

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	14
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10368asp-x5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.7 Outline of Functions

This outline describes the function at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

	Item	20-	-pin	24-pin		30-pin			
		R5F1026x	R5F1036x	R5F1027x	R5F1037x	R5F102Ax	R5F103Ax		
Code flas	h memory	2 to 16 KB ^{Note 1} 4 to 1			16 KB	•			
Data flash	n memory	2 KB	-	2 KB	-	2 KB	-		
RAM		256 B to	o 1.5 KB	512 B to	o 1.5 KB	512 B	to 2KB		
Address s	space	1 MB							
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (High-speed main) mode : 1 to 20 MHz ($V_{DD} = 2.7$ to 5.5 V), HS (High-speed main) mode : 1 to 16 MHz ($V_{DD} = 2.4$ to 5.5 V), LS (Low-speed main) mode : 1 to 8 MHz ($V_{DD} = 1.8$ to 5.5 V)							
	High-speed on-chip oscillator clock	HS (High-speed main) mode : 1 to 24 MHz (V_{DD} = 2.7 to 5.5 V), HS (High-speed main) mode : 1 to 16 MHz (V_{DD} = 2.4 to 5.5 V), LS (Low-speed main) mode : 1 to 8 MHz (V_{DD} = 1.8 to 5.5 V)							
Low-spee	d on-chip oscillator clock	15 kHz (TYP)							
General-purpose register		(8-bit register	\times 8) \times 4 banks						
Minimum instruction execution time		0.04167 μ s (High-speed on-chip oscillator clock: f _{IH} = 24 MHz operation)							
		0.05 µs (High-speed system clock: f _{MX} = 20 MHz operation)							
Instruction	n set	Data transfer (8/16 bits)							
		Adder and subtractor/logical operation (8/16 bits)							
		Multiplication (8 bits × 8 bits)							
	1	Rotate, barrel shift, and bit manipulation (set, reset, test, and Boolean operation), etc.							
I/O port	Total	1	8	2	2	2	6		
	CMOS I/O	(N-ch C	2 D.D. I/O nd voltage]: 4)	(N-ch C	6 D.D. I/O id voltage]: 5)		1 D.D. I/O d voltage]: 9)		
	CMOS input		4		4	;	3		
	N-ch open-drain I/O (6 V tolerance)			:	2				
Timer	16-bit timer		4 cha	annels		8 cha	nnels		
	Watchdog timer			1 cha	annel				
	12-bit Interval timer			1 cha	annel				
	Timer output	4 channels (PWM outputs: 3 ^{№te 3})			8 channels (PWM outputs: 7 ^{Note 3}) ^{Note 2}				

Notes 1. The self-programming function cannot be used in the R5F10266 and R5F10366.

2. The maximum number of channels when PIOR0 is set to 1.

3. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves). (See **6.9.3 Operation as multiple PWM output function**.)

Caution When the flash memory is rewritten via a user program, the code flash area and RAM area are used because each library is used. When using the library, refer to RL78 Family Flash Self Programming Library Type01 User's Manual and RL78 Family Data Flash Library Type04 User's Manual.

<R> 2. ELECTRICAL SPECIFICATIONS ($T_A = -40$ to +85°C)

<r></r>	This chapter de	scribes the following electrical specifications.
	Target products	A: Consumer applications T _A = -40 to +85°C
<r></r>		R5F102xxAxx, R5F103xxAxx
_		D: Industrial applications $T_A = -40$ to $+85^{\circ}C$
<r></r>		R5F102xxDxx, R5F103xxDxx
		G: Industrial applications when $T_A = -40$ to $+105^{\circ}C$ products is used in the range of $T_A = -40$ to $+85^{\circ}C$
<r></r>		R5F102xxGxx
	Cautions 1.	he RL78 microcontrollers have an on-chip debug function, which is provided for development and

Fautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.

2. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product.

