

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	14
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10366asp-x5

Email: info@E-XFL.COM

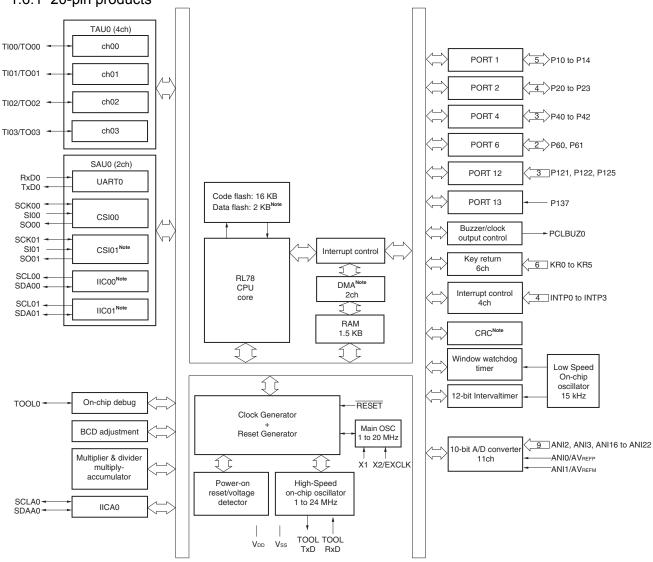
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RL78/G12 1. OUTLINE

Table 1-1. List of Ordering Part Numbers

Pin Package Data flash Part Number count Application R5F1026AASP#V5, R5F10269ASP#V5, R5F10268ASP#V5, R5F10267ASP#V5, 20 20-pin plastic Mounted < R> pins LSSOP R5F10266ASP#V5 R5F1026AASP#X5, R5F10269ASP#X5, R5F10268ASP#X5, R5F10267ASP#X5, $(4.4 \times 6.5 \text{ mm},$ 0.65 mm pitch) R5F10266ASP#X5 D R5F1026ADSP#V5, R5F10269DSP#V5, R5F10268DSP#V5, R5F10267DSP#V5, R5F10266DSP#V5 R5F1026ADSP#X5, R5F10269DSP#X5, R5F10268DSP#X5, R5F10267DSP#X5, R5F10266DSP#X5 G R5F1026AGSP#V5, R5F10269GSP#V5, R5F10268GSP#V5, R5F10267GSP#V5, R5F10266GSP#V5 R5F1026AGSP#X5, R5F10269GSP#X5, R5F10268GSP#X5, R5F10267GSP#X5, B5F10266GSP#X5 R5F1036AASP#V5, R5F10369ASP#V5, R5F10368ASP#V5, R5F10367ASP#V5, Not mounted R5F10366ASP#V5 R5F1036AASP#X5, R5F10369ASP#X5, R5F10368ASP#X5, R5F10367ASP#X5, R5F10366ASP#X5 D R5F1036ADSP#V5, R5F10369DSP#V5, R5F10368DSP#V5, R5F10367DSP#V5, R5F10366DSP#V5 R5F1036ADSP#X5, R5F10369DSP#X5, R5F10368DSP#X5, R5F10367DSP#X5, R5F10366DSP#X5 24 24-pin plastic Mounted R5F1027AANA#U5, R5F10279ANA#U5, R5F10278ANA#U5, R5F10277ANA#U5 Α <R> **HWQFN** pins R5F1027AANA#W5, R5F10279ANA#W5, R5F10278ANA#W5, $(4 \times 4 \text{ mm}, 0.5)$ R5F10277ANA#W5 mm pitch) D R5F1027ADNA#U5, R5F10279DNA#U5, R5F10278DNA#U5, R5F10277DNA#U5 R5F1027ADNA#W5, R5F10279DNA#W5, R5F10278DNA#W5, R5F10277DNA#W5 G R5F1027AGNA#U5, R5F10279GNA#U5, R5F10278GNA#U5, R5F10277GNA#U5 R5F1027AGNA#W5, R5F10279GNA#W5, R5F10278GNA#W5, R5F10277GNA#W5 Not mounted Α R5F1037AANA#V5, R5F10379ANA#V5, R5F10378ANA#V5, R5F10377ANA#V5 R5F1037AANA#X5, R5F10379ANA#X5, R5F10378ANA#X5, R5F10377ANA#X5 D R5F1037ADNA#V5, R5F10379DNA#V5, R5F10378DNA#V5, R5F10377DNA#V5 R5F1037ADNA#X5, R5F10379DNA#X5, R5F10378DNA#X5, R5F10377DNA#X5 R5F102AAASP#V0, R5F102A9ASP#V0, R5F102A8ASP#V0, R5F102A7ASP#V0 30 30-pin plastic Mounted Α LSSOP R5F102AAASP#X0, R5F102A9ASP#X0, R5F102A8ASP#X0, R5F102A7ASP#X0 pins (7.62 mm D R5F102AADSP#V0, R5F102A9DSP#V0, R5F102A8DSP#V0, R5F102A7DSP#V0 (300), 0.65 mm R5F102AADSP#X0, R5F102A9DSP#X0, R5F102A8DSP#X0, R5F102A7DSP#X0 pitch) G R5F102AAGSP#V0. R5F102A9GSP#V0. R5F102A8GSP#V0. R5F102A7GSP#V0 R5F102AAGSP#X0, R5F102A9GSP#X0, R5F102A8GSP#X0, R5F102A7GSP#X0 R5F103AAASP#V0, R5F103A9ASP#V0, R5F103A8ASP#V0, R5F103A7ASP#V0 Not mounted Α R5F103AAASP#X0, R5F103A9ASP#X0, R5F103A8ASP#X0, R5F103A7ASP#X0 R5F103AADSP#V0. R5F103A9DSP#V0. R5F103A8DSP#V0. R5F103A7DSP#V0 D R5F103AADSP#X0, R5F103A9DSP#X0, R5F103A8DSP#X0, R5F103A7DSP#X0

