



Welcome to **E-XFL.COM** 

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

| Details                    |                                                                                 |
|----------------------------|---------------------------------------------------------------------------------|
| Product Status             | Obsolete                                                                        |
| Core Processor             | RL78                                                                            |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 24MHz                                                                           |
| Connectivity               | CSI, I <sup>2</sup> C, UART/USART                                               |
| Peripherals                | LVD, POR, PWM, WDT                                                              |
| Number of I/O              | 14                                                                              |
| Program Memory Size        | 4KB (4K x 8)                                                                    |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | -                                                                               |
| RAM Size                   | 512 x 8                                                                         |
| /oltage - Supply (Vcc/Vdd) | 1.8V ~ 5.5V                                                                     |
| Data Converters            | A/D 11x8/10b                                                                    |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 20-LSSOP (0.173", 4.40mm Width)                                                 |
| Supplier Device Package    | 20-LSSOP                                                                        |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10367asp-x5 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RL78/G12 1. OUTLINE

#### 1.3 Differences between the R5F102 Products and the R5F103 Products

The following are differences between the R5F102 products and the R5F103 products.

- O Whether the data flash memory is mounted or not
- O High-speed on-chip oscillator oscillation frequency accuracy
- O Number of channels in serial interface
- O Whether the DMA function is mounted or not
- O Whether a part of the safety functions are mounted or not

#### 1.3.1 Data Flash

The data flash memory of 2 KB is mounted on the R5F102 products, but not on the R5F103 products.

| Product                       | Data Flash  |
|-------------------------------|-------------|
| R5F102 products               | 2KB         |
| R5F1026A, R5F1027A, R5F102AA, |             |
| R5F10269, R5F10279, R5F102A9, |             |
| R5F10268, R5F10278, R5F102A8, |             |
| R5F10267, R5F10277, R5F102A7, |             |
| R5F10266 Note                 |             |
| R5F103 products               | Not mounted |
| R5F1036A, R5F1037A, R5F103AA, |             |
| R5F10369, R5F10379, R5F103A9, |             |
| R5F10368, R5F10378 R5F103A8,  |             |
| R5F10367, R5F10377, R5F103A7, |             |
| R5F10366                      |             |

**Note** The RAM in the R5F10266 has capacity as small as 256 bytes. Depending on the customer's program specification, the stack area to execute the data flash library may not be kept and data may not be written to or erased from the data flash memory.

**Caution** When the flash memory is rewritten via a user program, the code flash area and RAM area are used because each library is used. When using the library, refer to RL78 Family Flash Self Programming Library Type01 User's Manual and RL78 Family Data Flash Library Type04 User's Manual.

RL78/G12 1. OUTLINE

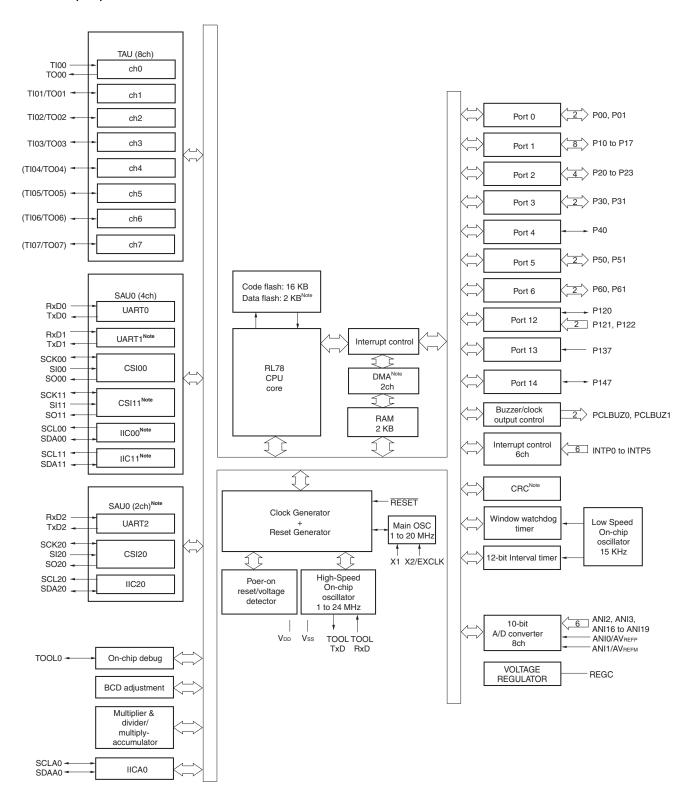
# 1.3.2 On-chip oscillator characteristics

(1) High-speed on-chip oscillator oscillation frequency of the R5F102 products

| Oscillator             | Condition                       | MIN  | MAX  | Unit |
|------------------------|---------------------------------|------|------|------|
| High-speed on-chip     | T <sub>A</sub> = -20 to +85 °C  | -1.0 | +1.0 | %    |
| oscillator oscillation | T <sub>A</sub> = -40 to -20 °C  | -1.5 | +1.5 |      |
| frequency accuracy     | T <sub>A</sub> = +85 to +105 °C | -2.0 | +2.0 |      |

(2) High-speed on-chip oscillator oscillation frequency of the R5F103 products

| Oscillator             | Condition                                     | MIN  | MAX  | Unit |
|------------------------|-----------------------------------------------|------|------|------|
| High-speed on-chip     | $T_A = -40 \text{ to} + 85  ^{\circ}\text{C}$ | -5.0 | +5.0 | %    |
| oscillator oscillation |                                               |      |      |      |
| frequency accuracy     |                                               |      |      |      |


# 1.3.3 Peripheral Functions

The following are differences in peripheral functions between the R5F102 products and the R5F103 products.

|                  |                             | R5F102         | 2 product  | R5F103 product |         |  |  |
|------------------|-----------------------------|----------------|------------|----------------|---------|--|--|
| RL78/G12         | 20, 24 pin                  | 30 pin product | 20, 24 pin | 30 pin         |         |  |  |
|                  |                             | product        |            | product        | product |  |  |
| Serial interface | UART                        | 1 channel      | 3 channels | 1 channel      |         |  |  |
|                  | CSI                         | 2 channels     | 3 channels | 1 channel      | nnel    |  |  |
|                  | Simplified I <sup>2</sup> C | 2 channels     | 3 channels | None           |         |  |  |
| DMA function     |                             | 2 channels     |            | None           |         |  |  |
| Safety function  | CRC operation               | Yes            |            | None           |         |  |  |
|                  | RAM guard                   | Yes            |            | None           |         |  |  |
|                  | SFR guard                   | Yes            |            | None           |         |  |  |

RL78/G12 1. OUTLINE

## 1.6.3 30-pin products



Note Provided only in the R5F102 products.

