

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	14
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10366asp-x0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1. List of Ordering Part Numbers

Pin Package Data flash Part Number count Application R5F1026AASP#V5, R5F10269ASP#V5, R5F10268ASP#V5, R5F10267ASP#V5, 20 20-pin plastic Mounted < R> pins LSSOP R5F10266ASP#V5 R5F1026AASP#X5, R5F10269ASP#X5, R5F10268ASP#X5, R5F10267ASP#X5, $(4.4 \times 6.5 \text{ mm},$ 0.65 mm pitch) R5F10266ASP#X5 D R5F1026ADSP#V5, R5F10269DSP#V5, R5F10268DSP#V5, R5F10267DSP#V5, R5F10266DSP#V5 R5F1026ADSP#X5, R5F10269DSP#X5, R5F10268DSP#X5, R5F10267DSP#X5, R5F10266DSP#X5 G R5F1026AGSP#V5, R5F10269GSP#V5, R5F10268GSP#V5, R5F10267GSP#V5, R5F10266GSP#V5 R5F1026AGSP#X5, R5F10269GSP#X5, R5F10268GSP#X5, R5F10267GSP#X5, B5F10266GSP#X5 R5F1036AASP#V5, R5F10369ASP#V5, R5F10368ASP#V5, R5F10367ASP#V5, Not mounted R5F10366ASP#V5 R5F1036AASP#X5, R5F10369ASP#X5, R5F10368ASP#X5, R5F10367ASP#X5, R5F10366ASP#X5 D R5F1036ADSP#V5, R5F10369DSP#V5, R5F10368DSP#V5, R5F10367DSP#V5, R5F10366DSP#V5 R5F1036ADSP#X5, R5F10369DSP#X5, R5F10368DSP#X5, R5F10367DSP#X5, R5F10366DSP#X5 24 24-pin plastic Mounted R5F1027AANA#U5, R5F10279ANA#U5, R5F10278ANA#U5, R5F10277ANA#U5 Α <R> **HWQFN** pins R5F1027AANA#W5, R5F10279ANA#W5, R5F10278ANA#W5, $(4 \times 4 \text{ mm}, 0.5)$ R5F10277ANA#W5 mm pitch) D R5F1027ADNA#U5, R5F10279DNA#U5, R5F10278DNA#U5, R5F10277DNA#U5 R5F1027ADNA#W5, R5F10279DNA#W5, R5F10278DNA#W5, R5F10277DNA#W5 G R5F1027AGNA#U5, R5F10279GNA#U5, R5F10278GNA#U5, R5F10277GNA#U5 R5F1027AGNA#W5, R5F10279GNA#W5, R5F10278GNA#W5, R5F10277GNA#W5 Not mounted Α R5F1037AANA#V5, R5F10379ANA#V5, R5F10378ANA#V5, R5F10377ANA#V5 R5F1037AANA#X5, R5F10379ANA#X5, R5F10378ANA#X5, R5F10377ANA#X5 D R5F1037ADNA#V5, R5F10379DNA#V5, R5F10378DNA#V5, R5F10377DNA#V5 R5F1037ADNA#X5, R5F10379DNA#X5, R5F10378DNA#X5, R5F10377DNA#X5 R5F102AAASP#V0, R5F102A9ASP#V0, R5F102A8ASP#V0, R5F102A7ASP#V0 30 30-pin plastic Mounted Α LSSOP R5F102AAASP#X0, R5F102A9ASP#X0, R5F102A8ASP#X0, R5F102A7ASP#X0 pins (7.62 mm D R5F102AADSP#V0, R5F102A9DSP#V0, R5F102A8DSP#V0, R5F102A7DSP#V0 (300), 0.65 mm R5F102AADSP#X0, R5F102A9DSP#X0, R5F102A8DSP#X0, R5F102A7DSP#X0 pitch) G R5F102AAGSP#V0. R5F102A9GSP#V0. R5F102A8GSP#V0. R5F102A7GSP#V0 R5F102AAGSP#X0, R5F102A9GSP#X0, R5F102A8GSP#X0, R5F102A7GSP#X0 R5F103AAASP#V0, R5F103A9ASP#V0, R5F103A8ASP#V0, R5F103A7ASP#V0 Not mounted Α R5F103AAASP#X0, R5F103A9ASP#X0, R5F103A8ASP#X0, R5F103A7ASP#X0 R5F103AADSP#V0. R5F103A9DSP#V0. R5F103A8DSP#V0. R5F103A7DSP#V0 D R5F103AADSP#X0, R5F103A9DSP#X0, R5F103A8DSP#X0, R5F103A7DSP#X0

Note For fields of application, see Figure 1-1 Part Number, Memory Size, and Package of RL78/G12.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3 Differences between the R5F102 Products and the R5F103 Products

The following are differences between the R5F102 products and the R5F103 products.