Note For fields of application, see Figure 1-1 Part Number, Memory Size, and Package of RL78/G12.


Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

RL78/G12 1. OUTLINE

1.6 Block Diagram

1.6.1 20-pin products

Note Provided only in the R5F102 products.

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbols		Conditions	Ratings	Unit
Supply Voltage	V _{DD}			-0.5 to + 6.5	V
REGC terminal input voltage ^{Note1}	VIREGC	REGC	REGC		V
Input Voltage	VII	Other than P60, F	P61	-0.3 to V _{DD} + 0.3 ^{Note 3}	V
	Vı2	P60, P61 (N-ch o	pen drain)	-0.3 to 6.5	V
Output Voltage	Vo			-0.3 to V _{DD} + 0.3 ^{Note 3}	V
Analog input voltage	Val	20-, 24-pin produc	cts: ANI0 to ANI3, ANI16 to ANI22	-0.3 to V _{DD} + 0.3	V
		30-pin products: A	ANIO to ANI3, ANI16 to ANI19	and -0.3 to AVREF(+)+0.3 Notes 3, 4	
Output current, high	І он1	Per pin	Other than P20 to P23	-40	mA
		Total of all pins	All the terminals other than P20 to P23	-170	mA
			20-, 24-pin products: P40 to P42	-70	mA
			30-pin products: P00, P01, P40, P120		
			20-, 24-pin products: P00 to P03 ^{Note 5} , P10 to P14 30-pin products: P10 to P17, P30, P31, P50, P51, P147	-100	mA
	І он2	Per pin	P20 to P23	-0.5	mA
		Total of all pins		-2	mA
Output current, low	lo _{L1}	Per pin	Other than P20 to P23	40	mA
		Total of all pins	All the terminals other than P20 to P23	170	mA
			20-, 24-pin products: P40 to P42 30-pin products: P00, P01, P40, P120	70	mA
			20-, 24-pin products: P00 to P03 ^{Note 5} , P10 to P14, P60, P61 30-pin products: P10 to P17, P30, P31, P50, P51, P60, P61, P147	100	mA
	lo _{L2}	Per pin	P20 to P23	1	mA
		Total of all pins		5	mA
Operating ambient temperature	Та			-40 to +85	°C
Storage temperature	T _{stg}			-65 to +150	°C

Notes 1. 30-pin product only.

