

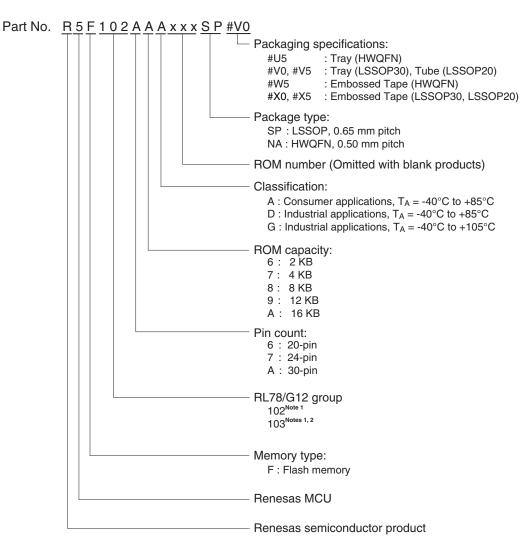
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	30-LSSOP (0.240", 6.10mm Width)
Supplier Device Package	30-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f102aadsp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

<R>

1.2 List of Part Numbers

Figure 1-1. Part Number, Memory Size, and Package of RL78/G12

Notes 1. For details about the differences between the R5F102 products and the R5F103 products of RL78/G12, see 1.1 Differences between the R5F102 Products and the R5F103 Products.

2. Products only for "A: Consumer applications ($T_A = -40$ to $+85^{\circ}C$)" and "D: Industrial applications ($T_A = -40$ to $+85^{\circ}C$)"

Item		20-	pin	24-	pin	30-p	oin			
		R5F1026x	R5F1036x	R5F1027x	R5F1037x	R5F102Ax	R5F103Ax			
Clock output/buzzer ou	utput			1		2				
		2.44 kHz to 10 MHz: (Peripheral hardware clock: fMAIN = 20 MHz operation)								
8/10-bit resolution A/D	converter		11 ch	annels		8 char	nnels			
Serial interface		[R5F1026x (20-pin), R5F1027x (24-pin)]								
		• CSI: 2 chann	CSI: 2 channels/Simplified I ² C: 2 channels/UART: 1 channel							
		[R5F102Ax (30-pin)]								
		・CSI: 1 chann	• CSI: 1 channel/Simplified I ² C: 1 channel/UART: 1 channel							
		・CSI: 1 chann	CSI: 1 channel/Simplified I ² C: 1 channel/UART: 1 channel							
		・CSI: 1 chann	el/Simplified I ² C	: 1 channel/UAF	RT: 1 channel					
		[R5F1036x (20	-pin), R5F1037:	k (24-pin)]						
		CSI: 1 chann	CSI: 1 channel/Simplified I ² C: 0 channel/UART: 1 channel							
		[R5F103Ax (30-pin)]								
		CSI: 1 channel/Simplified I ² C: 0 channel/UART: 1 channel								
	I ² C bus	1 channel								
Multiplier and divider/m	nultiply-	• 16 bits × 16 bits = 32 bits (unsigned or signed)								
accumulator		• 32 bits × 32 bits = 32 bits (unsigned)								
		• 16 bits × 16 b	its + 32 bits = 3	2 bits (unsigned	or signed)	T				
DMA controller	1	2 channels		2 channels		2 channels				
Vectored interrupt	Internal	18	16	18	16	26	19			
sources	External			5		6				
Key interrupt		6		1	0	_	-			
Reset		Reset by RES								
			by watchdog til by power-on-re							
			 Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note} 							
		Internal reset by RAM parity error								
		Internal reset by illegal-memory access								
Power-on-reset circuit		Power-on-reset: 1.51 V (TYP) Power-down-reset: 1.50 V (TYP)								
Voltage detector		Rising edge :	1.88 to 4.06 V	(12 stages)						
		• Falling edge : 1.84 to 3.98 V (12 stages)								
On-chip debug function	n	Provided								
Power supply voltage		V _{DD} = 1.8 to 5.5	V _{DD} = 1.8 to 5.5 V							
Operating ambient terr	perature	$T_A = -40$ to +85 (G: Industrial a		er applications,	D: Industrial app	lications), $T_A = -4$	40 to +105°C			

 $\label{eq:Note} \textbf{Note} \quad \text{The illegal instruction is generated when instruction code FFH is executed.}$

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

(3/4)

