and CKP00 = 0.
 - 2. When DAP00 = 0 and CKP00 = 0, or DAP00 = 1 and CKP00 = 1. The SI00 hold time becomes "from SCK00 \downarrow " when DAP00 = 0 and CKP00 = 1, or DAP00 = 1 and CKP00 = 0.
 - 3. When DAP00 = 0 and CKP00 = 0, or DAP00 = 1 and CKP00 = 1. The delay time to SO00 output becomes "from SCK00 \uparrow " when DAP00 = 0 and CKP00 = 1, or DAP00 = 1 and CKP00 = 0.
 - 4. C is the load capacitance of the SCK00 and SO00 output lines.

Caution Select the normal input buffer for the SI00 pin and the normal output mode for the SO00 and SCK00 pins by using port input mode register 1 (PIM1) and port output mode register 1 (POM1).

Remarks 1. This specification is valid only when CSI00's peripheral I/O redirect function is not used.

 fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register 0 (SPS0) and the CKS00 bit of serial mode register 00 (SMR00).)

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) ($T_A = -40$ to +85°C, 1.8 V \leq V_{DD} \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	ymbol Conditions HS (high-speed main) Mode			LS (low-spe	Unit		
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	$2.7~V \leq V_{DD} \leq 5.5~V$	167		500		ns
			$2.4~V \leq V_{DD} \leq 5.5~V$	250		500		ns
			$1.8~V \leq V_{DD} \leq 5.5~V$	-		500		ns
SCKp high-/low-level width	tкн1,	$4.0~V \leq V_{DD} \leq$	5.5 V	tксү1/2-12		tkcy1/2-50		ns
	t _{KL1}	$2.7~V \leq V_{DD} \leq$	5.5 V	tkcy1/2-18		tkcy1/2-50		ns
		$2.4~V \leq V_{DD} \leq$	$2.4~V \leq V_{DD} \leq 5.5~V$			tkcy1/2-50		ns
		1.8 V ≤ V _{DD} ≤	5.5 V	-		tkcy1/2-50		ns
SIp setup time (to SCKp↑)	tsik1	$4.0~V \leq V_{DD} \leq$	5.5 V	44		110		ns
Note 1		$2.7~V \leq V_{DD} \leq$	5.5 V	44		110		ns
		$2.4~V \leq V_{DD} \leq$	5.5 V	75		110		ns
		1.8 V ≤ V _{DD} ≤	1.8 V ≤ V _{DD} ≤ 5.5 V			110		ns
SIp hold time (from SCKp↑) Note 2	tksii			19		19		ns
Delay time from SCKp↓ to SOp output Note 3	tkso1	C = 30 pF Note4			25		25	ns

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp and SCKp pins by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).

- **Remarks 1.** p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products)
 - 2. fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products.))

- This value as an example is calculated when the conditions described in the "Conditions" column are met.
 Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
- **6.** The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq VDD < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

$$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 6** above to calculate the maximum transfer rate under conditions of the customer.
- 8. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq V_{DD} < 3.3 V, 1.6 V \leq V_b \leq 2.0 V

$$\label{eq:maximum transfer rate} \text{Maximum transfer rate} = \frac{1}{\{-C_b \times R_b \times \text{In } (1-\frac{1.5}{V_b})\} \times 3} \quad \text{[bps]}$$

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln \left(1 - \frac{1.5}{V_b}\right)\}}{\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **9.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 8** above to calculate the maximum transfer rate under conditions of the customer.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCK00... internal clock output, corresponding CSI00 only)