- O Whether the data flash memory is mounted or not
- O High-speed on-chip oscillator oscillation frequency accuracy
- O Number of channels in serial interface
- O Whether the DMA function is mounted or not
- O Whether a part of the safety functions are mounted or not

1.3.1 Data Flash

The data flash memory of 2 KB is mounted on the R5F102 products, but not on the R5F103 products.

Product	Data Flash
R5F102 products	2KB
R5F1026A, R5F1027A, R5F102AA,	
R5F10269, R5F10279, R5F102A9,	
R5F10268, R5F10278, R5F102A8,	
R5F10267, R5F10277, R5F102A7,	
R5F10266 Note	
R5F103 products	Not mounted
R5F1036A, R5F1037A, R5F103AA,	
R5F10369, R5F10379, R5F103A9,	
R5F10368, R5F10378 R5F103A8,	
R5F10367, R5F10377, R5F103A7,	
R5F10366	

Note The RAM in the R5F10266 has capacity as small as 256 bytes. Depending on the customer's program specification, the stack area to execute the data flash library may not be kept and data may not be written to or erased from the data flash memory.

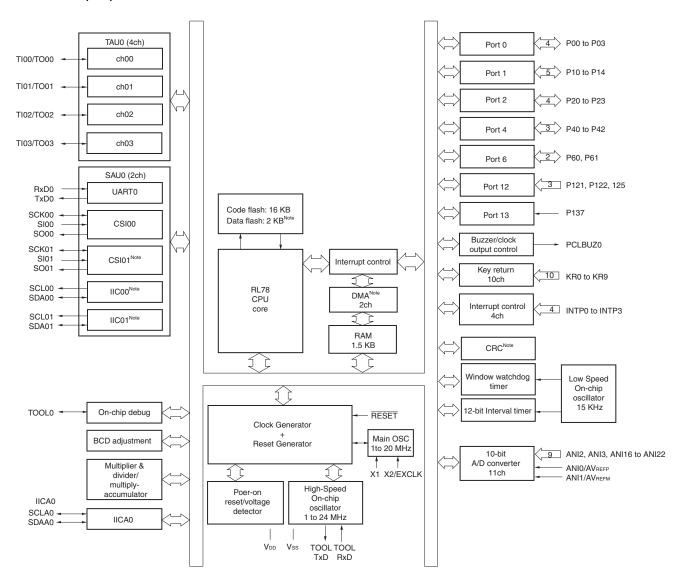
Caution When the flash memory is rewritten via a user program, the code flash area and RAM area are used because each library is used. When using the library, refer to RL78 Family Flash Self Programming Library Type01 User's Manual and RL78 Family Data Flash Library Type04 User's Manual.

1.3.2 On-chip oscillator characteristics

(1) High-speed on-chip oscillator oscillation frequency of the R5F102 products

Oscillator	Condition	MIN	MAX	Unit
High-speed on-chip	T _A = -20 to +85 °C	-1.0	+1.0	%
oscillator oscillation	T _A = -40 to -20 °C	-1.5	+1.5	
frequency accuracy	T _A = +85 to +105 °C	-2.0	+2.0	

(2) High-speed on-chip oscillator oscillation frequency of the R5F103 products


Oscillator	Condition	MIN	MAX	Unit
High-speed on-chip	$T_A = -40 \text{ to} + 85 ^{\circ}\text{C}$	-5.0	+5.0	%
oscillator oscillation				
frequency accuracy				

1.3.3 Peripheral Functions

The following are differences in peripheral functions between the R5F102 products and the R5F103 products.

		R5F102	2 product	R5F103 product		
RL78/G12	20, 24 pin	30 pin product	20, 24 pin	30 pin		
		product		product	product	
Serial interface	UART	1 channel	3 channels	1 channel		
	CSI	2 channels	3 channels	1 channel		
	Simplified I ² C	2 channels	3 channels	None		
DMA function		2 channels		None		
Safety function	CRC operation	Yes		None		
RAM guard		Yes		None		
	SFR guard	Yes		None		

1.6.2 24-pin products

Note Provided only in the R5F102 products.

 $(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le VDD \le 5.5 \text{ V}, Vss = 0 \text{ V})$

(3/4)

