

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	30-LSSOP (0.240", 6.10mm Width)
Supplier Device Package	30-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f102aaasp-x0

RL78/G12 1. OUTLINE

O ROM, RAM capacities

Code flash	Data flash	RAM	20 pins	24 pins	30 pins
16 KB	2 KB	2 KB	_	_	R5F102AA
	_		_	_	R5F103AA
	2 KB	1.5 KB	R5F1026A Note 1	R5F1027A Note 1	_
	_		R5F1036A Note 1	R5F1037A Note 1	_
12 KB	2KB	1 KB	R5F10269 Note 1	R5F10279 Note 1	R5F102A9
	_		R5F10369 Note 1	R5F10379 Note 1	R5F103A9
8 KB	2 KB	768 B	R5F10268 Note 1	R5F10278 Note 1	R5F102A8
	_		R5F10368 Note 1	R5F10378 Note 1	R5F103A8
4 KB	2KB	512 B	R5F10267	R5F10277	R5F102A7
	_		R5F10367	R5F10377	R5F103A7
2 KB	2 KB	256 B	R5F10266 Note 2	_	_
	_		R5F10366 Note 2	_	_

Notes 1. This is 640 bytes when the self-programming function or data flash function is used. (For details, see CHAPTER 3 CPU ARCHITECTURE.)

2. The self-programming function cannot be used for R5F10266 and R5F10366.

Caution When the flash memory is rewritten via a user program, the code flash area and RAM area are used because each library is used. When using the library, refer to RL78 Family Flash Self Programming Library Type01 User's Manual and RL78 Family Data Flash Library Type04 User's Manual.

RL78/G12 1. OUTLINE

1.3.2 On-chip oscillator characteristics

(1) High-speed on-chip oscillator oscillation frequency of the R5F102 products

Oscillator	Condition	MIN	MAX	Unit
High-speed on-chip	T _A = -20 to +85 °C	-1.0	+1.0	%
oscillator oscillation	T _A = -40 to -20 °C	-1.5	+1.5	
frequency accuracy	T _A = +85 to +105 °C	-2.0	+2.0	

(2) High-speed on-chip oscillator oscillation frequency of the R5F103 products

Oscillator	Condition	MIN	MAX	Unit
High-speed on-chip	$T_A = -40 \text{ to} + 85 ^{\circ}\text{C}$	-5.0	+5.0	%
oscillator oscillation				
frequency accuracy				

1.3.3 Peripheral Functions

The following are differences in peripheral functions between the R5F102 products and the R5F103 products.

	R5F102 product		R5F103 product			
RL78/G12	20, 24 pin	30 pin product	20, 24 pin	30 pin		
		product		product	product	
Serial interface	UART	1 channel	3 channels	1 channel		
	CSI	2 channels	3 channels	1 channel		
	Simplified I ² C	2 channels	3 channels	None		
DMA function		2 channels		None		
Safety function	CRC operation	Yes		None		
RAM guard		Yes		None		
	SFR guard	Yes		None		

<R>

<R>

<R>

- <R> 2. ELECTRICAL SPECIFICATIONS ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)
- <R> This chapter describes the following electrical specifications.
 - Target products A: Consumer applications $T_A = -40 \text{ to } +85^{\circ}\text{C}$ R5F102xxAxx, R5F103xxAxx
 - D: Industrial applications T_A = -40 to +85°C R5F102xxDxx, R5F103xxDxx
 - G: Industrial applications when $T_A = -40$ to $+105^{\circ}$ C products is used in the range of $T_A = -40$ to $+85^{\circ}$ C R5F102xxGxx
 - Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product.