(Ta = -40 to +85°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol		Conditions	HS (high		1	/-speed Mode	Unit
				MIN.	MAX.	MIN.	MAX.	
SCK00 cycle time	tkCY1	tkcy1 ≥ 2/fcLK	$\begin{aligned} 4.0 & \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \\ 2.7 & \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ C_{\text{b}} &= 20 \text{ pF}, \text{ R}_{\text{b}} = 1.4 \text{ k}\Omega \end{aligned}$	200		1150		ns
			$\begin{split} 2.7 \ V &\leq V_{DD} < 4.0 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 20 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	300		1150		ns
SCK00 high-level width	t _{KH1}	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5$ $C_b = 20 \text{ pF}, R_b = 10.5$	$5~V,~2.7~V \leq V_b \leq 4.0~V,$ $: 1.4~k\Omega$	tксу1/2 — 50		tксү1/2-		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0$ $C_b = 20 \text{ pF}, R_b =$	0 V, 2.3 V \leq Vb \leq 2.7 V, $: 2.7 \ k\Omega $	tксу1/2 — 120		tксү1/2 – 120		ns
SCK00 low-level width	t _{KL1}	$4.0 \text{ V} \le \text{V}_{DD} \le 5.8$ $C_b = 20 \text{ pF}, R_b =$	5 V, 2.7 V \leq V _b \leq 4.0 V, : 1.4 k Ω	tксу1/2 — 7		tксү1/2 – 50		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0$ $C_b = 20 \text{ pF}, R_b = 0.0$	0 V, 2.3 V \leq V _b \leq 2.7 V, $ = 2.7 \text{ k}\Omega $	tксу1/2 — 10		tkcy1/2 - 50		ns
SI00 setup time (to SCK00↑) Note 1	tsıĸ1	$4.0~V \le V_{DD} \le 5.8$ $C_b = 20~pF,~R_b =$	58		479		ns	
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0$ $C_b = 20 \text{ pF}, R_b = 0.0$	0 V, 2.3 V \leq V _b \leq 2.7 V, $ = 2.7 \text{ k} \Omega $	121		479		ns
SI00 hold time (from SCK00↑) Note 1	$t_{\text{KSI1}} \qquad 4.0 \; \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \; \text{V}$ $C_{\text{b}} = 20 \; \text{pF}, \; R_{\text{b}} = 1.$		5 V, 2.7 V \leq V _b \leq 4.0 V, : 1.4 kΩ	10		10		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0$ $C_b = 20 \text{ pF}, R_b = 0.0$	10		10		ns	
Delay time from SCK00↓ to SO00 output Note 1	tkso1	$4.0~V \leq V_{DD} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$ $C_b = 20~pF,~R_b = 1.4~k\Omega$			60		60	ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0$ $C_b = 20 \text{ pF}, R_b = 0.0$		130		130	ns	
SI00 setup time (to SCK00↓) Note 2	tsıĸı	$4.0 \text{ V} \le \text{V}_{DD} \le 5.8$ $C_b = 20 \text{ pF}, R_b =$	5 V, 2.7 V \leq V _b \leq 4.0 V, : 1.4 kΩ	23		110		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0$ $C_b = 20 \text{ pF}, R_b =$	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 k Ω	33		110		ns
SI00 hold time (from SCK00↓) Note 2	tksi1	$4.0 \text{ V} \le V_{DD} \le 5.8$ $C_b = 20 \text{ pF}, R_b =$	$5~V,~2.7~V \leq V_b \leq 4.0~V,$ $: 1.4~k\Omega$	10		10		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0$ $C_b = 20 \text{ pF}, R_b =$	0 V, 2.3 V \leq V _b \leq 2.7 V, $ = 2.7 \text{ k}\Omega $	10		10		ns
Delay time from SCK00↑ to SO00 output Note 2	t _{KSO1}	$4.0 \text{ V} \leq \text{V}_{DD} \leq 5.5$ $C_b = 20 \text{ pF}, \text{ R}_b =$		10		10	ns	
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0$ $C_b = 20 \text{ pF}, R_b = 0.0$	0 V, 2.3 V \leq V _b \leq 2.7 V, : 2.7 kΩ		10		10	ns

(Notes, Caution, and Remarks are listed on the next page.)