Parameter	Symbol	Condition	S	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	Normal input buffer		0.8Vpp		VDD	V
		20-, 24-pin products: P00 to P0 P40 to P42)3 ^{№te 2} , P10 to P14,				
		30-pin products: P00, P01, P1 P40, P50, P51, P120, P147	0 to P17, P30, P31,				
	VIH2	TTL input buffer	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	2.2		Vdd	V
		20-, 24-pin products: P10, P11	$3.3~V \leq V_{\text{DD}} < 4.0~V$	2.0		VDD	V
		30-pin products: P01, P10, P11, P13 to P17	$1.8~V \leq V_{\text{DD}} < 3.3~V$	1.5		VDD	V
	VIH3	P20 to P23		0.7Vdd		VDD	V
	VIH4	P60, P61		0.7Vdd		6.0	V
	VIH5	P121, P122, P125 ^{Note 1} , P137, I	EXCLK, RESET	0.8VDD		VDD	V
Input voltage, low	VIL1	Normal input buffer		0		0.2VDD	V
		20-, 24-pin products: P00 to P0 P40 to P42					
		30-pin products: P00, P01, P10 P40, P50, P51, P120, P147	80-pin products: P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147				
	VIL2	TTL input buffer	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	0		0.8	V
		20-, 24-pin products: P10, P11	$3.3~V \leq V_{\text{DD}} < 4.0~V$	0		0.5	V
		30-pin products: P01, P10, P11, P13 to P17	$1.8~V \leq V_{\text{DD}} < 3.3~V$	0		0.32	V
	VIL3	P20 to P23				0.3VDD	V
	VIL4	P60, P61		0		0.3VDD	V
	VIL5	P121, P122, P125 ^{Note 1} , P137, I	EXCLK, RESET	0		0.2VDD	V
Output voltage, high	V _{OH1}	20-, 24-pin products: P00 to P03 ^{№ete 2} , P10 to P14,	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -10.0 \ \text{mA} \end{array}$	VDD-1.5			V
		P40 to P42 30-pin products:	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ IOH1 = -3.0 mA	VDD-0.7			V
		P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120,	$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \text{I}_{\text{OH1}} = -2.0 \ \text{mA} \end{array}$	Vdd-0.6			V
		P147	$\begin{array}{l} 1.8 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -1.5 \ mA \end{array}$	V _{DD} -0.5			V
	V _{OH2}	P20 to P23	Іон2 = -100 <i>µ</i> А	VDD-0.5			V

Notes 1. 20, 24-pin products only.

2. 24-pin products only.

- Caution The maximum value of V_H of pins P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24pin products, and P00, P10 to P15, P17, and P50 for 30-pin products is V_{DD} even in N-ch open-drain mode. High level is not output in the N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(1/2)

2.3.2 Supply current characteristics

(1) 20-, 24-pin products

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit			
Supply	IDD1	Operating	HS(High-speed	$f_{IH}=24~MHz^{\text{Note 3}}$	Basic	$V_{DD} = 5.0 V$		1.5		mA			
current ^{Note 1}		mode	main) mode ^{№te4}		operation	$V_{DD} = 3.0 V$		1.5					
					Normal	$V_{DD} = 5.0 V$		3.3	5.0	mA			
					operation	$V_{DD} = 3.0 V$		3.3	5.0				
				$f_{I\!H}=16~MHz^{\text{Note 3}}$		$V_{DD} = 5.0 V$		2.5	3.7	mA			
						$V_{DD} = 3.0 V$		2.5	3.7				
			LS(Low-speed	$f_{IH}=8\;MHz^{\text{Note 3}}$		$V_{DD} = 3.0 V$		1.2	1.8	mA			
			main) mode ^{™e4}			$V_{DD} = 2.0 V$		1.2	1.8				
			HS(High-speed	$\label{eq:main_state} \begin{split} f_{MX} &= 20 \; MHz^{Noin 2}, \\ V_{DD} &= 5.0 \; V \\ \\ \hline f_{MX} &= 20 \; MHz^{Noin 2}, \\ V_{DD} &= 3.0 \; V \\ \\ \hline f_{MX} &= 10 \; MHz^{Noin 2}, \\ V_{DD} &= 5.0 \; V \end{split}$		Square wave input		2.8	4.4	mA			
			main) mode ^{№064}		.0 V	Resonator connection		3.0	4.6				
						-	-		Square wave input		2.8	4.4	mA
						Resonator connection		3.0	4.6				
					MX = 10 MHz ^{Note 2} , Square wa	Square wave input		1.8	2.6	mA			
						Resonator connection		1.8	2.6				
				$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		1.8	2.6	mA			
				$V_{DD} = 3.0 V$		Resonator connection		1.8	2.6				
			LS(Low-speed	$f_{MX} = 8 MHz^{Note2}$,		Square wave input		1.1	1.7	mA			
			main) mode ^{Note 4}	$V_{DD} = 3.0 \text{ V}$		Resonator connection		1.1	1.7				
		f _{MX} = 8 MHz	$f_{MX} = 8 MHz^{Note 2},$		Square wave input		1.1	1.7	mA				
				VDD = 2.0 V		Resonator connection		1.1	1.7				

Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. When high-speed on-chip oscillator clock is stopped.
- **3.** When high-speed system clock is stopped
- **4.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode: $V_{DD} = 2.7 \text{ V}$ to 5.5 V @1 MHz to 24 MHz $V_{DD} = 2.4 \text{ V}$ to 5.5 V @1 MHz to 16 MHz

- LS(Low speed main) mode: $V_{DD} = 1.8 V$ to 5.5 V @1 MHz to 8 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fil: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$.