(2/4)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	lol1	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42				20.0 Note 2	mA
		30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147					
		Per pin for P60, P61				15.0 Note 2	mA
		20-, 24-pin products:	$4.0~V \leq V_{DD} \leq 5.5~V$			60.0	mA
			Total of P40 to P42	$2.7~V \leq V_{DD} < 4.0~V$			9.0
		30-pin products: Total of P00, P01, P40, P120 $(\text{When duty} \leq 70\%^{\text{Note 3}})$	1.8 V ≤ V _{DD} < 2.7 V			1.8	mA
		20-, 24-pin products:	$4.0~V \leq V_{DD} \leq 5.5~V$			80.0	mA
		Total of P00 to P03 ^{Note 4} ,	$2.7~V \leq V_{DD} < 4.0~V$			27.0	mA
		P10 to P14, P60, P61 30-pin products: Total of P10 to P17, P30, P31, P50, P51, P60, P61, P147 (When duty ≤ 70% Note 3)	1.8 V ≤ V _{DD} < 2.7 V			5.4	mA
		Total of all pins (When duty ≤ 70% Note 3)				140	mA
	lol2	Per pin for P20 to P23				0.4	mA
		Total of all pins				1.6	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.
 - 2. However, do not exceed the total current value.
 - 3. The output current value under conditions where the duty factor $\leq 70\%$.

If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).

- Total output current of pins = $(lol \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

4. 24-pin products only.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) ($T_A = -40$ to +85°C, 1.8 V \leq V_{DD} \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions		HS (high- main) N		LS (low-spe	-	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fcLk	$2.7~V \leq V_{DD} \leq 5.5~V$	167		500		ns
			$2.4~V \leq V_{DD} \leq 5.5~V$	250		500		ns
			$1.8~V \leq V_{DD} \leq 5.5~V$	-		500		ns
SCKp high-/low-level width	tкн1,	$4.0~V \leq V_{DD} \leq$	5.5 V	tксү1/2-12		tkcy1/2-50		ns
	t _{KL1}	$2.7~V \leq V_{DD} \leq$	5.5 V	tkcy1/2-18		tkcy1/2-50		ns
		$2.4~V \leq V_{DD} \leq$	5.5 V	tkcy1/2-38		tkcy1/2-50		ns
		1.8 V ≤ V _{DD} ≤	5.5 V	-		tkcy1/2-50		ns
SIp setup time (to SCKp↑)	tsıĸı	$4.0~V \leq V_{DD} \leq$	5.5 V	44		110		ns
Note 1		$2.7 \text{ V} \leq V_{DD} \leq 8$	5.5 V	44		110		ns
		$2.4~V \leq V_{DD} \leq$	5.5 V	75		110		ns
		$1.8~V \leq V_{DD} \leq$	5.5 V	-		110		ns
SIp hold time (from SCKp↑) Note 2	tksıı			19		19		ns
Delay time from SCKp↓ to SOp output Note 3	tkso1	C = 30 pF Note4			25		25	ns

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp and SCKp pins by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).

- **Remarks 1.** p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products)
 - 2. fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products.))

- This value as an example is calculated when the conditions described in the "Conditions" column are met.
 Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
- **6.** The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq VDD < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

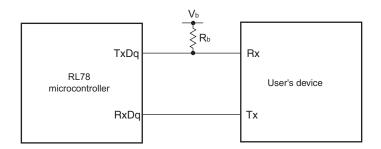
Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

$$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

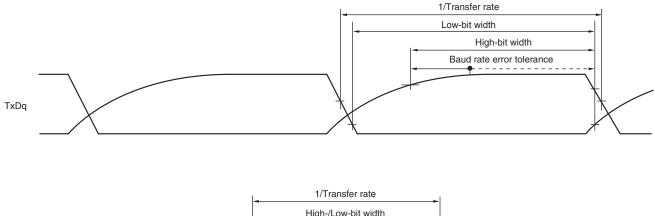
- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 6** above to calculate the maximum transfer rate under conditions of the customer.
- 8. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

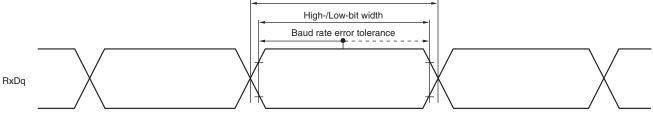
Expression for calculating the transfer rate when 1.8 V \leq V_{DD} < 3.3 V, 1.6 V \leq V_b \leq 2.0 V

$$\label{eq:maximum transfer rate} \text{Maximum transfer rate} = \frac{1}{\{-C_b \times R_b \times \text{In } (1-\frac{1.5}{V_b})\} \times 3} \quad \text{[bps]}$$


Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{\frac{1}{(\text{Transfer rate}) \times \text{Number of transferred bits}}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **9.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 8** above to calculate the maximum transfer rate under conditions of the customer.


Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.



UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

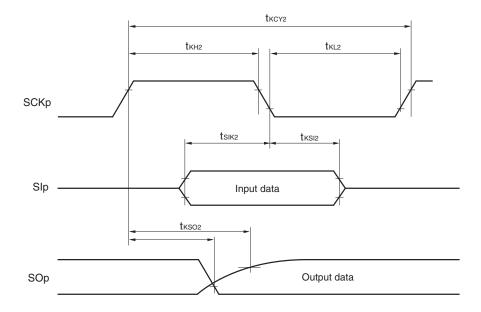
- **Remarks 1.** R_b[Ω]: Communication line (TxDq) pull-up resistance, C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 - m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))
 - **4.** UART0 of the 20- and 24-pin products supports communication at different potential only when the peripheral I/O redirection function is not used.

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-spe	•	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	tkcy2	$4.0~V \leq V_{DD} \leq 5.5~V,$	20 MHz < fмcк ≤ 24 MHz	12/fмск		-		ns
		$2.7~V \leq V_b \leq 4.0~V$	8 MHz < fмcк ≤ 20 MHz	10/fмск		=		ns
			4 MHz < fмcк ≤ 8 MHz	8/fмск		16/fмск		ns
			fмcк ≤ 4 MHz	6/fмск		10/fмск		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$	20 MHz < fмcк ≤ 24 MHz	16/fмск		_		ns
		$2.3~V \leq V_b \leq 2.7~V$	16 MHz < fмcк ≤ 20 MHz	14/fмск		=		ns
			8 MHz < fмск ≤ 16 MHz	12/fмск		_		ns
			4 MHz < fмcк ≤ 8 MHz	8/fмск		16/fмск		ns
			fмcк ≤ 4 MHz	6/fмск		10/fмск		ns
		$1.8 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$	20 MHz < fмcк ≤ 24 MHz	36/fмск		_		ns
		$1.6~V \leq V_b \leq 2.0~V$	16 MHz < fмcк ≤ 20 MHz	32/fмск		=		ns
		Note 2	8 MHz < fмск ≤ 16 MHz	26/fмск		_		ns
			4 MHz < fмcк ≤ 8 MHz	16/fмск		16/fмск		ns
			fмcк ≤ 4 MHz	10/fмск		10/fмск		ns
SCKp high-/low-level	t _{KH2} ,	$4.0~V \leq V_{DD} \leq 5.5~V,$	$2.7~V \leq V_b \leq 4.0~V$	tkcy2/2 - 12		tkcy2/2 - 50		ns
width	t _{KL2}	$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$	$2.3~V \leq V_b \leq 2.7~V$	tkcy2/2 - 18		tkcy2/2 - 50		ns
		$1.8 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$	$1.8 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_{b} \leq 2.0 \; V^{\text{Note 2}}$			tkcy2/2 - 50		ns
SIp setup time	tsik2	$4.0~V \leq V_{DD} \leq 5.5~V,$	$2.7~V \leq V_{DD} \leq 4.0~V$	1/fmck + 20		1/fмск + 30		ns
(to SCKp↑) Note 3		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$	$2.3~V \leq V_b \leq 2.7~V$	1/fmck + 20		1/fмск + 30		ns
		$1.8 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$	$1.6~V \leq V_{DD} \leq 2.0~V^{\text{ Note 2}}$	1/fmck + 30		1/fмск + 30		ns
SIp hold time (from SCKp [↑]) Note 4	tksi2			1/fмск + 31		1/fмск + 31		ns
Delay time from	tkso2	$4.0~V \leq V_{DD} \leq 5.5~V,$	$2.7 \text{ V} \le V_b \le 4.0 \text{ V},$		2/fмск +		2/fмск +	ns
SCKp↓ to SOp output Note 5		C _b = 30 pF, R _b = 1.4	kΩ		120		573	
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$	$2.3 \text{ V} \le V_b \le 2.7 \text{ V},$		2/fмск +		2/fмск +	ns
		C _b = 30 pF, R _b = 2.7	kΩ		214		573	
		$1.8 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$	$1.6 \text{ V} \le V_b \le 2.0 \text{ V}^{\text{Note 2}},$		2/fмск +		2/fмск +	ns
	1	C _b = 30 pF, R _b = 5.5	kΩ		573		573	

Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps


- 2. Use it with $V_{DD} \ge V_b$.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **5.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Cautions 1. Select the TTL input buffer for the SIp and SCKp pins and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1).