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		h-speed Mode	LS (low-speed main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$ 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, $ $ C_b = 100 \ pF, \ R_b = 2.8 \ k\Omega $		400 ^{Note1}		300 ^{Note1}	kHz
		$ 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega $		400 ^{Note1}		300 ^{Note1}	kHz
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}, \\ C_{\text{b}} = 100 \text{ pF}, \ R_{\text{b}} = 5.5 \text{ k}\Omega$		300 ^{Note1}		300 ^{Note1}	kHz
Hold time when SCLr = "L"	tLOW	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, R_{\text{b}} = 2.8 \text{ k}\Omega$	1150		1550		ns
		$ 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, $ $ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega $	1150		1550		ns
			1550		1550		ns
Hold time when SCLr = "H"	tнідн	$4.0~V \leq V_{DD} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$ $C_b = 100~pF,~R_b = 2.8~k\Omega$	675		610		ns
		$ 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, $ $ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega $	600		610		ns
		$1.8~V \leq V_{DD} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V,^{\text{Note2}}$ $C_b = 100~pF,~R_b = 5.5~k\Omega$	610		610		ns
Data setup time (reception)	tsu:dat	$4.0~V \leq V_{DD} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$ $C_b = 100~pF,~R_b = 2.8~k\Omega$	1/fmck + 190 Note3		1/f _{MCK} + 190 _{Note3}		ns
		$2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{V}_{b} \leq 2.7 \text{ V},$ $C_{b} = 100 \text{ pF}, \ R_{b} = 2.7 \text{ k}\Omega$	1/fmck + 190 Note3		1/fмск + 190 Note3		ns
		$1.8~V \leq V_{DD} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V,^{\text{Note2}}$ $C_b = 100~pF,~R_b = 5.5~k\Omega$	1/fмск + 190 Note3		1/f _{MCK} + 190 _{Note3}		ns
Data hold time (transmission)	thd:dat	$ 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, $ $ C_b = 100 \ pF, \ R_b = 2.8 \ k\Omega $	0	355	0	355	ns
(i ansinission)		$ 2.7 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{V}_{b} \leq 2.7 \text{ V}, \\ C_{b} = 100 \text{ pF}, \ R_{b} = 2.7 \text{ k}\Omega $	0	355	0	355	ns
			0	405	0	405	ns

- Notes 1. The value must also be equal to or less than fmck/4.
 - 2. Use it with $V_{DD} \ge V_b$.
 - 3. Set tsu:DAT so that it will not exceed the hold time when SCLr = "L" or SCLr = "H".
- Cautions 1. Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
 - 2. IIC01 and IIC11 cannot communicate at different potential.

(Remarks are listed on the next page.)

(3) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V_{SS} (ADREFM = 0), target pin: ANI0 to ANI3, ANI16 to ANI22, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ Reference voltage (+)} = V_{DD}, \text{ Reference voltage (-)} = V_{SS})$

Parameter	Symbol	Condition	ns	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution			1.2	±7.0	LSB
					1.2	± 10.5 Note 3	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
		Target pin: ANIO to ANI3,	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
		ANI16 to ANI22	$1.8~V \leq V_{DD} \leq 5.5~V$	17		39	μs
				57		95	μS
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: internal reference	$2.7 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	3.5625		39	μS
		voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μS
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution				±0.60	%FSR
						±0.85	%FSR
Full-scale errorNotes 1, 2	EFS	10-bit resolution				±0.60	%FSR
						±0.85	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution				±4.0	LSB
						±6.5 Note 3	LSB
Differential linearity error Note 1	DLE	10-bit resolution				±2.0	LSB
						±2.5 Note 3	LSB
Analog input voltage	VAIN	ANI0 to ANI3, ANI16 to ANI2	2	0		V _{DD}	V
		Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, HS (high		VBGR Note 4		V	
		Temperature sensor output v (2.4 V \leq VDD \leq 5.5 V, HS (high	•		VTMPS25 Note 4	1	V

Notes 1. Excludes quantization error (±1/2 LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- **3.** When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).
- 4. Refer to 28.6.2 Temperature sensor/internal reference voltage characteristics.

2.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{PDR} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection supply voltage	VLVD0	Power supply rise time	3.98	4.06	4.14	>
		Power supply fall time	3.90	3.98	4.06	٧
	V _{LVD1}	Power supply rise time	3.68	3.75	3.82	٧
		Power supply fall time	3.60	3.67	3.74	٧
	V _{LVD2}	Power supply rise time	3.07	3.13	3.19	٧
		Power supply fall time	3.00	3.06	3.12	٧
	V LVD3	Power supply rise time	2.96	3.02	3.08	٧
		Power supply fall time	2.90	2.96	3.02	٧
	V _{LVD4}	Power supply rise time	2.86	2.92	2.97	٧
		Power supply fall time	2.80	2.86	2.91	٧
	V _{LVD5}	Power supply rise time	2.76	2.81	2.87	٧
		Power supply fall time	2.70	2.75	2.81	٧
	V _{LVD6}	Power supply rise time	2.66	2.71	2.76	٧
		Power supply fall time	2.60	2.65	2.70	٧
	V LVD7	Power supply rise time	2.56	2.61	2.66	٧
		Power supply fall time	2.50	2.55	2.60	٧
	V _{LVD8}	Power supply rise time	2.45	2.50	2.55	٧
		Power supply fall time	2.40	2.45	2.50	٧
	V _{LVD9}	Power supply rise time	2.05	2.09	2.13	٧
		Power supply fall time	2.00	2.04	2.08	V
	V _{LVD10}	Power supply rise time	1.94	1.98	2.02	٧
		Power supply fall time	1.90	1.94	1.98	٧
	V _{LVD11}	Power supply rise time	1.84	1.88	1.91	٧
		Power supply fall time	1.80	1.84	1.87	٧
Minimum pulse width	tLW		300			μS
Detection delay time					300	μS