•		, ,					
Parameter	Symbol	Condition	s	MIN.	TYP.	MAX.	Unit
Input voltage, high	V _{IH1}	Normal input buffer		0.8V _{DD}		V _{DD}	٧
		20-, 24-pin products: P00 to P03 ^{Note 2} , P10 to P14, P40 to P42					
		30-pin products: P00, P01, P1 P40, P50, P51, P120, P147	0 to P17, P30, P31,				
	V _{IH2}	TTL input buffer	$4.0~V \leq V_{DD} \leq 5.5~V$	2.2		V _{DD}	٧
		20-, 24-pin products: P10, P11	$3.3~V \leq V_{DD} < 4.0~V$	2.0		V _{DD}	٧
		30-pin products: P01, P10, P11, P13 to P17	1.8 V ≤ V _{DD} < 3.3 V	1.5		V _{DD}	V
	VIH3	P20 to P23		0.7V _{DD}		V _{DD}	٧
	V _{IH4}	P60, P61		0.7V _{DD}		6.0	٧
	V _{IH5}	P121, P122, P125 ^{Note 1} , P137, I	EXCLK, RESET	0.8V _{DD}		V _{DD}	٧
Input voltage, low	VIL1	Normal input buffer	0		0.2V _{DD}	٧	
		20-, 24-pin products: P00 to P03 ^{Note 2} , P10 to P14, P40 to P42					
		30-pin products: P00, P01, P10 P40, P50, P51, P120, P147	ucts: P00, P01, P10 to P17, P30, P31, P51, P120, P147				
	V _{IL2}	TTL input buffer	$4.0~V \leq V_{DD} \leq 5.5~V$	0		0.8	>
		20-, 24-pin products: P10, P11	$3.3~V \leq V_{DD} < 4.0~V$	0		0.5	٧
		30-pin products: P01, P10, P11, P13 to P17	$1.8~\textrm{V} \leq \textrm{V}_\textrm{DD} < 3.3~\textrm{V}$	0		0.32	V
	V _{IL3}	P20 to P23		0		0.3V _{DD}	٧
	V _{IL4}	P60, P61		0		0.3V _{DD}	٧
	V _{IL5}	P121, P122, P125 ^{Note 1} , P137, I	EXCLK, RESET	0		0.2V _{DD}	٧
Output voltage, high	V _{OH1}	20-, 24-pin products: P00 to P03 ^{Note 2} , P10 to P14,	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -10.0 \text{ mA}$	V _{DD} -1.5			V
		P40 to P42 30-pin products:	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -3.0 \text{ mA}$	V _{DD} -0.7			V
	P31,	P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120,	$2.7~V \leq V_{DD} \leq 5.5~V,$ $I_{OH1} = -2.0~mA$	V _{DD} -0.6			V
		P147	$1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -1.5 \text{ mA}$	V _{DD} -0.5			V
	V _{OH2}	P20 to P23	Iон₂ = −100 μA	V _{DD} -0.5			V

Notes 1. 20, 24-pin products only.

2. 24-pin products only.

Caution The maximum value of V_{IH} of pins P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24-pin products, and P00, P10 to P15, P17, and P50 for 30-pin products is V_{DD} even in N-ch open-drain mode. High level is not output in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.3.2 Supply current characteristics

(1) 20-, 24-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit					
Supply	I _{DD1}	Operating	HS(High-speed	f⊩ = 24 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		1.5		mA					
current ^{Note 1}		mode	main) mode Note 4		operation	V _{DD} = 3.0 V		1.5							
					Normal	V _{DD} = 5.0 V		3.3	5.0	mA					
				operation	V _{DD} = 3.0 V		3.3	5.0							
				f⊩ = 16 MHz ^{Note 3}		V _{DD} = 5.0 V		2.5	3.7	mA					
				f O MILL_Note 3	V _{DD} = 3.0 V		2.5	3.7							
			LS(Low-speed	f⊩ = 8 MHz ^{Note 3}		V _{DD} = 3.0 V		1.2	1.8	mA					
			main) mode Note 4			V _{DD} = 2.0 V		1.2	1.8						
			HS(High-speed	. •		Square wave input		2.8	4.4	mA					
		n	main) mode Note4	main) mode Note4	$V_{DD} = 5.0 \text{ V}$		Resonator connection		3.0	4.6					
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$		Square wave input		2.8	4.4	mA					
				$V_{DD} = 3.0 \text{ V}$ $f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	$f_{MX} = 10 \text{ MHz}^{Note 2},$	$f_{MX} = 10 \text{ MHz}^{Note 2},$	$f_{MX} = 10 \text{ MHz}^{Note 2},$		Resonator connection		3.0	4.6	
										$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		1.8	2.6
				$V_{DD} = 5.0 \text{ V}$		Resonator connection		1.8	2.6						
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$		Square wave input		1.8	2.6	mA					
		$V_{DD} = 3.0 \text{ V}$ $LS(Low-speed f_{MX} = 8 \text{ MHz}^{Note 2},$	V _{DD} = 3.0 V		Resonator connection		1.8	2.6							
			LS(Low-speed	f _{MX} = 8 MHz ^{Note 2} ,		Square wave input		1.1	1.7	mA					
			main) mode Note 4	V _{DD} = 3.0 V		Resonator connection		1.1	1.7						
				f _{MX} = 8 MHz ^{Note 2} ,		Square wave input		1.1	1.7	mA					
				$V_{DD} = 2.0 \text{ V}$		Resonator connection		1.1	1.7						

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator clock is stopped.
 - 3. When high-speed system clock is stopped
 - **4.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode: $V_{DD} = 2.7 \text{ V to } 5.5 \text{ V } @ 1 \text{ MHz to } 24 \text{ MHz}$

 $V_{DD} = 2.4 \text{ V to } 5.5 \text{ V } @ 1 \text{ MHz to } 16 \text{ MHz}$

LS(Low speed main) mode: $V_{DD} = 1.8 \text{ V to } 5.5 \text{ V } @ 1 \text{ MHz to } 8 \text{ MHz}$

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fil: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25$ °C.