(2) 30-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit	
Supply	DD2 Note 2	HALT	HS (High-speed	$f_{IH} = 24 \text{ MHz}^{Note 4}$	V _{DD} = 5.0 V		440	1280	μA	
current Note 1		mode	main) mode ^{Note6}		V _{DD} = 3.0 V		440	1280		
				$f_{IH} = 16 \text{ MHz}^{Note 4}$	$V_{DD} = 5.0 V$		400	1000	μA	
					$V_{DD} = 3.0 V$		400	1000		
			LS (Low-speed	$f_{\text{IH}} = 8 \text{ MHz}^{\text{Note 4}}$	$V_{DD} = 3.0 V$		260	530	μA	
			main) mode ^{Note6}		$V_{DD} = 2.0 V$		260	530		
			main) made Note6	$f_{MX} = 20 \text{ MHz}^{Note 3}$,	Square wave input		280	1000	μA	
		main) mode ^{Note 6}		Resonator connection		450	1170			
			V _{DD} = 3.0 V f _{MX} = 10 MHz V _{DD} = 5.0 V	Square wave input		280	1000	μA		
				V _{DD} = 3.0 V	Resonator connection		450	1170		
					$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		190	600	μA
				$V_{DD} = 5.0 V$	Resonator connection		260	670		
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		190	600	μA	
				$V_{DD} = 3.0 V$	Resonator connection		260	670		
			$main)$ mode Note6 $V_{rr} = 2.0 V$	$f_{MX} = 8 MHz^{Note 3}$,	Square wave input		95	330	μA	
				Resonator connection		145	380			
				$f_{MX} = 8 MHz^{Note 3}$	Square wave input		95	330	μA	
				$V_{DD} = 2.0 V$	Resonator connection		145	380		
		STOP	$T_{\text{A}} = -40^{\circ}C$				0.18	0.50	μA	
	mode	mode	$T_A = +25^{\circ}C$	T _A = +25°C				0.50		
		$T_A = +50^{\circ}C$	+50°C			0.30	1.10			
			$T_A = +70^{\circ}C$				0.46	1.90		
			T _A = +85°C				0.75	3.30		

Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. During HALT instruction execution by flash memory.
- 3. When high-speed on-chip oscillator clock is stopped.
- 4. When high-speed system clock is stopped.
- 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.
- 6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS (High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz

VDD = 2.4 V to 5.5 V @1 MHz to 16 MHz

LS (Low speed main) mode: VDD = 1.8 V to 5.5 V @1 MHz to 8 MHz

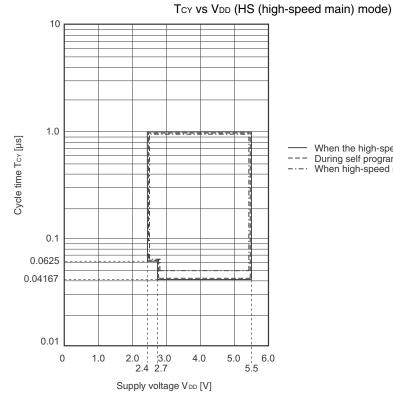
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except STOP mode, temperature condition of the TYP. value is TA = 25°C.

(3) Peripheral functions (Common to all products)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

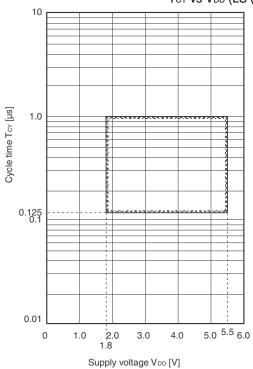
Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed onchip oscillator operating current	FiL Note 1				0.20		μA
12-bit interval timer operating current	ITMKA Notes 1, 2, 3				0.02		μA
Watchdog timer operating current	WDT Notes 1, 2, 4	fı∟ = 15 kHz			0.22		μA
A/D converter	ADC Notes 1, 5	When conversion at	Normal mode, $AV_{REFP} = V_{DD} = 5.0 V$		1.30	1.70	mA
operating current		maximum speed	Low voltage mode, $AV_{REFP} = V_{DD} = 3.0 V$		0.50	0.70	mA
A/D converter reference voltage operating current	ADREF Note 1				75.0		μA
Temperature sensor operating current	TMPS ^{Note 1}				75.0		μA
LVD operating current	LVD Notes 1, 6				0.08		μA
Self- programming operating current	FSP Notes 1, 8				2.00	12.20	mA
BGO operating current	BGO Notes 1, 7				2.00	12.20	mA
SNOOZE	ISNOZ Note 1	ADC operation	The mode is performed Note 9		0.50	0.60	mA
operating current			The A/D conversion operations are performed, Low voltage mode, $AV_{REFP} = V_{DD} = 3.0 V$		1.20	1.44	mA
		CSI/UART operation			0.70	0.84	mA

Notes 1. Current flowing to the VDD.


- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and IFIL and ITMKA when the 12-bit interval timer operates.
- 4. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.
- 5. Current flowing only to the A/D converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 6. Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit operates.
- 7. Current flowing only during data flash rewrite.
- 8. Current flowing only during self programming.
- 9. For shift time to the SNOOZE mode, see 17.3.3 SNOOZE mode.

Remarks 1. fil: Low-speed on-chip oscillator clock frequency

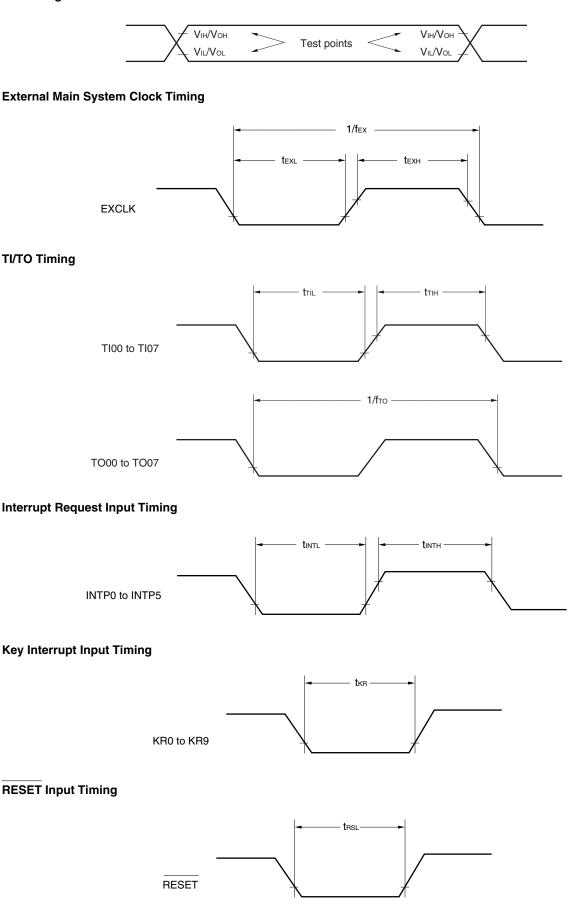
2. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$


Minimum Instruction Execution Time during Main System Clock Operation

When the high-speed on-chip oscillator clock is selected During self programming When high-speed system clock is selected ___

_ . _ .

TCY vs VDD (LS (low-speed main) mode)



When the high-speed on-chip oscillator clock is selected

--- During self programming ---. When high-speed system clock is selected

AC Timing Test Point

Parameter	Symbol	Conditions		HS (high- main) M		LS (low-spe Mod	-	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkCY1	tксү1 ≥ 4/fc∟к	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	167		500		ns
			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	250		500		ns
			$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	-		500		ns
SCKp high-/low-level width	tкнı,	$4.0~V \leq V_{\text{DD}} \leq$	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			tксү1/2-50		ns
	tĸ∟1	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		tксү1/2–18		tксү1/2-50		ns
		$2.4~V \leq V_{\text{DD}} \leq$	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			tксү1/2–50		ns
		$1.8~V \leq V_{\text{DD}} \leq$	5.5 V	-		tксү1/2-50		ns
SIp setup time (to SCKp↑)	tsik1	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V	44		110		ns
Note 1		$2.7~V \leq V_{\text{DD}} \leq$	5.5 V	44		110		ns
		$2.4~V \leq V_{\text{DD}} \leq$	5.5 V	75		110		ns
		$1.8~V \leq V_{\text{DD}} \leq$	5.5 V	-		110		ns
SIp hold time (from SCKp↑) ^{№te 2}	tksi1			19		19		ns
Delay time from SCKp↓ to SOp output ^{№te 3}	tkso1	C = 30 pF ^{Note4}			25		25	ns

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (T_A = -40 to +85°C, 1.8 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.
- **Caution** Select the normal input buffer for the SIp pin and the normal output mode for the SOp and SCKp pins by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).
- **Remarks 1.** p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products)
 - 2. fMCK: Serial array unit operation clock frequency
 - (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products.))