**Remark** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See **Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR)**.

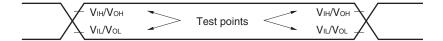
#### (2) 30-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$ 

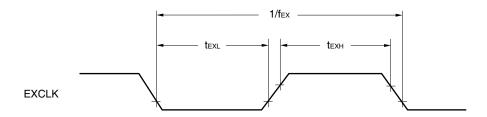
(1/2)

|                |                              |           | 3 0.0 V, V33 =                                         | /                                          |                      |                         |      |      |      | (1/2 |
|----------------|------------------------------|-----------|--------------------------------------------------------|--------------------------------------------|----------------------|-------------------------|------|------|------|------|
| Parameter      | Symbol                       |           |                                                        | Conditions                                 |                      |                         | MIN. | TYP. | MAX. | Unit |
| Supply         | I <sub>DD1</sub>             | Operating | HS (High-speed                                         | f <sub>IH</sub> = 24 MHz <sup>Note 3</sup> | Basic                | V <sub>DD</sub> = 5.0 V |      | 1.5  |      | mA   |
| current Note 1 |                              | mode      | main) mode Note 4                                      |                                            | operation            | V <sub>DD</sub> = 3.0 V |      | 1.5  |      |      |
|                |                              |           |                                                        |                                            | Normal               | V <sub>DD</sub> = 5.0 V |      | 3.7  | 5.5  | mA   |
|                |                              |           |                                                        |                                            | operation            | V <sub>DD</sub> = 3.0 V |      | 3.7  | 5.5  |      |
|                |                              |           |                                                        | f <sub>IH</sub> = 16 MHz <sup>Note 3</sup> |                      | V <sub>DD</sub> = 5.0 V |      | 2.7  | 4.0  | mA   |
|                |                              |           |                                                        |                                            |                      | V <sub>DD</sub> = 3.0 V |      | 2.7  | 4.0  |      |
|                |                              |           | LS (Low-speed                                          | f <sub>IH</sub> = 8 MHz <sup>Note 3</sup>  |                      | V <sub>DD</sub> = 3.0 V |      | 1.2  | 1.8  | mA   |
|                | main) mode <sup>Note 4</sup> |           |                                                        | V <sub>DD</sub> = 2.0 V                    |                      | 1.2                     | 1.8  |      |      |      |
|                |                              |           | HS (High-speed                                         | $f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$ |                      | Square wave input       |      | 3.0  | 4.6  | mA   |
|                |                              |           | main) mode $^{\text{Note 4}}$ $V_{DD} = 5.0 \text{ V}$ |                                            | Resonator connection |                         | 3.2  | 4.8  |      |      |
|                |                              |           |                                                        | $f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$ |                      | Square wave input       |      | 3.0  | 4.6  | mA   |
|                |                              |           |                                                        | $V_{DD} = 3.0 \text{ V}$                   |                      | Resonator connection    |      | 3.2  | 4.8  |      |
|                |                              |           |                                                        | $f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$ |                      | Square wave input       |      | 1.9  | 2.7  | mA   |
|                |                              |           |                                                        | $V_{DD} = 5.0 \text{ V}$                   |                      | Resonator connection    |      | 1.9  | 2.7  |      |
|                |                              |           |                                                        | $f_{MX} = 10 \text{ MHz}^{Note 2}$         |                      | Square wave input       |      | 1.9  | 2.7  | mA   |
|                |                              |           |                                                        | V <sub>DD</sub> = 3.0 V                    |                      | Resonator connection    |      | 1.9  | 2.7  |      |
|                |                              |           | LS (Low-speed                                          | $f_{MX} = 8 MHz^{Note 2}$                  |                      | Square wave input       |      | 1.1  | 1.7  | mA   |
|                |                              |           | main) mode Note 4                                      | V <sub>DD</sub> = 3.0 V                    |                      | Resonator connection    |      | 1.1  | 1.7  |      |
|                |                              |           |                                                        | $f_{MX} = 8 MHz^{Note 2}$                  |                      | Square wave input       |      | 1.1  | 1.7  | mA   |
|                |                              |           |                                                        | $V_{DD} = 2.0 \text{ V}$                   |                      | Resonator connection    |      | 1.1  | 1.7  |      |

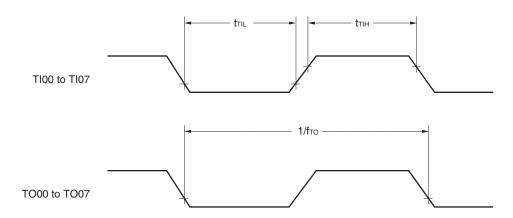
- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
  - 2. When high-speed on-chip oscillator clock is stopped.
  - 3. When high-speed system clock is stopped
  - **4.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.


HS(High speed main) mode: VDD = 2.7 V to 5.5 V @ 1 MHz to 24 MHz

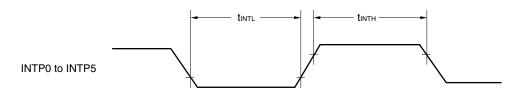
V<sub>DD</sub> = 2.4 V to 5.5 V @1 MHz to 16 MHz


LS(Low speed main) mode:  $V_{DD} = 1.8 \text{ V to } 5.5 \text{ V } @ 1 \text{ MHz to } 8 \text{ MHz}$ 

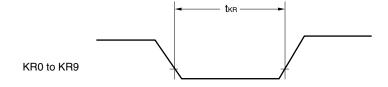
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
  - 2. fin: high-speed on-chip oscillator clock frequency
  - **3.** Temperature condition of the TYP. value is  $T_A = 25$ °C.


# **AC Timing Test Point**

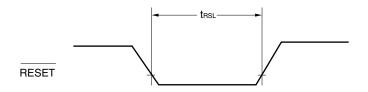



## **External Main System Clock Timing**




# **TI/TO Timing**




## **Interrupt Request Input Timing**



# **Key Interrupt Input Timing**



# **RESET Input Timing**



# (3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) ( $T_A = -40$ to +85°C, 1.8 V $\leq$ V<sub>DD</sub> $\leq$ 5.5 V, Vss = 0 V)