(2) 30-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/2)

			3 0.0 V, V33 =	/						(1/2		
Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit		
Supply	I _{DD1}	Operating	HS (High-speed	f _{IH} = 24 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		1.5		mA		
current Note 1		mode	main) mode Note 4		operation	V _{DD} = 3.0 V		1.5				
					Normal	V _{DD} = 5.0 V		3.7	5.5	mA		
					operation	V _{DD} = 3.0 V		3.7	5.5			
				f _{IH} = 16 MHz ^{Note 3}		V _{DD} = 5.0 V		2.7	4.0	mA		
				C A A L I Note 3		V _{DD} = 3.0 V		2.7	4.0			
			LS (Low-speed	f _{IH} = 8 MHz ^{Note 3}		V _{DD} = 3.0 V		1.2	1.8	mA		
		main) mode Note 4	main) mode Note 4	main) mode Note 4	main) mode Note 4			V _{DD} = 2.0 V		1.2	1.8	
			,	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$		Square wave input		3.0	4.6	mA		
		main) mode [№]		main) mode Note 4	$V_{DD} = 5.0 \text{ V}$		Resonator connection		3.2	4.8		
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$		Square wave input		3.0	4.6	mA		
				$V_{DD} = 3.0 \text{ V}$		Resonator connection		3.2	4.8			
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$		Square wave input		1.9	2.7	mA		
				$V_{DD} = 5.0 \text{ V}$		Resonator connection		1.9	2.7			
				$f_{MX} = 10 \text{ MHz}^{Note 2}$		Square wave input		1.9	2.7	mA		
		V _{DD} = 3.0 V	$V_{DD} = 3.0 \text{ V}$		Resonator connection		1.9	2.7				
			LS (Low-speed	$f_{MX} = 8 MHz^{Note 2}$		Square wave input		1.1	1.7	mA		
			main) mode Note 4	V _{DD} = 3.0 V		Resonator connection		1.1	1.7			
				$f_{MX} = 8 MHz^{Note 2}$		Square wave input		1.1	1.7	mA		
				$V_{DD} = 2.0 \text{ V}$		Resonator connection		1.1	1.7			

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator clock is stopped.
 - 3. When high-speed system clock is stopped
 - **4.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode: $V_{DD} = 2.7 \text{ V to } 5.5 \text{ V } @ 1 \text{ MHz to } 24 \text{ MHz}$

V_{DD} = 2.4 V to 5.5 V @1 MHz to 16 MHz

LS(Low speed main) mode: $V_{DD} = 1.8 \text{ V to } 5.5 \text{ V } @ 1 \text{ MHz to } 8 \text{ MHz}$

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25$ °C.

2.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{PDR} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection supply voltage	V _{LVD0}	Power supply rise time	3.98	4.06	4.14	٧
		Power supply fall time	3.90	3.98	4.06	٧
	V _{LVD1}	Power supply rise time	3.68	3.75	3.82	٧
		Power supply fall time	3.60	3.67	3.74	٧
	V _{LVD2}	Power supply rise time	3.07	3.13	3.19	٧
		Power supply fall time	3.00	3.06	3.12	٧
	V LVD3	Power supply rise time	2.96	3.02	3.08	٧
		Power supply fall time	2.90	2.96	3.02	٧
	V _{LVD4}	Power supply rise time	2.86	2.92	2.97	٧
		Power supply fall time	2.80	2.86	2.91	٧
	V _{LVD5}	Power supply rise time	2.76	2.81	2.87	٧
		Power supply fall time	2.70	2.75	2.81	٧
	V _{LVD6}	Power supply rise time	2.66	2.71	2.76	٧
		Power supply fall time	2.60	2.65	2.70	٧
	V LVD7	Power supply rise time	2.56	2.61	2.66	٧
		Power supply fall time	2.50	2.55	2.60	٧
	V _{LVD8}	Power supply rise time	2.45	2.50	2.55	٧
		Power supply fall time	2.40	2.45	2.50	٧
	V _{LVD9}	Power supply rise time	2.05	2.09	2.13	٧
		Power supply fall time	2.00	2.04	2.08	٧
	V _{LVD10}	Power supply rise time	1.94	1.98	2.02	٧
		Power supply fall time	1.90	1.94	1.98	٧
	V _{LVD11}	Power supply rise time	1.84	1.88	1.91	٧
		Power supply fall time	1.80	1.84	1.87	٧
Minimum pulse width	tLW		300			μS
Detection delay time					300	μS