- 5. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
- 6. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq V_DD < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-Cb \times Rb \times ln (1 - \frac{2.0}{Vb})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =

 $\begin{array}{c} \displaystyle \frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \\ \hline \\ \displaystyle (\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits} \end{array} \times 100 \ [\%] \end{array}$ * This value is the theoretical value of the relative difference between the transmission and reception sides.

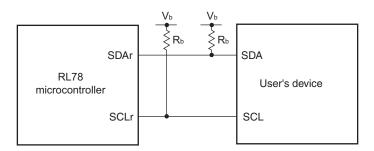
- 7. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.
- 8. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq V_DD < 3.3 V, 1.6 V \leq V_b \leq 2.0 V

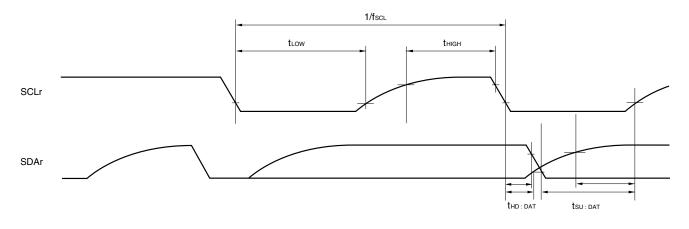
Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =

$$\frac{1}{\text{ransfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\}$$


$$\frac{1}{(1 - \frac{1.5}{V_b})} \times 100 \,[\%]$$
Transfer rate

* This value is the theoretical value of the relative difference between the transmission and reception sides.


- 9. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 8 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDg pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and V_{IL}, see the DC characteristics with TTL input buffer selected.

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b [Ω]: Communication line (SDAr, SCLr) pull-up resistance, C_b [F]: Communication line (SDAr, SCLr) load capacitance, V_b [V]: Communication line voltage
 - **2.** r: IIC Number (r = 00, 20)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number (m = 0,1), n: Channel number (n = 0))
 - 4. Simplified l^2 C mode is supported only by the R5F102 products.

2.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode (TA = -40 to $+85^{\circ}$ C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection supply voltage	VLVDO	Power supply rise time	3.98	4.06	4.14	V
		Power supply fall time	3.90	3.98	4.06	V
	VLVD1	Power supply rise time	3.68	3.75	3.82	V
		Power supply fall time	3.60	3.67	3.74	V
	VLVD2	Power supply rise time	3.07	3.13	3.19	V
		Power supply fall time	3.00	3.06	3.12	V
	VLVD3	Power supply rise time	2.96	3.02	3.08	V
		Power supply fall time	2.90	2.96	3.02	V
	VLVD4	Power supply rise time	2.86	2.92	2.97	V
		Power supply fall time	2.80	2.86	2.91	V
	VLVD5	Power supply rise time	2.76	2.81	2.87	V
		Power supply fall time	2.70	2.75	2.81	V
	VLVD6	Power supply rise time	2.66	2.71	2.76	V
		Power supply fall time	2.60	2.65	2.70	V
	VLVD7	Power supply rise time	2.56	2.61	2.66	V
		Power supply fall time	2.50	2.55	2.60	V
	VLVD8	Power supply rise time	2.45	2.50	2.55	V
		Power supply fall time	2.40	2.45	2.50	V
	VLVD9	Power supply rise time	2.05	2.09	2.13	V
		Power supply fall time	2.00	2.04	2.08	V
	VLVD10	Power supply rise time	1.94	1.98	2.02	V
		Power supply fall time	1.90	1.94	1.98	V
	VLVD11	Power supply rise time	1.84	1.88	1.91	V
		Power supply fall time	1.80	1.84	1.87	V
Minimum pulse width	t∟w		300			μs
Detection delay time					300	μS

LVD detection voltage of interrupt & reset mode
$(T_A = -40 \text{ to } +85^{\circ}\text{C} \text{ V}_{PDR} < \text{V}_{DD} < 5.5 \text{ V} \text{ V}_{SS} = 0.\text{ V})$

Parameter	Symbol		Con	ditions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVDB0	VPOC2,	VPOC1, VPOC0 = 0, 0, 1, fa	1.80	1.84	1.87	V	
mode	VLVDB1		LVIS1, LVIS0 = 1, 0	Rising reset release voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB2		LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
1	V LVDB3		LVIS1, LVIS0 = 0, 0	Rising reset release voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDC0	VPOC2,	VPOC1, VPOC0 = 0, 1, 0, fa	ling reset voltage	2.40	2.45	2.50	V
	VLVDC1		LVIS1, LVIS0 = 1, 0	Rising reset release voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDC3		LVIS1, LVIS0 = 0, 0	Rising reset release voltage	3.68	3.75	3.82	V
				Falling interrupt voltage	3.60	3.67	3.74	V
	VLVDD0	VPOC2,	VPOC1, VPOC1 = 0, 1, 1, fa	ling reset voltage	2.70	2.75	2.81	V
	VLVDD1		LVIS1, LVIS0 = 1, 0	Rising reset release voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2		LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V
	V LVDD3		LVIS1, LVIS0 = 0, 0	Rising reset release voltage	3.98	4.06	4.14	V
				Falling interrupt voltage	3.90	3.98	4.06	V

2.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 28.4 AC Characteristics.