| Parameter                                  | Symbol           | Conditions                         |                                | HS (high-<br>main) N |      | LS (low-speed main)<br>Mode |      | Unit |
|--------------------------------------------|------------------|------------------------------------|--------------------------------|----------------------|------|-----------------------------|------|------|
|                                            |                  |                                    |                                | MIN.                 | MAX. | MIN.                        | MAX. |      |
| SCKp cycle time                            | tkcy1            | tkcy1 ≥ 4/fcLk                     | $2.7~V \leq V_{DD} \leq 5.5~V$ | 167                  |      | 500                         |      | ns   |
|                                            |                  |                                    | $2.4~V \leq V_{DD} \leq 5.5~V$ | 250                  |      | 500                         |      | ns   |
|                                            |                  |                                    | $1.8~V \leq V_{DD} \leq 5.5~V$ | -                    |      | 500                         |      | ns   |
| SCKp high-/low-level width                 | tкн1,            | $4.0~V \leq V_{DD} \leq$           | 5.5 V                          | tксү1/2-12           |      | tkcy1/2-50                  |      | ns   |
|                                            | t <sub>KL1</sub> | $2.7~V \leq V_{DD} \leq 5.5~V$     |                                | tkcy1/2-18           |      | tkcy1/2-50                  |      | ns   |
|                                            |                  | $2.4~V \leq V_{DD} \leq$           | 5.5 V                          | tkcy1/2-38           |      | tkcy1/2-50                  |      | ns   |
|                                            |                  | 1.8 V ≤ V <sub>DD</sub> ≤          | 5.5 V                          | -                    |      | tkcy1/2-50                  |      | ns   |
| SIp setup time (to SCKp↑)                  | tsıĸı            | $4.0~V \leq V_{DD} \leq$           | 5.5 V                          | 44                   |      | 110                         |      | ns   |
| Note 1                                     |                  | $2.7 \text{ V} \leq V_{DD} \leq 8$ | 5.5 V                          | 44                   |      | 110                         |      | ns   |
|                                            |                  | $2.4~V \leq V_{DD} \leq$           | 5.5 V                          | 75                   |      | 110                         |      | ns   |
|                                            |                  | 1.8 V ≤ V <sub>DD</sub> ≤ 5.5 V    |                                | -                    |      | 110                         |      | ns   |
| SIp hold time<br>(from SCKp↑) Note 2       | tksıı            |                                    |                                | 19                   |      | 19                          |      | ns   |
| Delay time from SCKp↓ to SOp output Note 3 | tkso1            | C = 30 pF Note4                    |                                |                      | 25   |                             | 25   | ns   |

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp $\uparrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - 4. C is the load capacitance of the SCKp and SOp output lines.

**Caution** Select the normal input buffer for the SIp pin and the normal output mode for the SOp and SCKp pins by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).

- **Remarks 1.** p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products)
  - 2. fmck: Serial array unit operation clock frequency
    (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products.))

#### (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$ 

| Parameter              | Symbol                                                                                                            |                                                                                                                      | Conditions                                                                                                           | ,             | nigh-speed<br>in) Mode |               | ow-speed<br>n) Mode | Unit                  |
|------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------|------------------------|---------------|---------------------|-----------------------|
|                        |                                                                                                                   |                                                                                                                      |                                                                                                                      | MIN.          | MAX.                   | MIN.          | MAX.                | bps Mbps bps Mbps bps |
| Transfer<br>rate Note4 |                                                                                                                   | Reception                                                                                                            | $\begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_{b} \leq 4.0 \ V \end{aligned}$               |               | fMCK/6<br>Note1        |               | fMCK/6<br>Note1     | bps                   |
|                        |                                                                                                                   |                                                                                                                      | Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$                                                   |               | 4.0                    |               | 1.3                 | Mbps                  |
|                        |                                                                                                                   |                                                                                                                      | $\begin{split} 2.7 \ V &\leq V_{DD} < 4.0 \ V, \\ 2.3 \ V &\leq V_{b} \leq 2.7 \ V \end{split}$                      |               | fмск/6<br>Note1        |               | fmck/6<br>Note1     | bps                   |
|                        | Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note3}$                                        |                                                                                                                      | 4.0                                                                                                                  |               | 1.3                    | Mbps          |                     |                       |
|                        | $\begin{aligned} 1.8 \ V &\leq V_{\text{DD}} < 3.3 \ V, \\ 1.6 \ V &\leq V_{\text{b}} \leq 2.0 \ V \end{aligned}$ |                                                                                                                      | fMCK/6<br>Notes1, 2                                                                                                  |               | fMCK/6<br>Notes1, 2    | bps           |                     |                       |
|                        |                                                                                                                   |                                                                                                                      | Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note3}$                                           |               | 4.0                    |               | 1.3                 | Mbps                  |
|                        |                                                                                                                   | Transmission                                                                                                         | $4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$<br>$2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V}$           |               | Note4                  |               | Note4               | bps                   |
|                        |                                                                                                                   |                                                                                                                      | Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, V_b = 2.7 \text{ V}$ |               | 2.8<br>Note5           |               | 2.8<br>Note5        | Mbps                  |
|                        |                                                                                                                   |                                                                                                                      | $\begin{aligned} 2.7 \ V &\leq V_{DD} < 4.0 \ V, \\ 2.3 \ V &\leq V_{b} \leq 2.7 \ V, \end{aligned}$                 |               | Note6                  |               | Note6               | bps                   |
|                        |                                                                                                                   |                                                                                                                      | Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$ |               | 1.2<br>Note7           |               | 1.2<br>Note7        | Mbps                  |
|                        |                                                                                                                   |                                                                                                                      | $1.8 \ V \le V_{DD} < 3.3 \ V,$ $1.6 \ V \le V_{b} \le 2.0 \ V$                                                      |               | Notes<br>2, 8          |               | Notes<br>2, 8       | bps                   |
|                        |                                                                                                                   | Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$ |                                                                                                                      | 0.43<br>Note9 |                        | 0.43<br>Note9 | Mbps                |                       |

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- 2. Use it with  $V_{DD} \ge V_b$ .
- 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V  $\leq$  V<sub>DD</sub>  $\leq$  5.5 V)

16 MHz (2.4 V 
$$\leq$$
 V<sub>DD</sub>  $\leq$  5.5 V)

LS (low-speed main) mode:  $8 \text{ MHz} (1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V})$ 

**4.** The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V  $\leq$  V<sub>DD</sub>  $\leq$  5.5 V and 2.7 V  $\leq$  V<sub>b</sub>  $\leq$  4.0 V

$$\label{eq:maximum transfer rate} \text{Maximum transfer rate} = \frac{1}{\left\{-C_b \times R_b \times \text{ln } (1-\frac{2.2}{V_b})\right\} \times 3} \quad \text{[bps]}$$

Baud rate error (theoretical value) = 
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-\text{Cb} \times \text{Rb} \times \text{ln } (1 - \frac{2.2}{\text{Vb}})\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

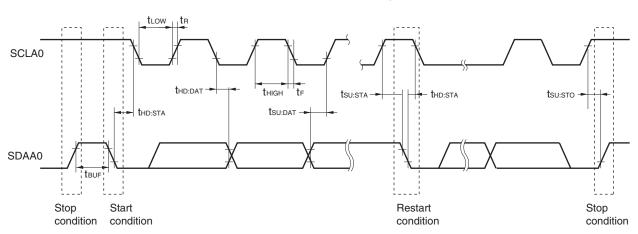
<sup>\*</sup> This value is the theoretical value of the relative difference between the transmission and reception sides.