<R>

<R>

<R> 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS $T_A = -40$ to +105°C)

- <R> This chapter describes the following electrical specifications.
 - Target products G: Industrial applications $T_A = -40 \text{ to } +105^{\circ}\text{C}$ R5F102xxGxx
 - **Cautions 1.** The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product.
 - 3. Please contact Renesas Electronics sales office for derating of operation under $T_A = +85^{\circ}C$ to $+105^{\circ}C$. Derating is the systematic reduction of load for the sake of improved reliability.

Remark When the RL78 microcontroller is used in the range of $T_A = -40$ to +85 °C, see CHAPTER 28 ELECTRICAL SPECIFICATIONS (A: $T_A = -40$ to +85 °C).

There are following differences between the products "G: Industrial applications ($T_A = -40 \text{ to } +105^{\circ}\text{C}$)" and the products "A: Consumer applications, and D: Industrial applications".

Parameter	Appli	cation
	A: Consumer applications, D: Industrial applications	G: Industrial applications
Operating ambient temperature	T _A = -40 to +85°C	T _A = -40 to +105°C
Operating mode	HS (high-speed main) mode:	HS (high-speed main) mode only:
Operating voltage range	$2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz to } 24 \text{ MHz}$	$2.7~V \le V_{DD} \le 5.5~V @ 1~MHz$ to $24~MHz$
	$2.4~V \le V_{DD} \le 5.5~V@1~MHz$ to $16~MHz$	$2.4~V \le V_{DD} \le 5.5~V @ 1~MHz$ to $16~MHz$
	LS (low-speed main) mode:	
	1.8 V ≤ V _{DD} ≤ 5.5 V@1 MHz to 8 MHz	
High-speed on-chip oscillator clock	R5F102 products, 1.8 V ≤ V _{DD} ≤ 5.5 V:	R5F102 products, 2.4 V \leq V _{DD} \leq 5.5 V:
accuracy	±1.0%@ T _A = -20 to +85°C	±2.0%@ T _A = +85 to +105°C
	±1.5%@ T _A = -40 to -20°C	±1.0%@ T _A = -20 to +85°C
	R5F103 products, 1.8 V ≤ V _{DD} ≤ 5.5 V:	±1.5%@ T _A = -40 to -20°C
	±5.0%@ T _A = -40 to +85°C	
Serial array unit	UART	UART
	CSI: fcLk/2 (supporting 12 Mbps), fcLk/4	CSI: fclk/4
	Simplified I ² C communication	Simplified I ² C communication
Voltage detector	Rise detection voltage: 1.88 V to 4.06 V	Rise detection voltage: 2.61 V to 4.06 V
	(12 levels)	(8 levels)
	Fall detection voltage: 1.84 V to 3.98 V	Fall detection voltage: 2.55 V to 3.98 V
	(12 levels)	(8 levels)

Remark The electrical characteristics of the products G: Industrial applications (T_A = -40 to +105°C) are different from those of the products "A: Consumer applications, and D: Industrial applications". For details, refer to **29.1** to **29.10**.

3.3 DC Characteristics

3.3.1 Pin characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/4)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42				-3.0 Note 2	mA
		30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147					
		20-, 24-pin products:	$4.0~V \leq V_{DD} \leq 5.5~V$			-9.0	mA
		Total of P40 to P42	$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$			-6.0	mA
		30-pin products: Total of P00, P01, P40, P120 (When duty ≤ 70% Note 3)	2.4 V ≤ V _{DD} < 2.7 V			-4.5	mA
		20-, 24-pin products:	$4.0~V \leq V_{DD} \leq 5.5~V$			-27.0	mA
		Total of P00 to P03 ^{Note 4} , P10 to P14	$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}$			-18.0	mA
		30-pin products: Total of P10 to P17, P30, P31, P50, P51, P147 (When duty ≤ 70% Note 3)	2.4 V ≤ V _{DD} < 2.7 V			-10.0	mA
		Total of all pins (When duty $\leq 70\%^{\text{Note 3}}$)				-36.0	mA
	І ОН2	Per pin for P20 to P23				-0.1	mA
		Total of all pins				-0.4	mA

- **Notes 1**. value of current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin.
 - 2. However, do not exceed the total current value.
 - 3. The output current value under conditions where the duty factor ≤ 70%.
 If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).
 - Total output current of pins = $(loh \times 0.7)/(n \times 0.01)$
 - <Example> Where n = 80% and IoH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

4. 24-pin products only.