3.3 DC Characteristics

3.3.1 Pin characteristics

TA = $-40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = 0 \text{ V})$						(1/4)	
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Output current, high ^{Note 1}	Іон1	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42 30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147				–3.0 m/ Note 2	mA
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-9.0	mA
		Total of P40 to P42	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-6.0	mA
		30-pin products: Total of P00, P01, P40, P120 (When duty $\leq 70\%^{\text{Note 3}}$)	$2.4~V \leq V_{DD} < 2.7~V$			-4.5	mA
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-27.0	mA
		Total of P00 to P03 ^{Note 4} , P10 to P14	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-18.0	mA
		30-pin products: Total of P10 to P17, P30, P31, P50, P51, P147 (When duty \leq 70% ^{Note 3})	$2.4~V \leq V_{\text{DD}} < 2.7~V$			-10.0	mA
		Total of all pins (When duty $\leq 70\%^{Note 3}$)				-36.0	mA
	Іон2	Per pin for P20 to P23				-0.1	mA
		Total of all pins				-0.4	mA

Notes 1. value of current at which the device operation is guaranteed even if the current flows from the VDD pin to an output pin.

- 2. However, do not exceed the total current value.
- 3. The output current value under conditions where the duty factor \leq 70%. If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).
 - Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$ <Example> Where n = 80% and $I_{OH} = -10.0$ mA
 - Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

- 4. 24-pin products only.
- Caution P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24-pin products, and P00, P10 to P15, P17, and P50 for 30-pin products do not output high level in N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit	
Input voltage, high	V _{IH1}	Normal input buffer 20-, 24-pin products: P00 to P03 ^{№ote 2} , P10 to P14,		0.8VDD		Vdd	V
		P40 to P42					
		30-pin products: P00, P01, P1 P40, P50, P51, P120, P147	0 to P17, P30, P31,				
	VIH2	TTL input buffer	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	2.2		VDD	V
		20-, 24-pin products: P10, P11	$3.3~V \leq V_{\text{DD}} < 4.0~V$	2.0		VDD	V
		30-pin products: P01, P10, P11, P13 to P17	$2.4~V \leq V_{\text{DD}} < 3.3~V$	1.5		VDD	V
	Vінз	Normal input buffer		0.7V _{DD}		VDD	V
		P20 to P23					
	VIH4	P60, P61	P60, P61			6.0	V
	VIH5	P121, P122, P125 ^{Note 1} , P137, EXCLK, RESET		0.8Vdd		VDD	V
Input voltage, low	VIL1	Normal input buffer		0		0.2V _{DD}	V
		20-, 24-pin products: P00 to P0 P40 to P42					
		30-pin products: P00, P01, P10 P40, P50, P51, P120, P147	to P17, P30, P31,				
	VIL2	TTL input buffer	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	0		0.8	V
		20-, 24-pin products: P10, P11	$3.3~V \leq V_{\text{DD}} < 4.0~V$	0		0.5	V
		30-pin products: P01, P10, P11, P13 to P17	$2.4~V \leq V_{\text{DD}} < 3.3~V$	0		0.32	V
	VIL3	P20 to P23		0		0.3V _{DD}	V
	VIL4	P60, P61		0		0.3V _{DD}	V
	VIL5	P121, P122, P125 ^{Note 1} , P137, B	EXCLK, RESET	0		0.2VDD	V
Output voltage, high	V _{OH1}	20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	VDD-0.7			V
		P00 to P03 ^{Note 2} , P10 to P14,	Iон1 = -3.0 mA				
		P40 to P42 30-pin products:	$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -2.0 \ mA \end{array} \end{array} \label{eq:VDD}$	V _{DD} -0.6			V
		P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147	$\begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -1.5 \ mA \end{array}$	VDD-0.5			V
	V _{OH2}	P20 to P23	Іон2 = -100 <i>µ</i> А	Vdd-0.5			V

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

(3/4)

Notes 1. 20, 24-pin products only.