#### 2.5.2 Serial interface IICA

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$ 

| Parameter                                       | Symbol  | Conditions               | HS     | (high-spee    | ed main) n | node         | Unit |  |
|-------------------------------------------------|---------|--------------------------|--------|---------------|------------|--------------|------|--|
|                                                 |         |                          | LS     | LS (low-speed |            | d main) mode |      |  |
|                                                 |         |                          | Standa | rd Mode       | Fast       | Mode         |      |  |
|                                                 |         |                          | MIN.   | MAX.          | MIN.       | MAX.         |      |  |
| SCLA0 clock frequency                           | fscL    | Fast mode: fclk≥ 3.5 MHz |        |               | 0          | 400          | kHz  |  |
|                                                 |         | Normal mode: fclk≥ 1 MHz | 0      | 100           |            |              | kHz  |  |
| Setup time of restart condition                 | tsu:sta |                          | 4.7    |               | 0.6        |              | μS   |  |
| Hold time <sup>Note 1</sup>                     | thd:sta |                          | 4.0    |               | 0.6        |              | μS   |  |
| Hold time when SCLA0 = "L"                      | tLOW    |                          | 4.7    |               | 1.3        |              | μS   |  |
| Hold time when SCLA0 = "H"                      | tніgн   |                          | 4.0    |               | 0.6        |              | μS   |  |
| Data setup time (reception)                     | tsu:dat |                          | 250    |               | 100        |              | ns   |  |
| Data hold time (transmission) <sup>Note 2</sup> | thd:dat |                          | 0      | 3.45          | 0          | 0.9          | μS   |  |
| Setup time of stop condition                    | tsu:sto |                          | 4.0    |               | 0.6        |              | μS   |  |
| Bus-free time                                   | tBUF    |                          | 4.7    |               | 1.3        |              | μS   |  |

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.


2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution Only in the 30-pin products, the values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IoH1, IoL1, VoH1, VoL1) must satisfy the values in the redirect destination.

**Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Normal mode:  $C_b$  = 400 pF, Rb = 2.7 k $\Omega$ Fast mode:  $C_b$  = 320 pF, Rb = 1.1 k $\Omega$ 

#### IICA serial transfer timing



<R>



# 2.6 Analog Characteristics

## 2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

| Input channel                     |                                                                  | Reference Voltage                                          |                                                                |  |  |  |  |  |
|-----------------------------------|------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|--|--|--|--|--|
|                                   | Reference voltage (+) = AVREFP<br>Reference voltage (-) = AVREFM | Reference voltage (+) = VDD<br>Reference voltage (-) = Vss | Reference voltage (+) = VBGR<br>Reference voltage (-) = AVREFM |  |  |  |  |  |
| ANI0 to ANI3                      | Refer to 28.6.1 (1).                                             | Refer to 28.6.1 (3).                                       | Refer to 28.6.1 (4).                                           |  |  |  |  |  |
| ANI16 to ANI22                    | Refer to 28.6.1 (2).                                             |                                                            |                                                                |  |  |  |  |  |
| Internal reference voltage        | Refer to 28.6.1 (1).                                             |                                                            | -                                                              |  |  |  |  |  |
| Temperature sensor output voltage |                                                                  |                                                            |                                                                |  |  |  |  |  |

(1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI2, ANI3, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +85°C, 1.8 V  $\leq$  AVREFP  $\leq$  VDD  $\leq$  5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

| Parameter                                  | Symbol              | Cor                                                                                             | nditions                               | MIN.   | TYP.           | MAX.                       | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------|----------------------------------------|--------|----------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Resolution                                 | RES                 |                                                                                                 |                                        | 8      |                | 10                         | bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Overall error <sup>Note 1</sup>            | AINL                | 10-bit resolution                                                                               |                                        |        | 1.2            | ±3.5                       | LSB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                            |                     | AVREFP = VDD Note 3                                                                             |                                        |        | 1.2            | ±7.0 Note 4                | LSB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Conversion time                            | tconv               | 10-bit resolution                                                                               | $3.6~V \leq V_{DD} \leq 5.5~V$         | 2.125  |                | 39                         | μS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                            | Tar                 | Target pin: ANI2, ANI3                                                                          | $2.7~V \leq V_{DD} \leq 5.5~V$         | 3.1875 |                | 39                         | μS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                            |                     |                                                                                                 | $1.8~V \leq V_{DD} \leq 5.5~V$         | 17     |                | 39                         | bit  LSB  LSB  LSB  LSB  LSB  LSB  LSS  LSS  LSS  LSS  LSS  LSS  LSB  L |
|                                            |                     |                                                                                                 |                                        | 57     |                | 95                         | μS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                            |                     | 10-bit resolution                                                                               | $3.6~V \leq V_{DD} \leq 5.5~V$         | 2.375  |                | 39                         | μS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                            |                     | Target pin: Internal                                                                            | $2.7~V \leq V_{DD} \leq 5.5~V$         | 3.5625 |                | 39                         | μS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                            | tempera<br>output v | reference voltage, and temperature sensor $2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$ | $2.4~V \leq V_{DD} \leq 5.5~V$         | 17     |                | 39                         | μS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                            |                     | output voltage<br>(HS (high-speed main)                                                         |                                        |        |                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Zero-scale error <sup>Notes 1, 2</sup>     | EZS                 | 10-bit resolution                                                                               |                                        |        |                | ±0.25                      | %FSR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                            |                     | AVREFP = VDD Note 3                                                                             |                                        |        |                | $\pm 0.50^{\text{Note 4}}$ | %FSR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Full-scale errorNotes 1, 2                 | EFS                 | 10-bit resolution                                                                               |                                        |        |                | ±0.25                      | %FSR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                            |                     | AVREFP = VDD Note 3                                                                             |                                        |        |                | $\pm 0.50^{\text{Note 4}}$ | %FSR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Integral linearity error <sup>Note 1</sup> | ILE                 | 10-bit resolution                                                                               |                                        |        |                | ±2.5                       | LSB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                            |                     | AVREFP = VDD Note 3                                                                             |                                        |        |                | ±5.0 Note 4                | LSB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Differential linearity error               | DLE                 | 10-bit resolution                                                                               |                                        |        |                | ±1.5                       | LSB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Note 1                                     |                     | AVREFP = VDD Note 3                                                                             |                                        |        |                | ±2.0 Note 4                | LSB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Analog input voltage                       | VAIN                | ANI2, ANI3                                                                                      |                                        | 0      |                | AVREFP                     | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                            |                     | Internal reference voltage (2.4 V ≤ VDD ≤ 5.5 V, HS (high-speed main) mode)                     |                                        |        | VBGR Note 5    |                            | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                            |                     | Temperature sensor outp<br>(2.4 V $\leq$ VDD $\leq$ 5.5 V, HS                                   | out voltage<br>(high-speed main) mode) |        | VTMPS25 Note ! | 5                          | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

(Notes are listed on the next page.)