For VIH and VIL, see the DC characteristics with TTL input buffer selected.

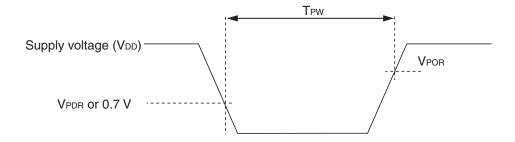
2. CSI01 and CSI11 cannot communicate at different potential.

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

2.6.2 Temperature sensor/internal reference voltage characteristics

(T_A = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, HS (high-speed main) mode


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	V _{TMPS25}	Setting ADS register = 80H, TA = +25°C		1.05		٧
Internal reference voltage	V _{BGR}	Setting ADS register = 81H	1.38	1.45	1.50	V
Temperature coefficient	FVTMPS	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tамр		5			μS

2.6.3 POR circuit characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

<u>, </u>						
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	Vpor	Power supply rise time	1.47	1.51	1.55	٧
	V _{PDR}	Power supply fall time	1.46	1.50	1.54	٧
Minimum pulse width Note	T _{PW}		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{PDR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

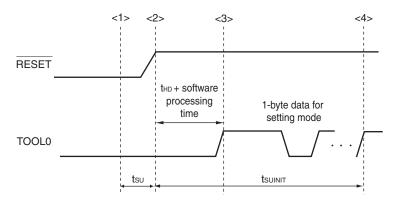
2.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{PDR} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection supply voltage	V _{LVD0}	Power supply rise time	3.98	4.06	4.14	٧
		Power supply fall time	3.90	3.98	4.06	٧
	V _{LVD1}	Power supply rise time	3.68	3.75	3.82	٧
		Power supply fall time	3.60	3.67	3.74	٧
	V _{LVD2}	Power supply rise time	3.07	3.13	3.19	٧
		Power supply fall time	3.00	3.06	3.12	٧
	V LVD3	Power supply rise time	2.96	3.02	3.08	٧
		Power supply fall time	2.90	2.96	3.02	٧
	V _{LVD4}	Power supply rise time	2.86	2.92	2.97	٧
		Power supply fall time	2.80	2.86	2.91	٧
	V _{LVD5}	Power supply rise time	2.76	2.81	2.87	٧
		Power supply fall time	2.70	2.75	2.81	٧
	V _{LVD6}	Power supply rise time	2.66	2.71	2.76	٧
		Power supply fall time	2.60	2.65	2.70	٧
	V LVD7	Power supply rise time	2.56	2.61	2.66	٧
		Power supply fall time	2.50	2.55	2.60	٧
	V _{LVD8}	Power supply rise time	2.45	2.50	2.55	٧
		Power supply fall time	2.40	2.45	2.50	٧
	V _{LVD9}	Power supply rise time	2.05	2.09	2.13	٧
		Power supply fall time	2.00	2.04	2.08	٧
	V _{LVD10}	Power supply rise time	1.94	1.98	2.02	٧
		Power supply fall time	1.90	1.94	1.98	٧
	V _{LVD11}	Power supply rise time	1.84	1.88	1.91	٧
		Power supply fall time	1.80	1.84	1.87	٧
Minimum pulse width	tLW		300			μS
Detection delay time					300	μS

2.9 Dedicated Flash Memory Programmer Communication (UART)

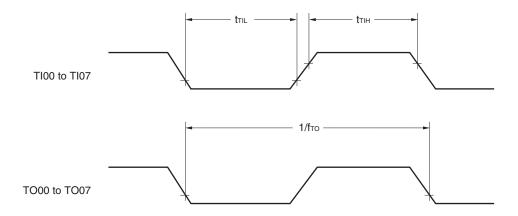

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

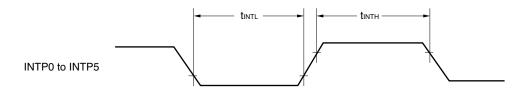
2.10 Timing of Entry to Flash Memory Programming Modes