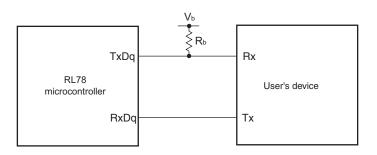
- **2.** 24-pin products only.
- CautionThe maximum value of VIH of pins P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24-
pin products, and P00, P10 to P15, P17, and P50 for 30-pin products is VDD even in N-ch open-drain mode.High level is not output in the N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(3) Peripheral functions (Common to all products)

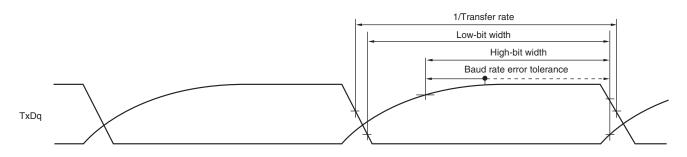
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

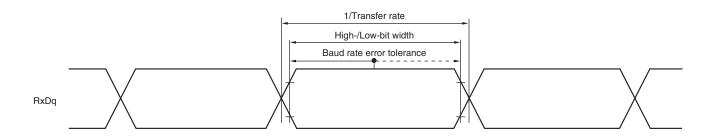
Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Low-speed onchip oscillator operating current	FIL Note 1				0.20		μA
12-bit interval timer operating current	ITMKA Notes 1, 2, 3				0.02		μA
Watchdog timer operating current	WDT Notes 1, 2, 4	fı∟ = 15 kHz			0.22		μA
A/D converter	IADC	When conversion	Normal mode, AV _{REFP} = V _{DD} = 5.0 V		1.30	1.70	mA
operating current	Notes 1, 5	at maximum speed	Low voltage mode, AV _{REFP} = V _{DD} = 3.0 V		0.50	0.70	mA
A/D converter reference voltage operating current	IADREF Note 1				75.0		μA
Temperature sensor operating current	ITMPS Note 1				75.0		μA
LVD operating current	ILVD Notes 1, 6				0.08		μA
Self-programming operating current	IFSP Notes 1, 8				2.00	12.20	mA
BGO operating current	BGO Notes 1, 7				2.00	12.20	mA
	Isnoz		The mode is performed Note 9		0.50	1.10	mA
	Note 1		The A/D conversion operations are performed, Low voltage mode, $AV_{REFP} = V_{DD} = 3.0 \text{ V}$		1.20	2.04	mA
		CSI/UART operation	<u>ו</u>		0.70	1.54	mA

Notes 1. Current flowing to the VDD.


- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and IFIL and ITMKA when the 12-bit interval timer operates.
- 4. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.
- 5. Current flowing only to the A/D converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 6. Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit operates.
- 7. Current flowing only during data flash rewrite.
- **8.** Current flowing only during self programming.
- 9. For shift time to the SNOOZE mode, see 17.3.3 SNOOZE mode.

Remarks 1. fill: Low-speed on-chip oscillator clock frequency


2. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$



UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

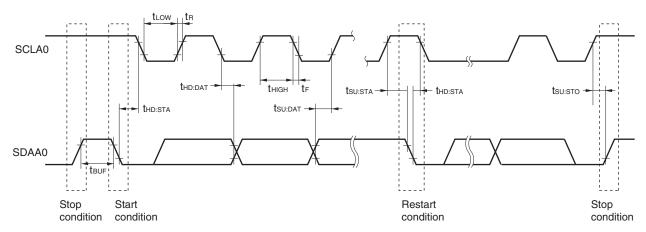
- **Remarks 1.** R_b[Ω]: Communication line (TxDq) pull-up resistance, C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)
 - fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

4. UART0 of the 20- and 24-pin products supports communication at different potential only when the peripheral I/O redirection function is not used.

3.5.2 Serial interface IICA

Parameter	Symbol	Conditions	HS (high-speed main) mode		node	Unit	
			Standard Mode		Fast Mode		
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode: fclk≥ 3.5 MHz			0	400	kHz
		Normal mode: fcLK≥ 1 MHz	0	100			kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μS
Hold time ^{Note 1}	thd:sta		4.0		0.6		μS
Hold time when SCLA0 = "L"	t∟ow		4.7		1.3		μS
Hold time when SCLA0 = "H"	tніgн		4.0		0.6		μS
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission)Note 2	thd:dat		0	3.45	0	0.9	μS
Setup time of stop condition	tsu:sto		4.0		0.6		μS
Bus-free time	t BUF		4.7		1.3		μS


$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- **Caution** Only in the 30-pin products, the values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

 $\label{eq:cb} \begin{array}{ll} \mbox{Normal mode:} & C_b = 400 \mbox{ pF}, \mbox{ Rb} = 2.7 \mbox{ } k\Omega \\ \mbox{Fast mode:} & C_b = 320 \mbox{ pF}, \mbox{ Rb} = 1.1 \mbox{ } k\Omega \end{array}$