(3) When reference voltage (+) = V<sub>DD</sub> (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V<sub>SS</sub> (ADREFM = 0), target pin: ANI0 to ANI3, ANI16 to ANI22, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ Reference voltage (+)} = V_{DD}, \text{ Reference voltage (-)} = V_{SS})$ 

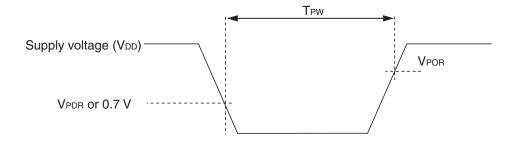
| Parameter                                  | Symbol                                            | Condition                                                                   | ns                                                 | MIN.   | TYP.           | MAX.              | Unit |
|--------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------|--------|----------------|-------------------|------|
| Resolution                                 | Res                                               |                                                                             | 8                                                  |        | 10             | bit               |      |
| Overall error <sup>Note 1</sup>            | AINL                                              | 10-bit resolution                                                           |                                                    |        | 1.2            | ±7.0              | LSB  |
|                                            |                                                   |                                                                             |                                                    |        | 1.2            | $\pm 10.5$ Note 3 | LSB  |
| Conversion time                            | tconv                                             | 10-bit resolution                                                           | $3.6~V \leq V_{DD} \leq 5.5~V$                     | 2.125  |                | 39                | μs   |
|                                            |                                                   | Target pin: ANIO to ANI3,                                                   | $2.7~V \leq V_{DD} \leq 5.5~V$                     | 3.1875 |                | 39                | μS   |
|                                            |                                                   | ANI16 to ANI22                                                              | $1.8~V \leq V_{DD} \leq 5.5~V$                     | 17     |                | 39                | μs   |
|                                            |                                                   |                                                                             |                                                    | 57     |                | 95                | μS   |
| Conversion time                            | tconv                                             | 10-bit resolution                                                           | $3.6~V \leq V_{DD} \leq 5.5~V$                     | 2.375  |                | 39                | μS   |
|                                            |                                                   | Target pin: internal reference                                              | $2.7 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$ | 3.5625 |                | 39                | μS   |
|                                            | sensor output voltage (HS (high-speed main) mode) | $2.4~V \leq V_{DD} \leq 5.5~V$                                              | 17                                                 |        | 39             | μS                |      |
| Zero-scale error <sup>Notes 1, 2</sup>     | EZS                                               | 10-bit resolution                                                           | , , , ,                                            |        |                | ±0.60             | %FSR |
|                                            |                                                   |                                                                             |                                                    |        |                | ±0.85             | %FSR |
| Full-scale errorNotes 1, 2                 | EFS                                               | 10-bit resolution                                                           |                                                    |        |                | ±0.60             | %FSR |
|                                            |                                                   |                                                                             |                                                    |        |                | ±0.85             | %FSR |
| Integral linearity error <sup>Note 1</sup> | ILE                                               | 10-bit resolution                                                           |                                                    |        |                | ±4.0              | LSB  |
|                                            |                                                   |                                                                             |                                                    |        |                | ±6.5 Note 3       | LSB  |
| Differential linearity error Note 1        | DLE                                               | 10-bit resolution                                                           |                                                    |        |                | ±2.0              | LSB  |
|                                            |                                                   |                                                                             |                                                    |        |                | ±2.5 Note 3       | LSB  |
| Analog input voltage                       | VAIN                                              | ANI0 to ANI3, ANI16 to ANI2                                                 | 2                                                  | 0      |                | V <sub>DD</sub>   | V    |
|                                            |                                                   | Internal reference voltage (2.4 V ≤ VDD ≤ 5.5 V, HS (high-speed main) mode) |                                                    |        | VBGR Note 4    |                   | V    |
|                                            |                                                   | Temperature sensor output v (2.4 V $\leq$ VDD $\leq$ 5.5 V, HS (high        | •                                                  |        | VTMPS25 Note 4 | 1                 | V    |

Notes 1. Excludes quantization error (±1/2 LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- **3.** When the conversion time is set to 57  $\mu$ s (min.) and 95  $\mu$ s (max.).
- 4. Refer to 28.6.2 Temperature sensor/internal reference voltage characteristics.

## 2.6.2 Temperature sensor/internal reference voltage characteristics

(T<sub>A</sub> = -40 to +85°C, 2.4 V  $\leq$  V<sub>DD</sub>  $\leq$  5.5 V, V<sub>SS</sub> = 0 V, HS (high-speed main) mode


| Parameter                         | Symbol              | Conditions                                                        | MIN. | TYP. | MAX. | Unit  |
|-----------------------------------|---------------------|-------------------------------------------------------------------|------|------|------|-------|
| Temperature sensor output voltage | V <sub>TMPS25</sub> | Setting ADS register = 80H,<br>TA = +25°C                         |      | 1.05 |      | ٧     |
| Internal reference voltage        | V <sub>BGR</sub>    | Setting ADS register = 81H                                        | 1.38 | 1.45 | 1.50 | V     |
| Temperature coefficient           | FVTMPS              | Temperature sensor output voltage that depends on the temperature |      | -3.6 |      | mV/°C |
| Operation stabilization wait time | tamp                |                                                                   | 5    |      |      | μS    |

## 2.6.3 POR circuit characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$ 

| <u>,                                      </u> |                  |                        |      |      |      |      |
|------------------------------------------------|------------------|------------------------|------|------|------|------|
| Parameter                                      | Symbol           | Conditions             | MIN. | TYP. | MAX. | Unit |
| Detection voltage                              | Vpor             | Power supply rise time | 1.47 | 1.51 | 1.55 | ٧    |
|                                                | V <sub>PDR</sub> | Power supply fall time | 1.46 | 1.50 | 1.54 | ٧    |
| Minimum pulse width Note                       | T <sub>PW</sub>  |                        | 300  |      |      | μs   |

Note Minimum time required for a POR reset when V<sub>DD</sub> exceeds below V<sub>PDR</sub>. This is also the minimum time required for a POR reset from when V<sub>DD</sub> exceeds below 0.7 V to when V<sub>DD</sub> exceeds V<sub>PDR</sub> while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).