- 2. Connect the REGC pin to V_{SS} via a capacitor (0.47 to 1 μ F). This value determines the absolute maximum rating of the REGC pin. Do not use it with voltage applied.
- 3. Must be 6.5 V or lower.
- 4. Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.
- 5. 24-pin products only.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remarks 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port

- **2.** AVREF(+): + side reference voltage of the A/D converter.
- 3. Vss: Reference voltage

(3) Peripheral functions (Common to all products)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed onchip oscillator operating current	FIL Note 1				0.20		μΑ
12-bit interval timer operating current	ÎTMKA Notes 1, 2, 3				0.02		μΑ
Watchdog timer operating current	WDT Notes 1, 2, 4	fıL = 15 kHz			0.22		μΑ
A/D converter	IADC Notes 1, 5	When conversion at	Normal mode, AVREFP = VDD = 5.0 V		1.30	1.70	mA
operating current		maximum speed	Low voltage mode, AV _{REFP} = V _{DD} = 3.0 V		0.50	0.70	mA
A/D converter reference voltage operating current	ADREF Note 1				75.0		μΑ
Temperature sensor operating current	ITMPS Note 1				75.0		μА
LVD operating current	ILVD Notes 1, 6				0.08		μΑ
Self- programming operating current	FSP Notes 1, 8				2.00	12.20	mA
BGO operating current	IBGO Notes 1, 7				2.00	12.20	mA
SNOOZE	ISNOZ Note 1	ADC operation	The mode is performed Note 9		0.50	0.60	mA
operating current			The A/D conversion operations are performed, Low voltage mode, AVREFP = VDD = 3.0 V		1.20	1.44	mA
		CSI/UART operation			0.70	0.84	mA

Notes 1. Current flowing to the V_{DD} .

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and IFIL and ITMKA when the 12-bit interval timer operates.
- 4. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.
- **5.** Current flowing only to the A/D converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- **6.** Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit operates.
- 7. Current flowing only during data flash rewrite.
- 8. Current flowing only during self programming.
- 9. For shift time to the SNOOZE mode, see 17.3.3 SNOOZE mode.

Remarks 1. fil: Low-speed on-chip oscillator clock frequency

2. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

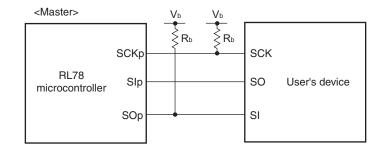
(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Cond	ditions	HS (high main) l	•	, ,	peed main) ode	Unit	
				MIN.	MAX.	MIN.	MAX.		
SCKp cycle time Note4	tkcy2	$4.0~V \leq V_{DD} \leq 5.5~V$	20 MHz < fмск	8/fмск		-		ns	
			fмcк≤20 MHz	6/fмск		6/fмск		ns	
		$2.7~V \leq V_{DD} \leq 5.5~V$	16 MHz < fмск	8/fмск		_		ns	
			fмcк ≤ 16 MHz	6/fмск		6/fмск		ns	
		$2.4~V \leq V_{DD} \leq 5.5~V$		6/fмск		6/fмск		ns	
				and 500		and 500			
		1.8 V ≤ V _{DD} ≤ 5.5 V		-		6/fмск		ns	
						and 750			
SCKp high-/low-level	tĸн2,	$4.0~V \leq V_{DD} \leq 5.5~V$		tксү2/2-7		tксү2/2-7		ns	
width	t _{KL2}	$2.7~V \leq V_{DD} \leq 5.5~V$		tксү2/2-8		tксу2/2-8		ns	
		$2.4~V \leq V_{DD} \leq 5.5~V$		tксу2/2-18		tксу2/2-18		ns	
		1.8 V ≤ V _{DD} ≤ 5.5 V		-		tkcy2/2-18		ns	
SIp setup time	tsık2	$2.7~V \leq V_{DD} \leq 5.5~V$		1/fмск +		1/fмск +		ns	
(to SCKp↑) Note 1				20		30			
		$2.4~V \leq V_{DD} \leq 5.5~V$		1/fмск +		1/fмск +		ns	
				30		30			
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		_		1/fмск + 30		ns	
SIp hold time	tksi2			1/f _{MCK} +		1/fмск +		ns	
(from SCKp↑) Note 2			T	31		31			
Delay time from SCKp↓ to	tkso2	C = 30 pF Note4	$2.7~V \leq V_{DD} \leq 5.5~V$		2/fмск + 44		2/fмск + 110	ns	
SOp output Note 3			$2.4~V \leq V_{DD} \leq 5.5~V$		2/fмск + 75		2/fмск + 110	ns	
			1.8 V ≤ V _{DD} ≤ 5.5 V		=		2/fмск + 110	ns	

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp and SCKp pins and the normal output mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).