IICA serial transfer timing

<R>

3.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode (T_A = -40 to +105°C, V_{PDR} \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection supply voltage	VLVDO	Power supply rise time	3.90	4.06	4.22	V
		Power supply fall time	3.83	3.98	4.13	V
	VLVD1	Power supply rise time	3.60	3.75	3.90	V
		Power supply fall time	3.53	3.67	3.81	V
	VLVD2	Power supply rise time	3.01	3.13	3.25	V
		Power supply fall time	2.94	3.06	3.18	V
	V _{LVD3}	Power supply rise time	2.90	3.02	3.14	V
		Power supply fall time	2.85	2.96	3.07	V
	VLVD4	Power supply rise time	2.81	2.92	3.03	V
		Power supply fall time	2.75	2.86	2.97	V
	VLVD5	Power supply rise time	2.70	2.81	2.92	V
		Power supply fall time	2.64	2.75	2.86	V
	VLVD6	Power supply rise time	2.61	2.71	2.81	V
		Power supply fall time	2.55	2.65	2.75	V
	VLVD7	Power supply rise time	2.51	2.61	2.71	V
		Power supply fall time	2.45	2.55	2.65	V
Minimum pulse width	tıw		300			μs
Detection delay time					300	μs

Revision History

RL78/G12 Data Sheet

		Description		
Rev.	Date	Page	Summary	
1.00	Dec 10, 2012	-	First Edition issued	
2.00 Sep 06, 2013		1	Modification of 1.1 Features	
		3	Modification of 1.2 List of Part Numbers	
		4	Modification of Table 1-1. List of Ordering Part Numbers, Note, and Caution	
		7 to 9	Modification of package name in 1.4.1 to 1.4.3	
		14	Modification of tables in 1.7 Outline of Functions	
		17	Modification of description of table in 2.1 Absolute Maximum Ratings (TA = 25°C)	
		18	Modification of table, Note, and Caution in 2.2.1 X1 oscillator characteristics	
		18 19	Modification of table in 2.2.2 On-chip oscillator characteristics	
		20	Modification of Note 3 in 2.3.1 Pin characteristics (1/4)	
			Modification of Note 3 in 2.3.1 Pin characteristics (2/4)	
		23	Modification of Notes 1 and 2 in (1) 20-, 24-pin products (1/2)	
		24	Modification of Notes 1 and 3 in (1) 20-, 24-pin products (2/2)	
		25	Modification of Notes 1 and 2 in (2) 30-pin products (1/2)	
		26	Modification of Notes 1 and 3 in (2) 30-pin products (2/2)	
		27	Modification of (3) Peripheral functions (Common to all products)	
		28	Modification of table in 2.4 AC Characteristics	
		29	Addition of Minimum Instruction Execution Time during Main System Clock Operation	
		30	Modification of figures of AC Timing Test Point and External Main System Clock Timing	
		31	Modification of figure of AC Timing Test Point	
		31	Modification of description and Note 2 in (1) During communication at same potential (UART mode)	
		32	Modification of description in (2) During communication at same potential (CSI mode)	
		33	Modification of description in (3) During communication at same potential (CSI mode)	
	34	Modification of description in (4) During communication at same potential (CSI mode)		
		36	Modification of table and Note 2 in (5) During communication at same potential	
			(simplified l ² C mode)	
		38, 39	Modification of table and Notes 1 to 9 in (6) Communication at different potential	
		00,00	(1.8 V, 2.5 V, 3 V) (UART mode)	
		40	Modification of Remarks 1 to 3 in (6) Communication at different potential (1.8 V,	
		10	2.5 V, 3 V) (UART mode)	
		41	Modification of table in (7) Communication at different potential (2.5 V, 3 V) (CSI mode)	
		42	Modification of Caution in (7) Communication at different potential (2.5 V, 3 V) (CSI mode)	
		43	Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI	
		40	mode) (1/3)	
		44	Modification of table and Notes 1 and 2 in (8) Communication at different potential (1.8	
		44	V, 2.5 V, 3 V) (CSI mode) (2/3)	
		45	Modification of table, Note 1, and Caution 1 in (8) Communication at different potential	
		45	(1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)	
		47	Modification of table in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI	
		47	mode)	
		50	Modification of table, Note 1, and Caution 1 in (10) Communication at different potential	
		50	(1.8 V, 2.5 V, 3 V) (simplified I ² C mode)	
		50	Modification of Remark in 2.5.2 Serial interface IICA	
		52	Addition of table to 2.6.1 A/D converter characteristics	
		53		
		53	Modification of description in 2.6.1 (1)	
		54	Modification of Notes 3 to 5 in 2.6.1 (1)	
		54	Modification of description and Notes 2 to 4 in 2.6.1 (2)	