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

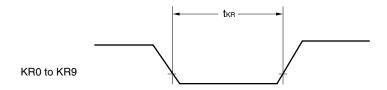
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset are released before external reset release			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset are released before external reset release	10			μS
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tнo	POR and LVD reset are released before external reset release	1			ms

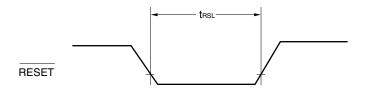

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.


 t_{SU} : Time to release the external reset after the TOOL0 pin is set to the low level

thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)


TI/TO Timing

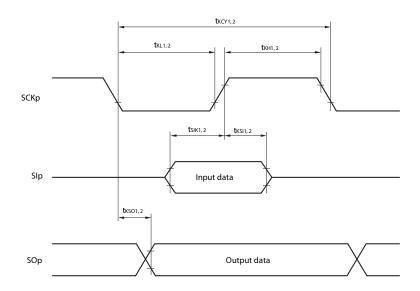

Interrupt Request Input Timing

Key Interrupt Input Timing

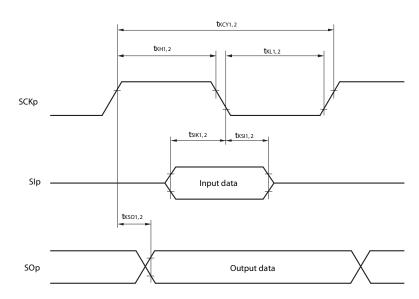
RESET Input Timing

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Symbol Conditions		HS (high-spee	Unit	
				MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	$2.7~V \leq V_{DD} \leq 5.5~V$	334		ns
			$2.4~V \leq V_{DD} \leq 5.5~V$	500		ns
SCKp high-/low-level width	t кн1,	4.0 V ≤ V _{DD} ≤ 5	$4.0~V \leq V_{DD} \leq 5.5~V$			ns
	t _{KL1}	tkl1 $2.7 \text{ V} \leq V_{DD} \leq 5.5 \text{ V}$ $2.4 \text{ V} \leq V_{DD} \leq 5.5 \text{ V}$		tkcy1/2-36		ns
				tkcy1/2-76		ns
SIp setup time (to SCKp↑) Note 1	tsıĸı	4.0 V ≤ V _{DD} ≤ 5	$4.0~V \leq V_{DD} \leq 5.5~V$			ns
		$2.7~V \leq V_{DD} \leq 5.5~V$		66		ns
		2.4 V ≤ V _{DD} ≤ 5	$2.4~V \leq V_{DD} \leq 5.5~V$			ns
SIp hold time (from SCKp↑) Note 2	tksi1			38		ns
Delay time from SCKp↓ to SOp output Note 3	tkso1	C = 30 pF Note4			50	ns

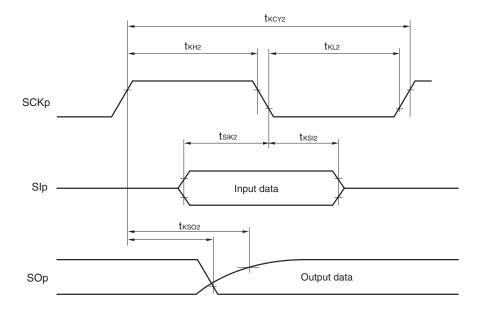

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp and SCKp pins by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).


Remarks 1. p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3)

2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3))

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)


CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3)

2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0,1), n: Channel number (n = 0, 1, 3))

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

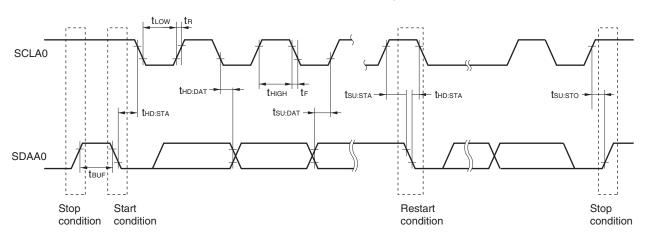
Remark p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