(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	, ,	HS (high-speed main) Mode		LS (low-speed main) Mode	
			MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) Note 1	tsıĸı	$ 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, $ $ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega $	44		110		ns
		$ 2.7 \; V \leq V_{DD} < 4.0 \; V, 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega $	44		110		ns
		$1.8~V \leq V_{DD} < 3.3~V, \ 1.6~V \leq V_b \leq 2.0~V^{\text{Note 2}},$ $C_b = 30~pF, \ R_b = 5.5~k\Omega$			110		ns
SIp hold time (from SCKp↓) Note 1	tksii	$ 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, $ $ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega $	19		19		ns
		$ 2.7 \; V \leq V_{DD} < 4.0 \; V, 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega $	19		19		ns
		$\begin{split} 1.8 \ V & \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ C_b & = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$	19		19		ns
Delay time from SCKp↑ to	tkso1	$ 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, $ $ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega $		25		25	ns
SOp output Note 1		$ 2.7 \; V \leq V_{DD} < 4.0 \; V, 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega $		25		25	ns
		$\begin{split} 1.8 \ V & \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ C_b & = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$		25		25	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. Use it with $V_{DD} \ge V_b$.
- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.
- **Remarks 1.** R_b [Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b [F]: Communication line (SCKp, SOp) load capacitance, V_b [V]: Communication line voltage
 - 2. p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

CSI mode connection diagram (during communication at different potential)

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	ymbol Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode	
			MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$ 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, $ $ C_b = 100 \ pF, \ R_b = 2.8 \ k\Omega $		400 ^{Note1}		300 ^{Note1}	kHz
		$ 2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, $ $ C_{\text{b}} = 100 \text{ pF}, \ R_{\text{b}} = 2.7 \text{ k}\Omega $		400 ^{Note1}		300 ^{Note1}	kHz
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}, \\ C_{\text{b}} = 100 \text{ pF}, \ R_{\text{b}} = 5.5 \text{ k}\Omega$		300 ^{Note1}		300 ^{Note1}	kHz
Hold time when SCLr = "L"	tLOW	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, R_{\text{b}} = 2.8 \text{ k}\Omega$	1150		1550		ns
		$ 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, $ $ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega $	1150		1550		ns
			1550		1550		ns
Hold time when SCLr = "H"	tнідн	$4.0~V \leq V_{DD} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$ $C_b = 100~pF,~R_b = 2.8~k\Omega$	675		610		ns
		$ 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, $ $ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega $	600		610		ns
		$ \begin{aligned} &1.8 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}, \end{aligned}^{\text{Note2}} \\ &C_{\text{b}} = 100 \text{ pF}, \ R_{\text{b}} = 5.5 \text{ k}\Omega \end{aligned} $	610		610		ns
Data setup time (reception)	tsu:dat	$4.0~V \leq V_{DD} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$ $C_b = 100~pF,~R_b = 2.8~k\Omega$	1/fmck + 190 Note3		1/f _{MCK} + 190 _{Note3}		ns
		$2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V,$ $C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega$	1/fmck + 190 Note3		1/fмск + 190 _{Note3}		ns
		$1.8~V \leq V_{DD} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V, \label{eq:vb}$ $C_b = 100~pF,~R_b = 5.5~k\Omega$	1/fмск + 190 Note3		1/f _{MCK} + 190 _{Note3}		ns
Data hold time (transmission)	thd:dat	$4.0~V \leq V_{DD} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$ $C_b = 100~pF,~R_b = 2.8~k\Omega$	0	355	0	355	ns
		$ 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, $ $ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega $	0	355	0	355	ns
		$ \begin{aligned} &1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V, \end{aligned} $ $ &C_{b} = 100 \ pF, \ R_{b} = 5.5 \ k\Omega $	0	405	0	405	ns

- Notes 1. The value must also be equal to or less than fmck/4.
 - 2. Use it with $V_{DD} \ge V_b$.
 - 3. Set tsu:DAT so that it will not exceed the hold time when SCLr = "L" or SCLr = "H".
- Cautions 1. Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
 - 2. IIC01 and IIC11 cannot communicate at different potential.

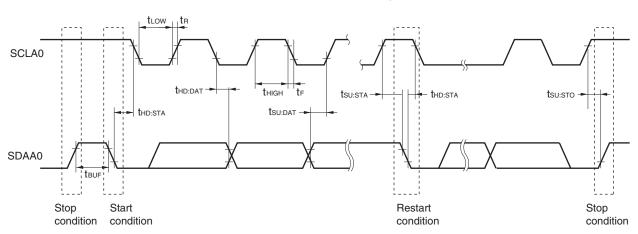
(Remarks are listed on the next page.)