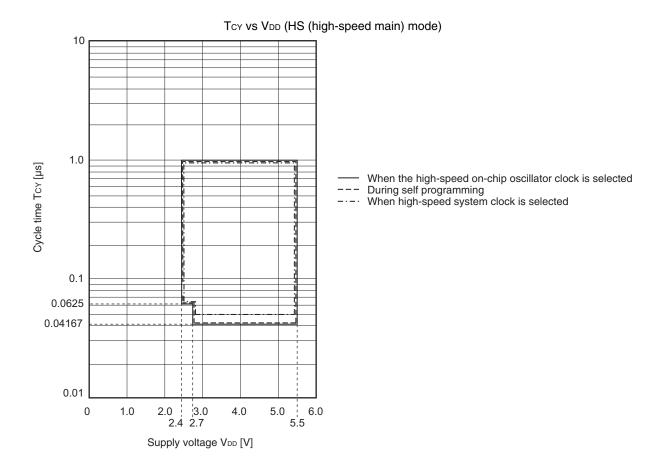
Caution P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24-pin products, and P00, P10 to P15, P17, and P50 for 30-pin products do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

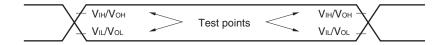
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(3/4)

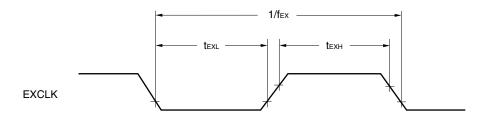
Parameter	Symbol	Condition	S	MIN.	TYP.	MAX.	Unit
Input voltage, high	V _{IH1}	Normal input buffer	<u>- </u>	0.8V _{DD}		V _{DD}	V
		20-, 24-pin products: P00 to P03 ^{Note 2} , P10 to P14, P40 to P42					
		30-pin products: P00, P01, P1 P40, P50, P51, P120, P147	0 to P17, P30, P31,				
	V _{IH2}	TTL input buffer	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	2.2		V _{DD}	٧
		20-, 24-pin products: P10, P11	$3.3 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}$	2.0		V _{DD}	٧
		30-pin products: P01, P10, P11, P13 to P17	2.4 V ≤ V _{DD} < 3.3 V	1.5		V _{DD}	V
	V _{IH3}	Normal input buffer P20 to P23		0.7V _{DD}		V _{DD}	V
	V _{IH4}	P60, P61	0.7V _{DD}		6.0	V	
	V _{IH5}	P121, P122, P125 ^{Note 1} , P137, I	0.8V _{DD}		V _{DD}	V	
Input voltage, low	V _{IL1}	Normal input buffer 20-, 24-pin products: P00 to P03 ^{Note 2} , P10 to P14, P40 to P42		0		0.2V _{DD}	V
		30-pin products: P00, P01, P10 P40, P50, P51, P120, P147) to P17, P30, P31,				
	V _{IL2}	TTL input buffer	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	0		0.8	٧
		20-, 24-pin products: P10, P11	$3.3 \text{ V} \leq \text{V}_{DD} < 4.0 \text{ V}$	0		0.5	٧
		30-pin products: P01, P10, P11, P13 to P17	2.4 V ≤ V _{DD} < 3.3 V	0		0.32	V
	V _{IL3}	P20 to P23		0		0.3V _{DD}	٧
	V _{IL4}	P60, P61		0		0.3V _{DD}	٧
	V _{IL5}	P121, P122, P125 ^{Note 1} , P137, I	EXCLK, RESET	0		0.2V _{DD}	V
Output voltage, high	V _{OH1}	20-, 24-pin products: P00 to P03 ^{Note 2} , P10 to P14,	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ Iон1 = -3.0 mA	V _{DD} -0.7			V
		P40 to P42 30-pin products:	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -2.0 \text{ mA}$	V _{DD} -0.6			V
		P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147	$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -1.5 \text{ mA}$	V _{DD} -0.5			V
	V _{OH2}	P20 to P23	Іон2 = -100 μΑ	V _{DD} -0.5			V

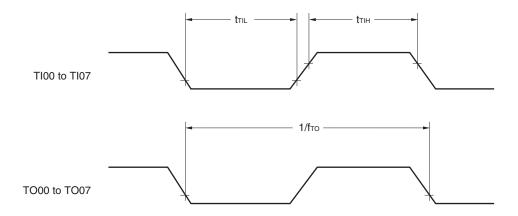

Notes 1. 20, 24-pin products only.

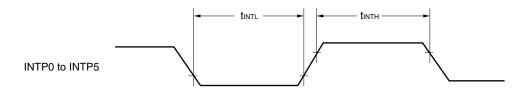
2. 24-pin products only.

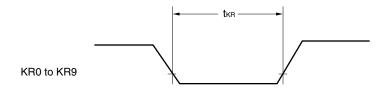

Caution The maximum value of V_{IH} of pins P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24-pin products, and P00, P10 to P15, P17, and P50 for 30-pin products is V_{DD} even in N-ch open-drain mode. High level is not output in the N-ch open-drain mode.