(1) 20-, 24-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	DD2 Note 2	HALT	HS (High-speed	$f_{IH} = 24 \text{ MHz}^{Note 4}$	$V_{DD} = 5.0 V$		440	1210	μA
current Note 1		mode	main) mode ^{Note 6}		$V_{DD} = 3.0 V$		440	1210	
				fıн = 16 MHz ^{№te 4}	$V_{DD} = 5.0 V$		400	950	μA
					$V_{DD} = 3.0 V$		400	950	
			LS (Low-speed	$f_{IH} = 8 \text{ MHz}^{Note 4}$	$V_{DD} = 3.0 V$		270	542	μA
			main) mode ^{Note 6}		V _{DD} = 2.0 V		270	542	
			HS (High-speed	$f_{MX} = 20 \text{ MHz}^{Note 3},$	Square wave input		280	1000	μA
			main) mode ^{Note 6}	V _{DD} = 5.0 V	Resonator connection		450	1170	
				$f_{MX} = 20 \text{ MHz}^{Note 3},$	Square wave input		280	1000	μA
			$V_{DD} = 3.0 V$	Resonator connection		450	1170		
		$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		190	590	μA		
			$V_{DD} = 5.0 V$	Resonator connection		260	660		
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		190	590	μA
				$V_{DD} = 3.0 V$	Resonator connection		260	660	
			LS (Low-speed	$f_{MX} = 8 \text{ MHz}^{Note 3},$	Square wave input		110	360	μA
			main) mode ^{Note 6}	$V_{DD} = 3.0 V$	Resonator connection		150	416	
				$f_{MX} = 8 \text{ MHz}^{Note 3},$	Square wave input		110	360	μA
				$V_{DD} = 2.0 V$	Resonator connection		150	416	
	DD3 Note 5	STOP	$T_A = -40^{\circ}C$				0.19	0.50	μA
mode	$T_A = +25^{\circ}C$				0.24	0.50			
		$T_A = +50^{\circ}C$	$T_A = +50^{\circ}C$			0.32	0.80		
			$T_A = +70^{\circ}C$				0.48	1.20	
			T _A = +85°C				0.74	2.20	

Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. During HALT instruction execution by flash memory.
- 3. When high-speed on-chip oscillator clock is stopped.
- 4. When high-speed system clock is stopped.
- 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.
- 6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz VDD = 2.4 V to 5.5 V @1 MHz to 16 MHz

LS(Low speed main) mode: VDD = 1.8 V to 5.5 V @1 MHz to 8 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except temperature condition of the TYP. value is $T_A = 25^{\circ}C$, other than STOP mode

(2) 30-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	DD2 Note 2	HALT	HS (High-speed	$f_{IH} = 24 \text{ MHz}^{Note 4}$	V _{DD} = 5.0 V		440	1280	μA
current Note 1		mode	main) mode ^{Note6}		V _{DD} = 3.0 V		440	1280	L
				$f_{IH} = 16 \text{ MHz}^{Note 4}$	$V_{DD} = 5.0 V$		400	1000	μA
					$V_{DD} = 3.0 V$		400	1000	
			LS (Low-speed	$f_{\text{IH}} = 8 \text{ MHz}^{\text{Note 4}}$	$V_{DD} = 3.0 V$		260	530	μA
			main) mode ^{№066}		$V_{DD} = 2.0 V$		260	530	
			HS (High-speed	$f_{MX} = 20 \text{ MHz}^{Note 3}$,	Square wave input		280	1000	μA
			main) mode ^{Note6}	$V_{DD} = 5.0 V$	Resonator connection		450	1170	
				$f_{MX} = 20 \text{ MHz}^{Note 3}$,	Square wave input		280	1000	μA
				$V_{DD} = 3.0 V$	Resonator connection		450	1170	
			Square wave input		190	600	μA		
			Resonator connection		260	670			
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		190	600	μA
				$V_{DD} = 3.0 V$	Resonator connection		260	670	
			LS (Low-speed	$f_{MX} = 8 MHz^{Note 3}$,	Square wave input		95	330	μA
			main) mode ^{Note 6}	$V_{DD} = 3.0 V$	Resonator connection		145	380	
				$f_{MX} = 8 MHz^{Note 3}$	Square wave input		95	330	μA
				$V_{DD} = 2.0 V$	Resonator connection		145	380	
		STOP	$T_{\text{A}} = -40^{\circ}C$				0.18	0.50	μA
mode	mode	$T_A = +25^{\circ}C$				0.23	0.50		
		$T_A = +50^{\circ}C$				0.30	1.10		
			$T_A = +70^{\circ}C$				0.46	1.90	
			T _A = +85°C				0.75	3.30	

Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. During HALT instruction execution by flash memory.
- 3. When high-speed on-chip oscillator clock is stopped.
- 4. When high-speed system clock is stopped.
- 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.
- 6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS (High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz

VDD = 2.4 V to 5.5 V @1 MHz to 16 MHz

LS (Low speed main) mode: VDD = 1.8 V to 5.5 V @1 MHz to 8 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except STOP mode, temperature condition of the TYP. value is TA = 25°C.