2.5.2 Serial interface IICA

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS	HS (high-speed main) mode			Unit
			LS	(low-spee	d main) m		
			Standa	rd Mode	Fast	Mode	
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode: fclk≥ 3.5 MHz			0	400	kHz
		Normal mode: fclk≥ 1 MHz	0	100			kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μS
Hold time ^{Note 1}	thd:sta		4.0		0.6		μS
Hold time when SCLA0 = "L"	tLOW		4.7		1.3		μS
Hold time when SCLA0 = "H"	tніgн		4.0		0.6		μS
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission) ^{Note 2}	thd:dat		0	3.45	0	0.9	μS
Setup time of stop condition	tsu:sto		4.0		0.6		μS
Bus-free time	tBUF		4.7		1.3		μS

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.


2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution Only in the 30-pin products, the values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IoH1, IoL1, VoH1, VoL1) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Normal mode: C_b = 400 pF, Rb = 2.7 k Ω Fast mode: C_b = 320 pF, Rb = 1.1 k Ω

IICA serial transfer timing

<R>

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Input channel		Reference Voltage							
	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = VDD Reference voltage (-) = Vss	Reference voltage (+) = VBGR Reference voltage (-) = AVREFM						
ANI0 to ANI3	Refer to 28.6.1 (1).	Refer to 28.6.1 (3).	Refer to 28.6.1 (4).						
ANI16 to ANI22	Refer to 28.6.1 (2).								
Internal reference voltage	Refer to 28.6.1 (1).		-						
Temperature sensor output voltage									

(1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI2, ANI3, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +85°C, 1.8 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution			1.2	±3.5	LSB
		$AV_{REFP} = V_{DD}^{Note 3}$			1.2	±7.0 Note 4	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI2, ANI3	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
			$1.8~V \leq V_{DD} \leq 5.5~V$	17		39	μS
		10-bit resolution		57		95	μS
			$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: Internal	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μS
		reference voltage, and temperature sensor	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μS
		output voltage (HS (high-speed main) mode)					
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution				±0.25	%FSR
		AVREFP = VDD Note 3				$\pm 0.50^{\text{Note 4}}$	%FSR
Full-scale errorNotes 1, 2	EFS	10-bit resolution				±0.25	%FSR
		AVREFP = VDD Note 3				$\pm 0.50^{\text{Note 4}}$	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution				±2.5	LSB
		AVREFP = VDD Note 3				±5.0 Note 4	LSB
Differential linearity error	DLE	10-bit resolution				±1.5	LSB
Note 1		AVREFP = VDD Note 3				±2.0 Note 4	LSB
Analog input voltage	VAIN	ANI2, ANI3		0		AVREFP	V
		Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, HS	e (high-speed main) mode)		VBGR Note 5		V
		Temperature sensor outp (2.4 V \leq VDD \leq 5.5 V, HS	out voltage (high-speed main) mode)		VTMPS25 Note !	5	V

(Notes are listed on the next page.)

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - **3.** When $AV_{REFP} < V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.05\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AVREFP = VDD.

- **4.** Values when the conversion time is set to 57 μ s (min.) and 95 μ s (max.).
- 5. Refer to 28.6.2 Temperature sensor/internal reference voltage characteristics.

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI22

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error Note 1	AINL	10-bit resolution			1.2	±5.0	LSB
		AVREFP = VDD Note 3			1.2	±8.5 Note 4	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μS
		Target ANI pin: ANI16 to ANI22	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
			$1.8~V \leq V_{DD} \leq 5.5~V$	17		39	μS
				57		95	μS
Zero-scale error Notes 1, 2	EZS	10-bit resolution				±0.35	%FSR
		AVREFP = VDD Note 3				±0.60 Note 4	%FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution				±0.35	%FSR
		AVREFP = VDD Note 3				±0.60 Note 4	%FSR
Integral linearity error Note 1	ILE	10-bit resolution				±3.5	LSB
		AVREFP = VDD Note 3				±6.0 Note 4	LSB
Differential linearity	DLE	10-bit resolution	10-bit resolution			±2.0	LSB
error ^{Note 1}		AVREFP = VDD Note 3				±2.5 Note 4	LSB
Analog input voltage	VAIN	ANI16 to ANI22		0		AVREFP and VDD	V

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - **3.** When $AV_{REFP} \leq V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 4.0 LSB to the MAX, value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.20\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AVREFP = VDD.

4. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM (ADREFM = 1), target pin: ANI0, ANI2, ANI3, and ANI16 to ANI22

(Ta = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = VBGR Note 3, Reference voltage (-) = AVREFM Note 4 = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		bit
Conversion time	tconv	8-bit resolution	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	8-bit resolution			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution			±1.0	LSB
Analog input voltage	VAIN		0		VBGR Note 3	V

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - 3. Refer to 28.6.2 Temperature sensor/internal reference voltage characteristics.
 - **4.** When reference voltage (–) = Vss, the MAX. values are as follows.

Zero-scale error: Add ±0.35%FSR to the MAX. value when reference voltage (-) = AVREFM.

Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (–) = AVREFM.

Differential linearity error: Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

(2/4)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	lo _{L1}	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42 30-pin products:				8.5 Note 2	mA
		Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147					
		Per pin for P60, P61				15.0 Note 2	mA
		20-, 24-pin products: Total of P40 to P42 30-pin products: Total of P00, P01, P40, P120 (When duty ≤ 70% Note 3)	$4.0~V \leq V_{DD} \leq 5.5~V$			25.5	mA
			$2.7~V \leq V_{DD} < 4.0~V$			9.0	mA
			2.4 V ≤ V _{DD} < 2.7 V			1.8	mA
		20-, 24-pin products: Total of P00 to P03 ^{Note 4} ,	$4.0~V \leq V_{DD} \leq 5.5~V$			40.0	mA
			$2.7~V \leq V_{DD} < 4.0~V$			27.0	mA
		P10 to P14, P60, P61 30-pin products: Total of P10 to P17, P30, P31, P50, P51, P60, P61, P147 (When duty ≤ 70% Note 3)	2.4 V ≤ V _{DD} < 2.7 V			5.4	mA
		Total of all pins (When duty ≤ 70% Note 3)				65.5	mA
	lol2	Per pin for P20 to P23				0.4	mA
		Total of all pins				1.6	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.
 - 2. However, do not exceed the total current value.
 - 3. The output current value under conditions where the duty factor \leq 70%.

If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).

- Total output current of pins = $(IoL \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

4. 24-pin products only.

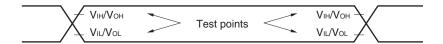
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(1) 20-, 24-pin products

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2 Note 2	HALT	HS (High-speed	f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		440	2230	μА
current ^{Note 1}	eurrent ^{Note 1} mo	mode	main) mode ^{Note 6}	n) mode ^{Note 6}	V _{DD} = 3.0 V		440	2230	
				f _{IH} = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		400	1650	μА
					V _{DD} = 3.0 V		400	1650	
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		280	1900	μA
				V _{DD} = 5.0 V	Resonator connection		450	2000	
			$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		280	1900	μA	
				V _{DD} = 3.0 V	Resonator connection		450	2000	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		190	1010	μА
			V _{DD} = 5.0 V	Resonator connection		260	1090		
				fmx = 10 MHz ^{Note 3} ,	Square wave input		190	1010	μA
				V _{DD} = 3.0 V	Resonator connection		260	1090	
	I _{DD3} Note 5	STOP	T _A = -40°C				0.19	0.50	μA
	mode -	T _A = +25°C				0.24	0.50		
			$T_A = +50^{\circ}C$ $T_A = +70^{\circ}C$ $T_A = +85^{\circ}C$				0.32	0.80	
							0.48	1.20	
							0.74	2.20	
			T _A = +105°C				1.50	10.20	


- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator clock is stopped.
 - 4. When high-speed system clock is stopped.
 - 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **6.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS (High speed main) mode: $V_{DD} = 2.7 \text{ V to } 5.5 \text{ V}$ @1 MHz to 24 MHz $V_{DD} = 2.4 \text{ V to } 5.5 \text{ V}$ @1 MHz to 16 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except temperature condition of the TYP. value is $T_A = 25$ °C, other than STOP mode

3.5 Peripheral Functions Characteristics

AC Timing Test Point

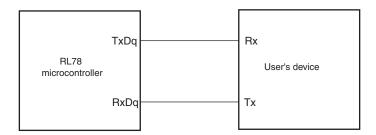
3.5.1 Serial array unit

(1) During communication at same potential (UART mode)

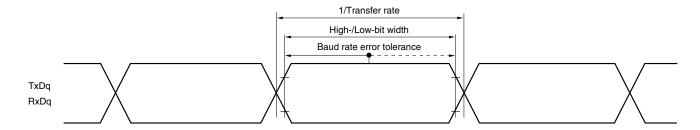
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

	1	1	,	ı		
Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
Transfer rate					fмск/12	bps
Note 1			Theoretical value of the maximum transfer rate $f_{CLK} = f_{MCK}^{Note2}$		2.0	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.