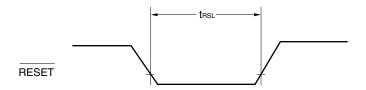
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.


Minimum Instruction Execution Time during Main System Clock Operation


AC Timing Test Point


External Main System Clock Timing

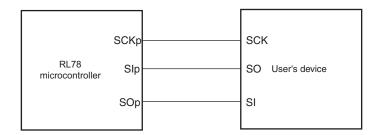

TI/TO Timing


Interrupt Request Input Timing

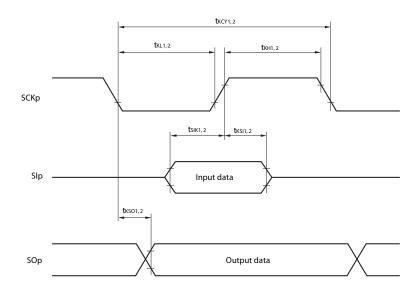
Key Interrupt Input Timing

RESET Input Timing

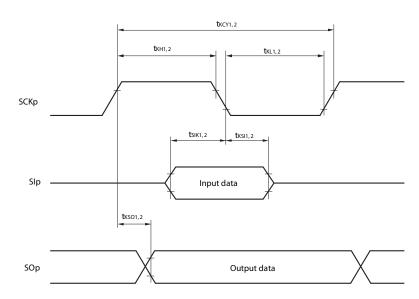
(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)


 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time Note4	tkcy2	$4.0~V \leq V_{DD} \leq 5.5~V$	20 MHz < fмск	16/fмск		ns
			fмcк ≤ 20 MHz	12/fмск		ns
		$2.7~V \leq V_{DD} \leq 5.5~V$	16 MHz < fмск	16/fмск		ns
			fмcк ≤ 16 MHz	12/fмск		ns
		$2.4~V \leq V_{DD} \leq 5.5~V$		12/fмск		ns
				and 1000		
SCKp high-/low-level width	tĸн2,	$4.0~V \leq V_{DD} \leq 5.5~V$		tксү2/2-14		ns
	t _{KL2}	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2–16		ns
		$2.4~V \leq V_{DD} \leq 5.5~V$		tксү2/2-36		ns
SIp setup time (to SCKp↑)	tsik2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск + 40		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск + 60		ns
Slp hold time (from SCKp [↑]) Note 2	t _{KSI2}			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output Note 3	tkso2	C = 30 pF Note4	$2.7~V \leq V_{DD} \leq 5.5~V$		2/fмcк + 66	ns
			$2.4~V \leq V_{DD} \leq 5.5~V$		2/fмcк + 113	ns


- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp and SCKp pins and the normal output mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).


CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3)

2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0,1), n: Channel number (n = 0, 1, 3))

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

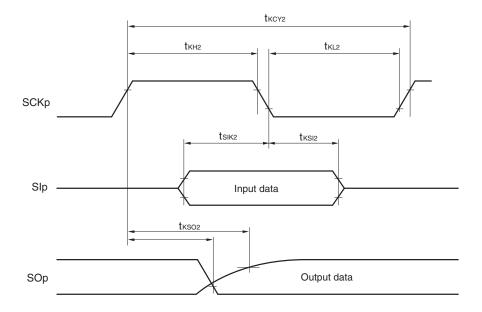
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter Symbol		Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
Transfer rate Note4	Reception	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V}$		fMCK/12 Note 1	bps	
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		2.0	Mbps
			$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$		fMCK/12 Note 1	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note \ 2}$		2.0	Mbps
Transmis		$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$		fMCK/12 Note 1	bps	
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note \ 2}$		2.0	Mbps	
	Transmission	n $4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{\text{D}} \le 4.0 \text{ V}$		Note 3	bps	
		Theoretical value of the maximum transfer rate $C_b = 50$ pF, $R_b = 1.4$ k Ω , $V_b = 2.7$ V		2.0 Note 4	Mbps	
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$		Note 5	bps	
		Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$		1.2 Note 6	Mbps	
		$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$		Notes 2, 7	bps	
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$		0.43 Note 8	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 5.5 V)


16 MHz (2.4 V
$$\leq$$
 V_{DD} \leq 5.5 V)

3. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq VDD \leq 5.5 V and 2.7 V \leq Vb \leq 4.0 V

$$\label{eq:maximum transfer rate} \text{Maximum transfer rate} = \frac{1}{\{-C_b \times R_b \times \text{ln } (1-\frac{2.2}{V_b})\} \times 3} \text{ [bps]}$$