(3) Peripheral functions (Common to all products)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed onchip oscillator operating current	FiL Note 1				0.20		μA
12-bit interval timer operating current	ITMKA Notes 1, 2, 3				0.02		μA
Watchdog timer operating current	WDT Notes 1, 2, 4	fı∟ = 15 kHz			0.22		μA
A/D converter	ADC Notes 1, 5	When conversion at	Normal mode, $AV_{REFP} = V_{DD} = 5.0 V$		1.30	1.70	mA
operating current		maximum speed	Low voltage mode, $AV_{REFP} = V_{DD} = 3.0 V$		0.50	0.70	mA
A/D converter reference voltage operating current	ADREF Note 1				75.0		μA
Temperature sensor operating current	TMPS ^{Note 1}				75.0		μA
LVD operating current	LVD Notes 1, 6				0.08		μA
Self- programming operating current	FSP Notes 1, 8				2.00	12.20	mA
BGO operating current	IBGO Notes 1, 7				2.00	12.20	mA
SNOOZE	ISNOZ Note 1	ADC operation	The mode is performed Note 9		0.50	0.60	mA
operating current			The A/D conversion operations are performed, Low voltage mode, $AV_{REFP} = V_{DD} = 3.0 V$		1.20	1.44	mA
		CSI/UART operation			0.70	0.84	mA

Notes 1. Current flowing to the VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and IFIL and ITMKA when the 12-bit interval timer operates.
- 4. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.
- 5. Current flowing only to the A/D converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 6. Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit operates.
- 7. Current flowing only during data flash rewrite.
- 8. Current flowing only during self programming.
- 9. For shift time to the SNOOZE mode, see 17.3.3 SNOOZE mode.

Remarks 1. fil: Low-speed on-chip oscillator clock frequency

2. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-spee Mode	,	Unit	
				MIN.	MAX.	MIN.	MAX.		
SCKp cycle time	tkCY1	$t_{KCY1} \geq 4/f_{CLK}$	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	300		1150		ns	
			$2.7~V \leq V_b \leq 4.0~V,$						
			$C_{b}=30 \text{ pF}, \text{R}_{b}=1.4 \text{k}\Omega$						
			$2.7~V \leq V_{\text{DD}} < 4.0~V,$	500		1150		ns	
			$2.3~V \leq V_b \leq 2.7~V,$						
			$C_{b}=30 \text{ pF}, \text{R}_{b}=2.7 \text{k}\Omega$						
			$1.8~V \leq V_{\text{DD}} < 3.3~V,$	1150		1150		ns	
			1.6 V \leq V_b \leq 2.0 V $^{\text{Note}}$,						
			C_b = 30 pF, R_b = 5.5 k Ω						
SCKp high-level width	tкнı	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V,$		tксү1/2 –75		tксү1/2-75		ns	
		$C_b=30 \text{ pF}, \text{R}_b=1.4 \text{k} \Omega$							
		$2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V,$		tkcy1/2-170		tксү1/2–170		ns	
		$C_{b}=30 \text{ pF}, \text{R}_{b}=2.7 \text{k}\Omega$							
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} <$	3.3 V, 1.6 V \leq V_b \leq 2.0 V $^{\text{Note}}$,	tксү1/2 –458		tксү1/2-458		ns	
		$C_b = 30 \text{ pF}, \text{ R}$	$h_{b} = 5.5 \text{ k}\Omega$						
SCKp low-level width	tĸ∟1	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V, 2.7 V \leq V_b \leq 4.0 V,	tксү1/2 −12		tксү1/2–50		ns	
		$C_b = 30 \text{ pF}, \text{ R}$	b = 1.4 kΩ						
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} <$	$4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$	tксү1/2-18		tксү1/2–50		ns	
		$C_b = 30 \text{ pF}, \text{ R}$	$h_b = 2.7 \text{ k}\Omega$						
		$1.8 \ \text{V} \leq \text{V}_{\text{DD}} < 3.3 \ \text{V}, \ 1.6 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.0 \ \text{V}^{\text{Note}},$		tксү1/2 –50		tксү1/2–50		ns	
		$C_{b} = 30 \text{ pF}, \text{ R}$	$h_{\rm b} = 5.5 \ {\rm k}\Omega$						