## 3.1 Absolute Maximum Ratings

Absolute Maximum Ratings (TA = 25°C)

| Parameter                         | Symbols          |                    | Conditions                                                                                                                             | Ratings                                                     | Unit |
|-----------------------------------|------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------|
| Supply Voltage                    | V <sub>DD</sub>  |                    |                                                                                                                                        | -0.5 to + 6.5                                               | V    |
| REGC terminal input voltage Note1 | Virego           | REGC               |                                                                                                                                        | -0.3 to +2.8<br>and -0.3 to V <sub>DD</sub> + 0.3<br>Note 2 | V    |
| Input Voltage                     | VII              | Other than P60, F  | P61                                                                                                                                    | -0.3 to V <sub>DD</sub> + 0.3 <sup>Note 3</sup>             | V    |
|                                   | Vı2              | P60, P61 (N-ch o   | pen drain)                                                                                                                             | -0.3 to 6.5                                                 | V    |
| Output Voltage                    | Vo               |                    |                                                                                                                                        | -0.3 to V <sub>DD</sub> + 0.3 <sup>Note 3</sup>             | V    |
| Analog input voltage              | Val              | 20, 24-pin produc  | ts: ANI0 to ANI3, ANI16 to ANI22                                                                                                       | -0.3 to V <sub>DD</sub> + 0.3                               | V    |
|                                   |                  | 30-pin products: A | ANI0 to ANI3, ANI16 to ANI19                                                                                                           | and -0.3 to<br>AVREF(+)+0.3 Notes 3, 4                      |      |
| Output current, high              | <b>І</b> он1     | Per pin            | Other than P20 to P23                                                                                                                  | -40                                                         | mA   |
|                                   |                  | Total of all pins  | All the terminals other than P20 to P23                                                                                                | -170                                                        | mA   |
|                                   |                  |                    | 20-, 24-pin products: P40 to P42                                                                                                       | -70                                                         | mA   |
|                                   |                  |                    | 30-pin products: P00, P01, P40, P120                                                                                                   |                                                             |      |
|                                   |                  |                    | 20-, 24-pin products: P00 to P03 <sup>Note 5</sup> ,<br>P10 to P14<br>30-pin products: P10 to P17, P30, P31,<br>P50, P51, P147         | -100                                                        | mA   |
|                                   | 10н2             | Per pin            | P20 to P23                                                                                                                             | -0.5                                                        | mA   |
|                                   |                  | Total of all pins  |                                                                                                                                        | -2                                                          | mA   |
| Output current, low               | lo <sub>L1</sub> | Per pin            | Other than P20 to P23                                                                                                                  | 40                                                          | mA   |
|                                   |                  | Total of all pins  | All the terminals other than P20 to P23                                                                                                | 170                                                         | mA   |
|                                   |                  |                    | 20-, 24-pin products: P40 to P42<br>30-pin products: P00, P01, P40, P120                                                               | 70                                                          | mA   |
|                                   |                  |                    | 20-, 24-pin products: P00 to P03 Note 5,<br>P10 to P14, P60, P61<br>30-pin products: P10 to P17, P30, P31,<br>P50, P51, P60, P61, P147 | 100                                                         | mA   |
|                                   | I <sub>OL2</sub> | Per pin            | P20 to P23                                                                                                                             | 1                                                           | mA   |
|                                   |                  | Total of all pins  |                                                                                                                                        | 5                                                           | mA   |
| Operating ambient temperature     | Та               |                    |                                                                                                                                        | -40 to +105                                                 | °C   |
| Storage temperature               | T <sub>stg</sub> |                    |                                                                                                                                        | -65 to +150                                                 | °C   |

Notes 1. 30-pin product only.

- 2. Connect the REGC pin to Vss via a capacitor (0.47 to 1  $\mu$ F). This value determines the absolute maximum rating of the REGC pin. Do not use it with voltage applied.
- 3. Must be 6.5 V or lower.
- **4.** Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.
- 5. 24-pin products only.

**Caution** Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

**Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- **2.** AV<sub>REF</sub>(+): + side reference voltage of the A/D converter.
- 3. Vss: Reference voltage



#### (2) 30-pin products

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$ 

(1/2)

| Parameter                 | Symbol           |           |                   | Conditions                                 |                         |                         | MIN. | TYP. | MAX. | Unit |
|---------------------------|------------------|-----------|-------------------|--------------------------------------------|-------------------------|-------------------------|------|------|------|------|
| Supply                    | I <sub>DD1</sub> | Operating | HS (High-speed    | f <sub>IH</sub> = 24 MHz <sup>Note 3</sup> | Basic                   | V <sub>DD</sub> = 5.0 V |      | 1.5  |      | mA   |
| current <sup>Note 1</sup> |                  | mode      | main) mode Note 4 | operation                                  | operation               | V <sub>DD</sub> = 3.0 V |      | 1.5  |      |      |
|                           |                  |           |                   |                                            | Normal                  | V <sub>DD</sub> = 5.0 V |      | 3.7  | 5.8  | mA   |
|                           |                  |           |                   | operation                                  | V <sub>DD</sub> = 3.0 V |                         | 3.7  | 5.8  |      |      |
|                           |                  |           |                   | fin = 16 MHz <sup>Note 3</sup>             |                         | V <sub>DD</sub> = 5.0 V |      | 2.7  | 4.2  | mA   |
|                           |                  |           |                   |                                            |                         | V <sub>DD</sub> = 3.0 V |      | 2.7  | 4.2  |      |
|                           |                  |           |                   | $f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$ | Square wave input       |                         | 3.0  | 4.9  | mA   |      |
|                           |                  |           |                   | $V_{DD} = 5.0 \text{ V}$                   |                         | Resonator connection    |      | 3.2  | 5.0  |      |
|                           |                  |           |                   | $f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$ |                         | Square wave input       |      | 3.0  | 4.9  | mA   |
|                           |                  |           |                   | $V_{DD} = 3.0 \text{ V}$                   |                         | Resonator connection    |      | 3.2  | 5.0  |      |
|                           |                  |           |                   | $f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$ |                         | Square wave input       |      | 1.9  | 2.9  | mA   |
|                           |                  |           |                   | $V_{DD} = 5.0 \text{ V}$                   |                         | Resonator connection    |      | 1.9  | 2.9  |      |
|                           |                  |           |                   | $f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$ |                         | Square wave input       |      | 1.9  | 2.9  | mA   |
|                           |                  |           |                   | $V_{DD} = 3.0 \text{ V}$                   |                         | Resonator connection    |      | 1.9  | 2.9  |      |