3.3.2 Supply current characteristics

(1) 20-, 24-pin products

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/2)

Parameter	Symbol		Conditions						MAX.	Unit
Supply	I _{DD1}	Operating	HS (High-speed	f⊪ = 24 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		1.5		mA
current ^{Note 1}		mode	main) mode Note 4	operation	V _{DD} = 3.0 V		1.5			
					Normal	V _{DD} = 5.0 V		3.3	5.3	mA
					operation	V _{DD} = 3.0 V		3.3	5.3	
				f⊩ = 16 MHz ^{Note 3}		V _{DD} = 5.0 V		2.5	3.9	mA
						V _{DD} = 3.0 V		2.5	3.9	
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$		Square wave input		2.8	4.7	mA
				$V_{DD} = 5.0 \text{ V}$		Resonator connection		3.0	4.8	
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$		Square wave input		2.8	4.7	mA
				$V_{DD} = 3.0 \text{ V}$		Resonator connection		3.0	4.8	
				fmx = 10 MHz ^{Note 2} ,		Square wave input		1.8	2.8	mA
				$V_{DD} = 5.0 \text{ V}$		Resonator connection		1.8	2.8	
				fmx = 10 MHz ^{Note 2} ,		Square wave input		1.8	2.8	mA
				$V_{DD} = 3.0 \text{ V}$		Resonator connection		1.8	2.8	

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator clock is stopped.
 - 3. When high-speed system clock is stopped
 - **4.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode: $V_{DD} = 2.7 \text{ V to } 5.5 \text{ V } @ 1 \text{ MHz to } 24 \text{ MHz}$ $V_{DD} = 2.4 \text{ V to } 5.5 \text{ V } @ 1 \text{ MHz to } 16 \text{ MHz}$

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$.

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 3** above to calculate the maximum transfer rate under conditions of the customer.
- 5. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq V_{DD} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

$$\label{eq:maximum transfer rate} \text{Maximum transfer rate} = \frac{1}{\{-C_b \times R_b \times \ln{(1-\frac{2.0}{V_b})}\} \times 3} \text{ [bps]}$$

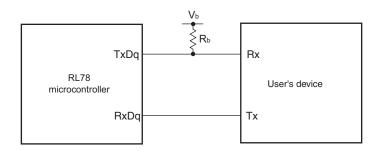
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\}}{\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **6.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 5** above to calculate the maximum transfer rate under conditions of the customer.
- 7. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

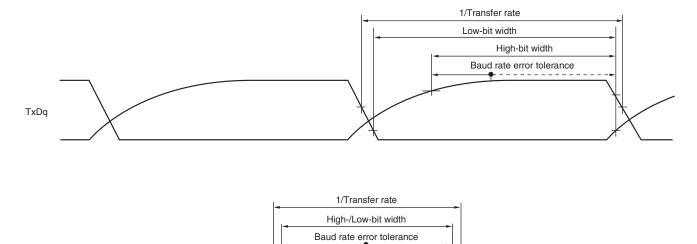
Expression for calculating the transfer rate when 2.4 V \leq VDD < 3.3 V, 1.6 V \leq Vb \leq 2.0 V

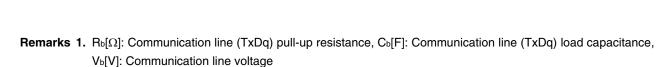
Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$


- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **8.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 7** above to calculate the maximum transfer rate under conditions of the customer.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.



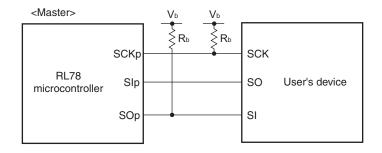

RxDq

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- 2. q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)
- 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 - m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))
- **4.** UART0 of the 20- and 24-pin products supports communication at different potential only when the peripheral I/O redirection function is not used.