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

 $\label{eq:Note} \textbf{Note} \quad \textbf{Use it with } V_{\text{DD}} \geq V_{\text{b}}.$

- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.
- **Remarks 1.** R_b [Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b [F]: Communication line (SCKp, SOp) load capacitance, V_b [V]: Communication line voltage
 - **2.** p: CSI number (p = 00, 20)

Parameter	Symbol	C	onditions	HS (high-spo Mod	,	LS (low-spe Mod		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	t ксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	20 MHz < fmck \leq 24 MHz	12/fмск		-		ns
		$2.7~V \leq V_b \leq 4.0~V$	8 MHz < fмск ≤ 20 MHz	10/fмск		-		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	8/fмск		16/fмск		ns
			fмск \leq 4 MHz	6/fмск		10/f мск		ns
		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	20 MHz < fмск \leq 24 MHz	16/fмск		I		ns
		$2.3~V \leq V_b \leq 2.7~V$	16 MHz < fмск \leq 20 MHz	14/fмск		ļ		ns
			8 MHz < fmck \leq 16 MHz	12/fмск		I		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	8/fмск		16/f мск		ns
			fмск ≤ 4 MHz	6/fмск		10/f мск		ns
		$1.8~V \leq V_{\text{DD}} < 3.3~V,$	20 MHz < fмск \leq 24 MHz	36/fмск		I		ns
		$1.6~V \leq V_b \leq 2.0~V$	16 MHz < fмск \leq 20 MHz	32/fмск		ļ		ns
		Note 2	8 MHz < fmck \leq 16 MHz	26/f мск		ļ		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	16/fмск		16/fмск		ns
			fмск \leq 4 MHz	10/fмск		10/f мск		ns
SCKp high-/low-level	tкн₂, tк∟₂	$4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V$		tксү2/2 – 12		tксү2/2 – 50		ns
width		$2.7 \ V \le V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \le V_{\text{b}} \le 2.7 \ V$		tkcy2/2 - 18		tксү2/2 – 50		ns
		$1.8~V \leq V_{\text{DD}} < 3.3~V,$	$1.6~V \leq V_{b} \leq 2.0~V^{\text{Note 2}}$	tkcy2/2 - 50		tксү2/2 – 50		ns
SIp setup time	tsik2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	$2.7~V \leq V_{\text{DD}} \leq 4.0~V$	1/fмск + 20		1/fмск + 30		ns
(to SCKp↑) ^{Note 3}		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	$2.3~V \leq V_{\text{b}} \leq 2.7~V$	1/fмск + 20		1/fмск + 30		ns
		$1.8~V \leq V_{\text{DD}} < 3.3~V,$	$1.6~V \leq V_{\text{DD}} \leq 2.0~V^{\text{Note 2}}$	1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) ^{Note 4}	tksi2			1/fмск + 31		1/fмск + 31		ns
Delay time from	tĸso2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	$2.7~V \leq V_b \leq 4.0~V,$		2/fмск +		2/fмск +	ns
SCKp↓ to SOp		$C_b = 30 \text{ pF}, \text{ R}_b = 1.4$	kΩ		120		573	
output Note 5		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	$2.3~V \leq V_{b} \leq 2.7~V,$		2/fмск +		2/fмск +	ns
		$C_b = 30 \text{ pF}, \text{ R}_b = 2.7$	kΩ		214		573	
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V},$	$1.6~V \leq V_{b} \leq 2.0~V^{\text{Note 2}},$		2/fмск +		2/fмск +	ns
		C _b = 30 pF, R _b = 5.5	kΩ		573		573	

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) ($T_A = -40$ to $+85^{\circ}$ C, 1.8 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

 $\textbf{2.} \quad \textbf{Use it with } V_{\text{DD}} \geq V_{\text{b}}.$

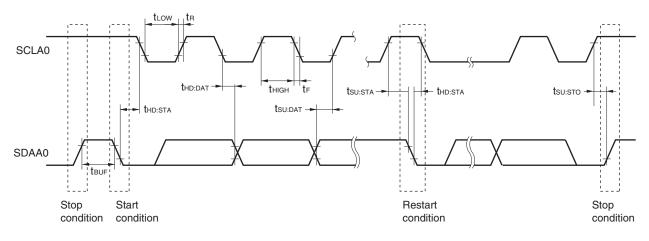
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Cautions 1. Select the TTL input buffer for the SIp and SCKp pins and the N-ch open drain output (Vbb tolerance) mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For ViH and ViL, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.