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
  - 2. When high-speed on-chip oscillator clock is stopped.
  - 3. When high-speed system clock is stopped
  - **4.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode:  $V_{DD} = 2.7 \text{ V to } 5.5 \text{ V} @ 1 \text{ MHz to } 24 \text{ MHz}$  $V_{DD} = 2.4 \text{ V to } 5.5 \text{ V} @ 1 \text{ MHz to } 16 \text{ MHz}$ 

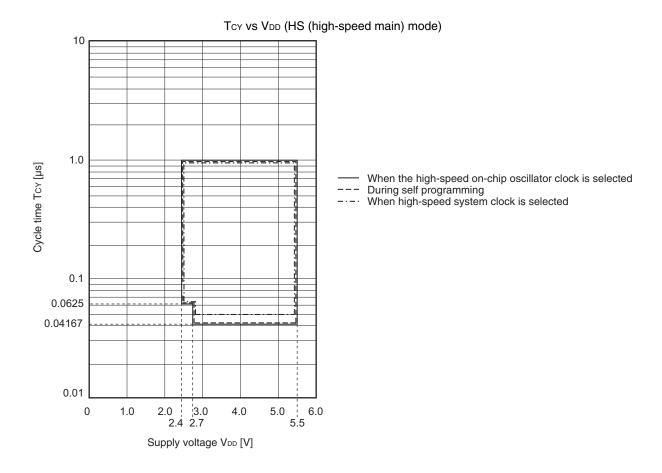
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
  - 2. fin: high-speed on-chip oscillator clock frequency
  - **3.** Temperature condition of the TYP. value is  $T_A = 25^{\circ}C$ .

## (3) Peripheral functions (Common to all products)

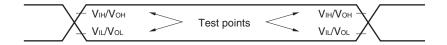
## $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

| Parameter                                         | Symbol                 |                    | Conditions                                                                          | MIN. | TYP. | MAX.  | Unit |
|---------------------------------------------------|------------------------|--------------------|-------------------------------------------------------------------------------------|------|------|-------|------|
| Low-speed onchip oscillator operating current     | IFIL Note 1            |                    |                                                                                     |      | 0.20 |       | μΑ   |
| 12-bit interval timer operating current           | ITMKA<br>Notes 1, 2, 3 |                    |                                                                                     |      | 0.02 |       | μΑ   |
| Watchdog timer operating current                  | WDT<br>Notes 1, 2, 4   | fı∟ = 15 kHz       |                                                                                     |      | 0.22 |       | μΑ   |
| A/D converter                                     | IADC                   | When conversion    | Normal mode, AVREFP = VDD = 5.0 V                                                   |      | 1.30 | 1.70  | mA   |
| operating current                                 | Notes 1, 5             | at maximum speed   | Low voltage mode,<br>AV <sub>REFP</sub> = V <sub>DD</sub> = 3.0 V                   |      | 0.50 | 0.70  | mA   |
| A/D converter reference voltage operating current | ADREF<br>Note 1        |                    |                                                                                     |      | 75.0 |       | μΑ   |
| Temperature sensor operating current              | ITMPS<br>Note 1        |                    |                                                                                     |      | 75.0 |       | μА   |
| LVD operating current                             | ILVD<br>Notes 1, 6     |                    |                                                                                     |      | 0.08 |       | μА   |
| Self-programming operating current                | FSP<br>Notes 1, 8      |                    |                                                                                     |      | 2.00 | 12.20 | mA   |
| BGO operating current                             | BGO<br>Notes 1, 7      |                    |                                                                                     |      | 2.00 | 12.20 | mA   |
| SNOOZE operating                                  | Isnoz                  | ADC operation      | The mode is performed Note 9                                                        |      | 0.50 | 1.10  | mA   |
| current                                           | Note 1                 |                    | The A/D conversion operations are performed, Low voltage mode, AVREFP = VDD = 3.0 V |      | 1.20 | 2.04  | mA   |
|                                                   |                        | CSI/UART operation | 1                                                                                   |      | 0.70 | 1.54  | mA   |

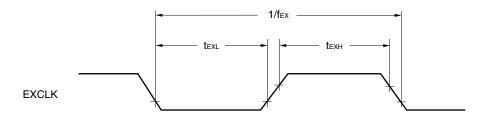
#### Notes 1. Current flowing to the VDD.


- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and IFIL and ITMKA when the 12-bit interval timer operates.
- 4. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.
- **5.** Current flowing only to the A/D converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- **6.** Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit operates.
- 7. Current flowing only during data flash rewrite.
- 8. Current flowing only during self programming.
- 9. For shift time to the SNOOZE mode, see 17.3.3 SNOOZE mode.

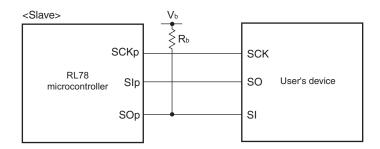
Remarks 1. fil: Low-speed on-chip oscillator clock frequency


**2.** Temperature condition of the TYP. value is  $T_A = 25^{\circ}C$ 

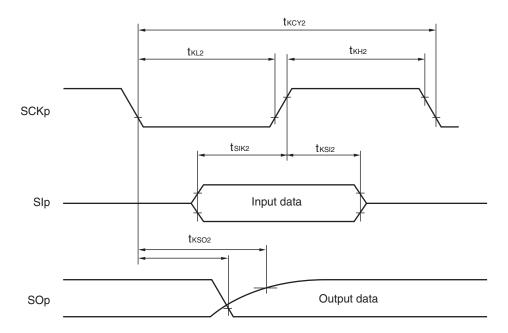



## Minimum Instruction Execution Time during Main System Clock Operation




#### **AC Timing Test Point**




#### **External Main System Clock Timing**



## CSI mode connection diagram (during communication at different potential)



CSI mode serial transfer timing (slave mode) (during communication at different potential)
(When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)



**Remarks 1.** R<sub>b</sub> [ $\Omega$ ]: Communication line (SOp) pull-up resistance, C<sub>b</sub> [F]: Communication line (SOp) load capacitance, V<sub>b</sub> [V]: Communication line voltage

- 2. p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)
- fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn))