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)


 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-speed	I main) Mode	Unit
			MIN.	MAX.	
SIp setup time (to SCKp↓)	tsıĸı	$ 4.0~V \leq V_{DD} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V, $ $C_b = 30~pF,~R_b = 1.4~k\Omega $	88		ns
		$ \label{eq:continuous} $	88		ns
		$ \label{eq:continuous} $	220		ns
SIp hold time (from SCKp↓) Note	tksıı	$ \begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $	38		ns
		$ 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, $ $C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega $	38		ns
		$ \label{eq:continuous} $	38		ns
Delay time from SCKp↑ to SOp output Note	tkso1	$ \begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $		50	ns
		$ 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, $ $C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega $		50	ns
				50	ns

Note When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.
- **Remarks 1.** Rb $[\Omega]$: Communication line (SCKp, SOp) pull-up resistance, Cb [F]: Communication line (SCKp, SOp) load capacitance, Vb [V]: Communication line voltage
 - 2. p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

CSI mode connection diagram (during communication at different potential)

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-spe	Unit	
			MIN.	MAX.		
SCKp cycle time Note 1	tkcy2	$4.0~V \leq V_{DD} \leq 5.5~V,$	20 MHz < fмcк ≤ 24 MHz	24/fмск		ns
		$2.7~V \leq V_b \leq 4.0~V$	8 MHz < fмск ≤ 20 MHz	20/fмск		ns
			4 MHz < fмcк ≤ 8 MHz	16/fмск		ns
			fмcк ≤ 4 MHz	12/fмск		ns
		$2.7 \text{ V} \le V_{DD} < 4.0 \text{ V},$	20 MHz < fмcк ≤ 24 MHz	32/fмск		ns
		$2.3~V \leq V_b \leq 2.7~V$	16 MHz < fмcк ≤ 20 MHz	28/fмск		ns
			8 MHz < fмск ≤ 16 MHz	24/fмск		ns
			4 MHz < fмcк ≤ 8 MHz	16/fмск		ns
			fмcк ≤ 4 MHz	12/fмск		ns
		$2.4 \text{ V} \le V_{DD} < 3.3 \text{ V},$	20 MHz < fмcк ≤ 24 MHz	72/fмск		ns
		$1.6~V \le V_b \le 2.0~V$	16 MHz < fмск ≤ 20 MHz	64/fмск		ns
			8 MHz < fмск ≤ 16 MHz	52/fмск		ns
			4 MHz < fмcк ≤ 8 MHz	32/fмск		ns
			fмcк ≤ 4 MHz	20/fмск		ns
SCKp high-/low-level width	tкн2, tкL2	$4.0 \; V \leq V_{DD} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V$		tkcy2/2 - 24		ns
		$2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_{b} \leq 2.7 \; V$		tkcy2/2 - 36		ns
		$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V}, 1.0 $	$.6~V \leq V_b \leq 2.0~V$	tkcy2/2 - 100		ns
SIp setup time (to SCKp↑) Note 2	tsık2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,~2.7~V \leq V_{\text{DD}} \leq 4.0~V$		1/fmck + 40		ns
		$2.7 \; V \leq V_{DD} < 4.0 \; V, 2.3 \; V \leq V_b \leq 2.7 \; V$		1/fmck + 40		ns
		$2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_{DD} \leq 2.0 \ V$		1/fmck + 60		ns
SIp hold time (from SCKp↑) Note 3	tksi2			1/fmck + 62		ns
Delay time from SCKp↓ to SOp output Note 4	tkso2	$4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V,$			2/fмск +	ns
		$C_b = 30$ pF, $R_b = 1.4$ k Ω			240	
		$2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_{b} \leq 2.7 \; V, \;$			2/fмск +	ns
		$C_b = 30 \text{ pF, } R_b = 2.7 \text{ k}\Omega$			428	
		$2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V,$			2/fмск +	ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			1146	

Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

- 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow^{n}$ when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp1" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

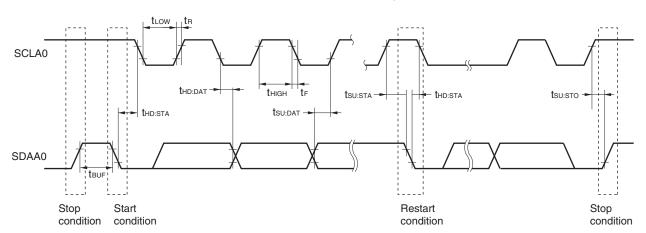
- Cautions 1. Select the TTL input buffer for the SIp and SCKp pins and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.