2.5.2 Serial interface IICA

Parameter	Symbol	Conditions HS (high-spe			ed main) n	Unit	
			LS	(low-spee	ed main) mode		
			Standa	rd Mode	Fast	Mode	
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode: fclk≥ 3.5 MHz			0	400	kHz
		Normal mode: fcLK≥ 1 MHz	0	100			kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μS
Hold time ^{Note 1}	thd:sta		4.0		0.6		μS
Hold time when SCLA0 = "L"	tLOW		4.7		1.3		μs
Hold time when SCLA0 = "H"	tніgн		4.0		0.6		μs
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission) ^{Note 2}	thd:dat		0	3.45	0	0.9	μs
Setup time of stop condition	tsu:sto		4.0		0.6		μs
Bus-free time	t BUF		4.7		1.3		μs

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

<R>


The first clock pulse is generated after this period when the start/restart condition is detected. Notes 1.

2. The maximum value (MAX.) of thD:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

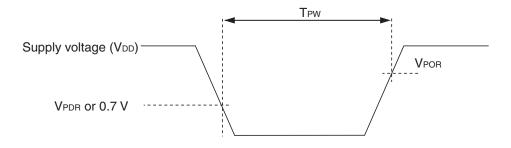
- Caution Only in the 30-pin products, the values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Normal mode:	$C_b = 400 \text{ pF}, \text{ Rb} = 2.7 \text{ k}\Omega$
Fast mode:	C_b = 320 pF, Rb = 1.1 k Ω

IICA serial transfer timing

2.6.2 Temperature sensor/internal reference voltage characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.50	V
Temperature coefficient	Fvtmps	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

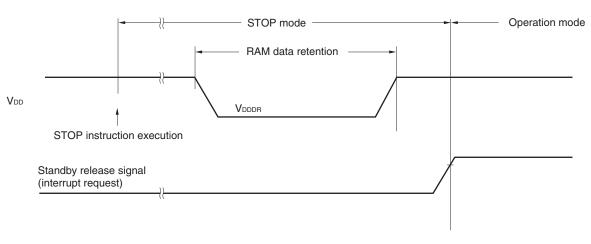

(T_A = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, HS (high-speed main) mode

2.6.3 POR circuit characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.47	1.51	1.55	V
	VPDR	Power supply fall time	1.46	1.50	1.54	V
Minimum pulse width Note	TPW		300			μS

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).



<R> 2.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$						
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vdddr		1.46 ^{Note}		5.5	V

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

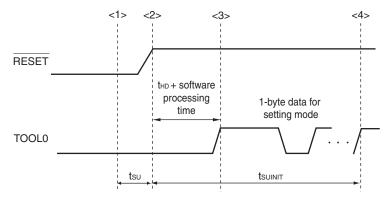
2.8 Flash Memory Programming Characteristics

<r></r>	Parameter Symbo		Conditions	MIN.	TYP.	MAX.	Unit
	System clock frequency	fclĸ		1		24	MHz
	Code flash memory rewritable times Notes 1, 2, 3		Retained for 20 years	1,000			Times
			$T_A = 85^{\circ}C$				
	Data flash memory rewritable times Notes 1, 2, 3		Retained for 1 year		1,000,000		
			$T_A = 25^{\circ}C$				
			Retained for 5 years	100,000			
			$T_A = 85^{\circ}C$				
			Retained for 20 years	10,000			
			$T_A = 85^{\circ}C$				

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

2.9 Dedicated Flash Memory Programmer Communication (UART)


Parameter	Symbol	Symbol Conditions		TYP.	MAX.	Unit		
Transfer rate		During serial programming	115,200		1,000,000	bps		

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

2.10 Timing of Entry to Flash Memory Programming Modes

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset are released before external reset release			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	ts∪	POR and LVD reset are released before external reset release	10			μS
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset are released before external reset release	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - t_{SU} : Time to release the external reset after the TOOL0 pin is set to the low level
 - the: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

<R> 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS $T_A = -40$ to +105°C)

<R> This chapter describes the following electrical specifications.