## (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I<sup>2</sup>C mode)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$ 

| Parameter                     | Symbol  | Conditions                                                                                                              |                                   | HS (high-speed main)<br>Mode |     |  |
|-------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------|-----|--|
|                               |         |                                                                                                                         | MIN.                              | MAX.                         |     |  |
| SCLr clock frequency          | fscL    | $ 4.0~V \leq V_{DD} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V, $ $C_b = 100~pF,~R_b = 2.8~k\Omega $                         |                                   | 100 <sup>Note1</sup>         | kHz |  |
|                               |         |                                                                                                                         |                                   | 100 <sup>Note1</sup>         | kHz |  |
|                               |         |                                                                                                                         |                                   | 100 <sup>Note1</sup>         | kHz |  |
| Hold time when SCLr = "L" tLo | tLOW    | $4.0 \; V \leq V_{DD} \leq 5.5 \; V,  2.7 \; V \leq V_b \leq 4.0 \; V,$ $C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega$      | 4600                              |                              | ns  |  |
|                               |         |                                                                                                                         | 4600                              |                              | ns  |  |
|                               |         | $2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V,$ $C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega$               | 4650                              |                              | ns  |  |
| Hold time when SCLr = "H"     | тнісн   | $ 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega $ | 2700                              |                              | ns  |  |
|                               |         |                                                                                                                         | 2400                              |                              | ns  |  |
|                               |         | $2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V,$ $C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega$               | 1830                              |                              | ns  |  |
| Data setup time (reception)   | tsu:dat | $ 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega $ | 1/fмск<br>+ 760 Note3             |                              | ns  |  |
|                               |         |                                                                                                                         | 1/f <sub>MCK</sub><br>+ 760 Note3 |                              | ns  |  |
|                               |         | $2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V,$ $C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega$               | 1/fмск<br>+ 570 <sup>Note3</sup>  |                              | ns  |  |
| Data hold time (transmission) | thd:dat | $ 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega $ | 0                                 | 1420                         | ns  |  |
|                               |         | $ 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega $    | 0                                 | 1420                         | ns  |  |
|                               |         | $\label{eq:continuous}                                   $                                                              | 0                                 | 1215                         | ns  |  |

- Notes 1. The value must also be equal to or less than fmck/4.
  - 2. Set tsu:DAT so that it will not exceed the hold time when SCLr = "L" or SCLr = "H".
- Cautions 1. Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
  - 2. IIC01 and IIC11 cannot communicate at different potential.

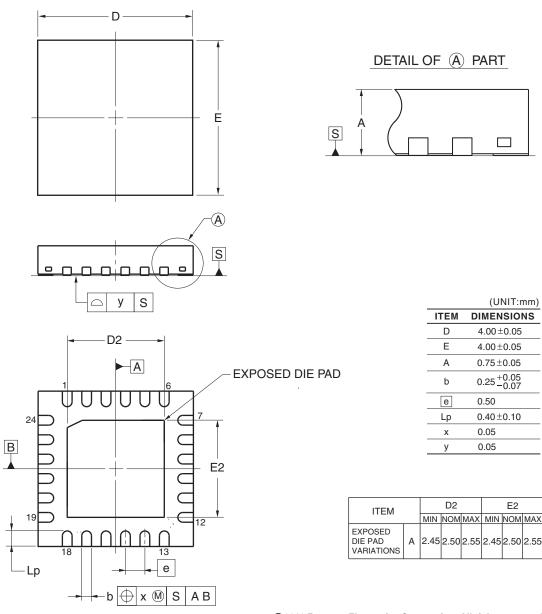
(Remarks are listed on the next page.)



# 3.6.4 LVD circuit characteristics

## LVD Detection Voltage of Reset Mode and Interrupt Mode

(Ta = -40 to +105°C, VPDR  $\leq$  VDD  $\leq$  5.5 V, Vss = 0 V)


| Parameter                | Symbol            | Conditions             | MIN. | TYP. | MAX. | Unit |
|--------------------------|-------------------|------------------------|------|------|------|------|
| Detection supply voltage | V <sub>LVD0</sub> | Power supply rise time | 3.90 | 4.06 | 4.22 | ٧    |
|                          |                   | Power supply fall time | 3.83 | 3.98 | 4.13 | ٧    |
|                          | V <sub>LVD1</sub> | Power supply rise time | 3.60 | 3.75 | 3.90 | ٧    |
|                          |                   | Power supply fall time | 3.53 | 3.67 | 3.81 | ٧    |
|                          | V <sub>LVD2</sub> | Power supply rise time | 3.01 | 3.13 | 3.25 | ٧    |
|                          |                   | Power supply fall time | 2.94 | 3.06 | 3.18 | ٧    |
|                          | <b>V</b> LVD3     | Power supply rise time | 2.90 | 3.02 | 3.14 | ٧    |
|                          |                   | Power supply fall time | 2.85 | 2.96 | 3.07 | ٧    |
|                          | V <sub>LVD4</sub> | Power supply rise time | 2.81 | 2.92 | 3.03 | ٧    |
|                          |                   | Power supply fall time | 2.75 | 2.86 | 2.97 | ٧    |
|                          | V <sub>LVD5</sub> | Power supply rise time | 2.70 | 2.81 | 2.92 | ٧    |
|                          |                   | Power supply fall time | 2.64 | 2.75 | 2.86 | ٧    |
|                          | V <sub>LVD6</sub> | Power supply rise time | 2.61 | 2.71 | 2.81 | ٧    |
|                          |                   | Power supply fall time | 2.55 | 2.65 | 2.75 | ٧    |
|                          | V <sub>LVD7</sub> | Power supply rise time | 2.51 | 2.61 | 2.71 | ٧    |
|                          |                   | Power supply fall time | 2.45 | 2.55 | 2.65 | ٧    |
| Minimum pulse width      | tıw               |                        | 300  |      |      | μs   |
| Detection delay time     |                   |                        |      |      | 300  | μS   |

<R>

# 4.2 24-pin products

R5F1027AANA, R5F10279ANA, R5F10278ANA, R5F10277ANA R5F1037AANA, R5F10379ANA, R5F10378ANA, R5F10377ANA R5F1027ADNA, R5F10279DNA, R5F10278DNA, R5F10277DNA R5F1037ADNA, R5F10379DNA, R5F10378DNA, R5F10377DNA R5F1027AGNA, R5F10279GNA, R5F10278GNA, R5F10277GNA

| JEITA Package Code | RENESAS Code | Previous Code  | MASS (TYP.) [g] |
|--------------------|--------------|----------------|-----------------|
| P-HWQFN24-4x4-0.50 | PWQN0024KE-A | P24K8-50-CAB-1 | 0.04            |



 $\bigcirc$  2012 Renesas Electronics Corporation. All rights reserved.

#### Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below

"Standard": Computers: office equipment: communications equipment: test and measurement equipment: audio and visual equipment: home electronic appliances: machine tools: personal electronic equipment: and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics
- nt may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.



#### SALES OFFICES

# Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information

California Eastern Laboratories, Inc.

4590 Patrick Henry Drive, Santa Clara, California 95054-1817, U.S.A Tel: +1-408-919-2500, Fax: +1-408-988-0279

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141