3.5.2 Serial interface IICA

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS	HS (high-speed main) mode			
			Standa	rd Mode	d Mode Fast Mode		
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode: fclk≥ 3.5 MHz			0	400	kHz
		Normal mode: fclk≥ 1 MHz	0	100			kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μS
Hold time ^{Note 1}	thd:STA		4.0		0.6		μS
Hold time when SCLA0 = "L"	tLOW		4.7		1.3		μS
Hold time when SCLA0 = "H"	thigh		4.0		0.6		μS
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission) ^{Note 2}	thd:dat		0	3.45	0	0.9	μS
Setup time of stop condition	tsu:sto		4.0		0.6		μS
Bus-free time	t BUF		4.7		1.3		μS

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.


2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution Only in the 30-pin products, the values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IoH1, IoL1, VoH1, VoL1) must satisfy the values in the redirect destination.

Remark The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Normal mode: $C_b = 400 \text{ pF}, \text{ Rb} = 2.7 \text{ k}\Omega$ Fast mode: $C_b = 320 \text{ pF}, \text{ Rb} = 1.1 \text{ k}\Omega$

IICA serial transfer timing

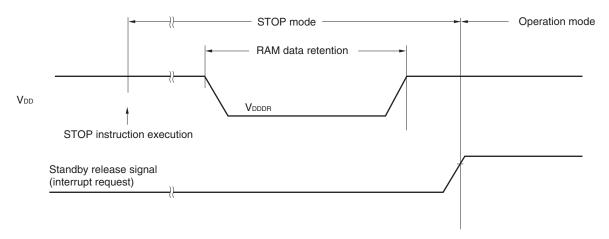
<R>

(3) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V_{SS} (ADREFM = 0), target pin: ANI0 to ANI3, ANI16 to ANI22, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V}, \text{Reference voltage (+)} = V_{DD}, \text{ Reference voltage (-)} = V_{SS})$

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit	
Resolution	Res			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution		1.2	±7.0	LSB	
Conversion time	tconv	10-bit resolution Target pin: ANI0 to ANI3, ANI16 to ANI22	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
			$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Conversion time	tconv	10-bit resolution Target pin: internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μs
			$2.7 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	3.5625		39	μs
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution				±0.60	%FSR
Full-scale error ^{Notes 1, 2}	EFS	10-bit resolution				±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution				±4.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution				±2.0	LSB
Analog input voltage	VAIN	ANI0 to ANI3, ANI16 to ANI2	2	0		V _{DD}	٧
	Internal reference voltage (HS (high-speed main) mode)				V _{BGR} Note 3		
Temperature sensor output voltage (HS (high-speed main) mode)		3	V _{TMPS25} Note 3			V	

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).


- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 29.6.2 Temperature sensor/internal reference voltage characteristics.

<R> 3.7 RAM Data Retention Characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	V _{DDDR}		1.44 Note		5.5	V

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

3.8 Flash Memory Programming Characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}. 2.4 \text{ V} < V_{DD} < 5.5 \text{ V}. \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclk		1		24	MHz
Code flash memory rewritable times	Cerwr	Retained for 20 years TA = 85°C Notes 4	1,000			Times
Data flash memory rewritable times		Retained for 1 year TA = 25°C Notes 4		1,000,000		
		Retained for 5 years TA = 85°C Notes 4	100,000			
		Retained for 20 years TA = 85°C Notes 4	10,000			

- **Notes 1.** 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
 - 2. When using flash memory programmer and Renesas Electronics self programming library
 - **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.
 - 4. This temperature is the average value at which data are retained.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below

"Standard": Computers: office equipment: communications equipment: test and measurement equipment: audio and visual equipment: home electronic appliances: machine tools: personal electronic equipment: and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics
- nt may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information

California Eastern Laboratories, Inc.

4590 Patrick Henry Drive, Santa Clara, California 95054-1817, U.S.A Tel: +1-408-919-2500, Fax: +1-408-988-0279

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141