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

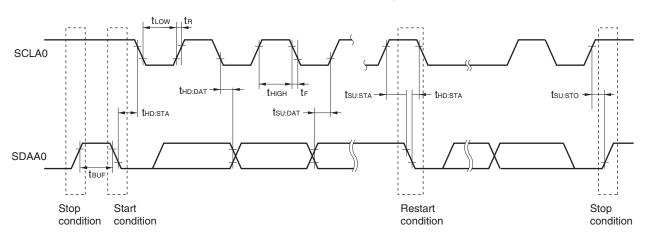
Remark p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

3.5.2 Serial interface IICA

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS	HS (high-speed main) mode			
			Standa	Standard Mode		Fast Mode	
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode: fclk≥ 3.5 MHz			0	400	kHz
		Normal mode: fclk≥ 1 MHz	0	100			kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μS
Hold time ^{Note 1}	thd:sta		4.0		0.6		μS
Hold time when SCLA0 = "L"	tLOW		4.7		1.3		μS
Hold time when SCLA0 = "H"	thigh		4.0		0.6		μS
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission) ^{Note 2}	thd:dat		0	3.45	0	0.9	μS
Setup time of stop condition	tsu:sto		4.0		0.6		μS
Bus-free time	t BUF		4.7		1.3		μS

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.


2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution Only in the 30-pin products, the values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IoH1, IoL1, VoH1, VoL1) must satisfy the values in the redirect destination.

Remark The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Normal mode: $C_b = 400 \text{ pF}, \text{ Rb} = 2.7 \text{ k}\Omega$ Fast mode: $C_b = 320 \text{ pF}, \text{ Rb} = 1.1 \text{ k}\Omega$

IICA serial transfer timing

<R>

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

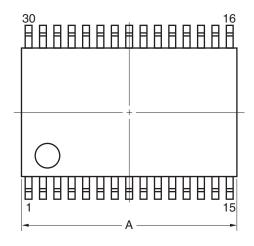
Input channel	Reference Voltage			
	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = VDD Reference voltage (-) = Vss	Reference voltage (+) = VBGR Reference voltage (-) = AVREFM	
ANI0 to ANI3	Refer to 29.6.1 (1) .	Refer to 29.6.1 (3).	Refer to 29.6.1 (4).	
ANI16 to ANI22	Refer to 29.6.1 (2).			
Internal reference voltage	Refer to 29.6.1 (1) .		=	
Temperature sensor output voltage				

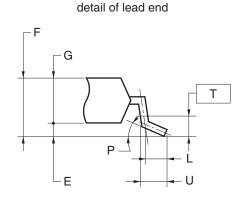
(1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI2, ANI3, internal reference voltage, and temperature sensor output voltage

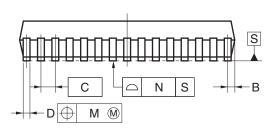
(TA = -40 to +105°C, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AVREFP = VDD Note 3			1.2	±3.5	LSB
Conversion time	tconv	10-bit resolution Target pin: ANI2, ANI3	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μS
			$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μS
		10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: Internal reference voltage, and	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μS
		temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution AVREFP = VDD Note 3				±0.25	%FSR
Full-scale error ^{Notes 1, 2}	EFS	10-bit resolution AV _{REFP} = V _{DD} Note 3				±0.25	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AVREFP = VDD Note 3				±2.5	LSB
Differential linearity error	DLE	10-bit resolution AV _{REFP} = V _{DD} Note 3				±1.5	LSB
Analog input voltage	Vain	ANI2, ANI3		0		AVREFP	V
	1	Internal reference voltage (HS (high-speed main) mode)			V _{BGR} Note 4		V
		Temperature sensor outp	· ·	VTMPS25 Note 4		V	

(Notes are listed on the next page.)

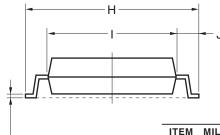



<R>


4.3 30-pin products

R5F102AAASP, R5F102A9ASP, R5F102A8ASP, R5F102A7ASP R5F103AAASP, R5F103A9ASP, R5F103A8ASP, R5F103A7ASP R5F102AADSP, R5F102A9DSP, R5F102A8DSP, R5F102A7DSP R5F103AADSP, R5F103A9DSP, R5F103A8DSP, R5F103A7DSP R5F102AAGSP, R5F102A9GSP, R5F102A8GSP, R5F102A7GSP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP30-0300-0.65	PLSP0030JB-B	S30MC-65-5A4-3	0.18



NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

Κ

ITEM	MILLIMETERS
Α	9.85±0.15
В	0.45 MAX.
С	0.65 (T.P.)
D	$0.24^{+0.08}_{-0.07}$
Е	0.1±0.05
F	1.3±0.1
G	1.2
Н	8.1±0.2
I	6.1±0.2
J	1.0±0.2
K	0.17±0.03
L	0.5
М	0.13
N	0.10
Р	3°+5°
Т	0.25
U	0.6±0.15

©2012 Renesas Electronics Corporation. All rights reserved.