3.5.2 Serial interface IICA

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS	HS (high-speed main) mode				
			Standa	rd Mode	Fast Mode			
			MIN.	MAX.	MIN.	MAX.		
SCLA0 clock frequency	fscL	Fast mode: fclk≥ 3.5 MHz			0	400	kHz	
		Normal mode: fclk≥ 1 MHz	0	100			kHz	
Setup time of restart condition	tsu:sta		4.7		0.6		μS	
Hold time ^{Note 1}	thd:STA		4.0		0.6		μS	
Hold time when SCLA0 = "L"	tLOW		4.7		1.3		μS	
Hold time when SCLA0 = "H"	thigh		4.0		0.6		μS	
Data setup time (reception)	tsu:dat		250		100		ns	
Data hold time (transmission) ^{Note 2}	thd:dat		0	3.45	0	0.9	μS	
Setup time of stop condition	tsu:sto		4.0		0.6		μS	
Bus-free time	t BUF		4.7		1.3		μS	

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.


2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution Only in the 30-pin products, the values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IoH1, IoL1, VoH1, VoL1) must satisfy the values in the redirect destination.

Remark The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Normal mode: $C_b = 400 \text{ pF}, \text{ Rb} = 2.7 \text{ k}\Omega$ Fast mode: $C_b = 320 \text{ pF}, \text{ Rb} = 1.1 \text{ k}\Omega$

IICA serial transfer timing

<R>

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Input channel	Reference Voltage							
	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = VDD Reference voltage (-) = Vss	Reference voltage (+) = VBGR Reference voltage (-) = AVREFM					
ANI0 to ANI3	Refer to 29.6.1 (1) .	Refer to 29.6.1 (3).	Refer to 29.6.1 (4).					
ANI16 to ANI22	Refer to 29.6.1 (2).							
Internal reference voltage	Refer to 29.6.1 (1) .		=					
Temperature sensor output voltage								

(1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI2, ANI3, internal reference voltage, and temperature sensor output voltage

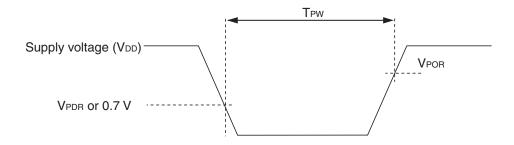
(TA = -40 to +105°C, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AVREFP = VDD Note 3			1.2	±3.5	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI2, ANI3	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μS
		10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: Internal reference voltage, and	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μS
		temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution AVREFP = VDD Note 3				±0.25	%FSR
Full-scale error ^{Notes 1, 2}	EFS	10-bit resolution AVREFP = VDD Note 3				±0.25	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AVREFP = VDD Note 3				±2.5	LSB
Differential linearity error	DLE	10-bit resolution AVREFP = VDD Note 3				±1.5	LSB
Analog input voltage	Vain	ANI2, ANI3		0		AVREFP	V
		Internal reference voltage (HS (high-speed main) m	VBGR Note 4			V	
		Temperature sensor outp	V _{TMPS25} Note 4			V	

(Notes are listed on the next page.)

3.6.2 Temperature sensor/internal reference voltage characteristics

(T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, HS (high-speed main) mode


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	V _{TMPS25}	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	V _{BGR}	Setting ADS register = 81H	1.38	1.45	1.50	V
Temperature coefficient	Fvтмps	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

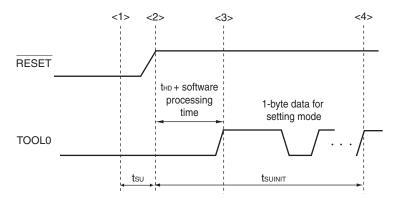
3.6.3 POR circuit characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	ol Conditions		TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time		1.51	1.57	V
	V _{PDR}	Power supply fall time	1.44	1.50	1.56	V
Minimum pulse width Note	T _{PW}		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{PDR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

3.9 Dedicated Flash Memory Programmer Communication (UART)


$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

3.10 Timing of Entry to Flash Memory Programming Modes

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

, , , , , , , , , , , , , , , , , , , ,						
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset are released before external release			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset are released before external release	10			μS
Time to hold the TOOL0 pin at the low level after the external reset is released	thd	POR and LVD reset are released before external release	1			ms
(excluding the processing time of the firmware to control the flash memory)						

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.

tsu: Time to release the external reset after the TOOL0 pin is set to the low level

thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