2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 5.5 V)


16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 2), g: PIM, POM number (g = 0, 1)

2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter Symbol	Conditions		HS (high-speed main) Mode		Unit	
			MIN.	MAX.		
Transfer rate Note4		Reception	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V}$		fMCK/12 Note 1	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		2.0	Mbps
			$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$		fMCK/12 Note 1	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note \ 2}$		2.0	Mbps
		$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$		fMCK/12 Note 1	bps	
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note \ 2}$		2.0	Mbps
		Transmission	$4.0 \text{ V} \le V_{DD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le V_b \le 4.0 \text{ V}$		Note 3	bps
		Theoretical value of the maximum transfer rate $C_b = 50$ pF, $R_b = 1.4$ k Ω , $V_b = 2.7$ V		2.0 Note 4	Mbps	
			$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$		Note 5	bps
		Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$		1.2 Note 6	Mbps	
			$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$		Notes 2, 7	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$		0.43 Note 8	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 5.5 V)

16 MHz (2.4 V
$$\leq$$
 V_{DD} \leq 5.5 V)

3. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq VDD \leq 5.5 V and 2.7 V \leq Vb \leq 4.0 V

$$\label{eq:maximum transfer rate} \text{Maximum transfer rate} = \frac{1}{\{-C_b \times R_b \times \text{ln } (1-\frac{2.2}{V_b})\} \times 3} \text{ [bps]}$$

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 3** above to calculate the maximum transfer rate under conditions of the customer.
- 5. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq V_{DD} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

$$\label{eq:maximum transfer rate} \text{Maximum transfer rate} = \frac{1}{\{-C_b \times R_b \times \ln{(1-\frac{2.0}{V_b})}\} \times 3} \text{ [bps]}$$

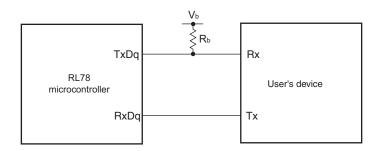
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\}}{\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **6.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 5** above to calculate the maximum transfer rate under conditions of the customer.
- 7. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

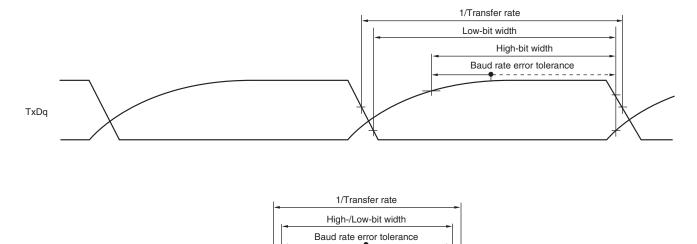
Expression for calculating the transfer rate when 2.4 V \leq VDD < 3.3 V, 1.6 V \leq Vb \leq 2.0 V

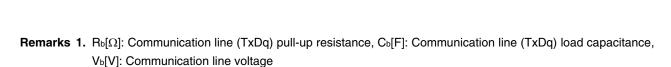
Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$


- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **8.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 7** above to calculate the maximum transfer rate under conditions of the customer.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.




RxDq

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- 2. q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)
- 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 - m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))
- **4.** UART0 of the 20- and 24-pin products supports communication at different potential only when the peripheral I/O redirection function is not used.

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - **3.** When $AV_{REFP} < V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.05\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.

4. Refer to 29.6.2 Temperature sensor/internal reference voltage characteristics.

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI22

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Conditio	ons	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution AV _{REFP} = V _{DD} Note 3			1.2	±5.0	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μS
		Target ANI pin: ANI16 to ANI22	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μS
Zero-scale error Notes 1, 2	EZS	10-bit resolution AVREFP = VDD Note 3				±0.35	%FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution AV _{REFP} = V _{DD} Note 3				±0.35	%FSR
Integral linearity error Note 1	ILE	10-bit resolution $AV_{REFP} = V_{DD}^{Note \ 3}$				±3.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution AVREFP = VDD Note 3				±2.0	LSB
Analog input voltage	Vain	ANI16 to ANI22		0		AV _{REFP}	V

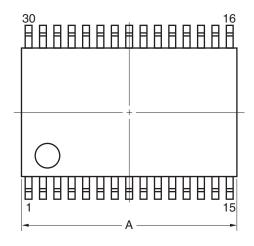
Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

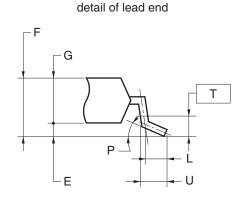
- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- **3.** When $AV_{REFP} \leq V_{DD}$, the MAX. values are as follows.

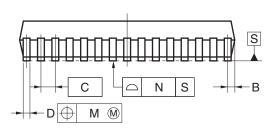
Overall error: Add ± 4.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.20\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AVREFP = VDD.

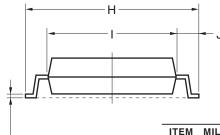



<R>


4.3 30-pin products

R5F102AAASP, R5F102A9ASP, R5F102A8ASP, R5F102A7ASP R5F103AAASP, R5F103A9ASP, R5F103A8ASP, R5F103A7ASP R5F102AADSP, R5F102A9DSP, R5F102A8DSP, R5F102A7DSP R5F103AADSP, R5F103A9DSP, R5F103A8DSP, R5F103A7DSP R5F102AAGSP, R5F102A9GSP, R5F102A8GSP, R5F102A7GSP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP30-0300-0.65	PLSP0030JB-B	S30MC-65-5A4-3	0.18



NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

Κ

ITEM	MILLIMETERS
Α	9.85±0.15
В	0.45 MAX.
С	0.65 (T.P.)
D	$0.24^{+0.08}_{-0.07}$
Е	0.1±0.05
F	1.3±0.1
G	1.2
Н	8.1±0.2
I	6.1±0.2
J	1.0±0.2
K	0.17±0.03
L	0.5
М	0.13
N	0.10
Р	3°+5°
Т	0.25
U	0.6±0.15

©2012 Renesas Electronics Corporation. All rights reserved.

			Description
Rev.	Date	Page	Summary
2.00	Sep 06, 2013	55	Modification of description and Notes 3 and 4 in 2.6.1 (3)
		56	Modification of description and Notes 3 and 4 in 2.6.1 (4)
		57	Modification of table in 2.6.2 Temperature sensor/internal reference voltage characteristics
		57	Modification of table and Note in 2.6.3 POR circuit characteristics
		58	Modification of table in 2.6.4 LVD circuit characteristics
		59	Modification of table of LVD detection voltage of interrupt & reset mode
		59	Modification of number and title to 2.6.5 Power supply voltage rising slope characteristics
		61	Modification of table, figure, and Remark in 2.10 Timing of Entry to Flash Memory
			Programming Modes
		62 to 103	Addition of products of industrial applications (G: T _A = -40 to +105°C)
		104 to 106	Addition of products of industrial applications (G: $TA = -40 \text{ to } +105^{\circ}\text{C}$)
2.10	Mar 25, 2016	6	Modification of Figure 1-1 Part Number, Memory Size, and Package of RL78/G12
		7	Modification of Table 1-1 List of Ordering Part Numbers
		8	Addition of product name (RL78/G12) and description (Top View) in 1.4.1 20-pin products
		9	Addition of product name (RL78/G12) and description (Top View) in 1.4.2 24-pin products
		10	Addition of product name (RL78/G12) and description (Top View) in 1.4.3 30-pin products
		15	Modification of description in 1.7 Outline of Functions
		16	Modification of description, and addition of target products
		52	Modification of note 2 in 2.5.2 Serial interface IICA
		60	Modification of title and note, and addition of caution in 2.7 RAM Data Retention Characteristics
		60	Modification of conditions in 2.8 Flash Memory Programming Characteristics
		62	Modification of description, and addition of target products and remark
		94	Modification of note 2 in 3.5.2 Serial interface IICA
		102	Modification of title and note in 3.7 RAM Data Retention Characteristics
		102	Modification of conditions in 3.8 Flash Memory Programming Characteristics
		104 to 106	Addition of package name

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.