Target products G: Industrial applications $T_A = -40$ to $+105^{\circ}C$

<R> R5F102xxGxx

- **Cautions 1.** The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product.
 - **3.** Please contact Renesas Electronics sales office for derating of operation under $T_A = +85^{\circ}C$ to $+105^{\circ}C$. Derating is the systematic reduction of load for the sake of improved reliability.

Remark When the RL78 microcontroller is used in the range of T_A = -40 to +85 °C, see CHAPTER 28 <R> ELECTRICAL SPECIFICATIONS (A: T_A = -40 to +85 °C).

There are following differences between the products "G: Industrial applications ($T_A = -40$ to $+105^{\circ}C$)" and the products "A: Consumer applications, and D: Industrial applications".

Parameter	Арр	lication
	A: Consumer applications, D: Industrial applications	G: Industrial applications
Operating ambient temperature	T _A = -40 to +85°C	T _A = -40 to +105°C
Operating mode	HS (high-speed main) mode:	HS (high-speed main) mode only:
Operating voltage range	$2.7~V \leq V_{\text{DD}} \leq 5.5~V@1~MHz$ to 24 MHz	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$ @ 1 MHz to 24 MHz
	2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$ @1 MHz to 16 MHz
	LS (low-speed main) mode:	
	1.8 V \leq V_{DD} \leq 5.5 V@1 MHz to 8 MHz	
High-speed on-chip oscillator clock	R5F102 products, 1.8 V \leq V_DD \leq 5.5 V:	R5F102 products, 2.4 V \leq V _{DD} \leq 5.5 V:
accuracy	±1.0%@ T _A = -20 to +85°C	±2.0%@ T _A = +85 to +105°C
	$\pm 1.5\%$ @ T _A = -40 to -20°C	±1.0%@ T _A = -20 to +85°C
	R5F103 products, 1.8 V \leq V_DD \leq 5.5 V:	±1.5% @ T _A = -40 to -20°C
	±5.0%@ T _A = -40 to +85°C	
Serial array unit	UART	UART
	CSI: fcLK/2 (supporting 12 Mbps), fcLK/4	CSI: fclk/4
	Simplified I ² C communication	Simplified I ² C communication
Voltage detector	Rise detection voltage: 1.88 V to 4.06 V	Rise detection voltage: 2.61 V to 4.06 V
	(12 levels)	(8 levels)
	Fall detection voltage: 1.84 V to 3.98 V	Fall detection voltage: 2.55 V to 3.98 V
	(12 levels)	(8 levels)

Remark The electrical characteristics of the products G: Industrial applications (T_A = -40 to +105°C) are different from those of the products "A: Consumer applications, and D: Industrial applications". For details, refer to 29.1 to 29.10.

3.3.2 Supply current characteristics

(1) 20-, 24-pin products

<u>(1A = 10 to</u>	1100 0,		<u> </u>	•••)						("-/
Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	DD1	Operating	HS (High-speed	$f_{\text{IH}} = 24 \text{ MHz}^{\text{Note 3}}$	Basic	$V_{DD} = 5.0 V$		1.5		mA
current ^{Note 1}		mode	main) mode ^{Note 4}		operation	VDD = 3.0 V		1.5		
					Normal	$V_{DD} = 5.0 V$		3.3	5.3	mA
					operation	$V_{DD} = 3.0 V$		3.3	5.3	
				$f_{\text{IH}} = 16 \text{ MHz}^{\text{Note 3}}$		$V_{DD} = 5.0 V$		2.5	3.9	mA
						$V_{DD} = 3.0 V$		2.5	3.9	
				$f_{MX} = 20 \text{ MHz}^{Note 2},$		Square wave input		2.8	4.7	mA
				$V_{DD} = 5.0 V$		Resonator connection		3.0	4.8	
				$f_{MX} = 20 \text{ MHz}^{Note 2},$		Square wave input		2.8	4.7	mA
				VDD = 3.0 V		Resonator connection		3.0	4.8	
				$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		1.8	2.8	mA
				$V_{DD} = 5.0 V$		Resonator connection		1.8	2.8	
				$f_{MX} = 10 \text{ MHz}^{Note 2}$,		Square wave input		1.8	2.8	mA
				$V_{DD} = 3.0 V$		Resonator connection		1.8	2.8	

Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. When high-speed on-chip oscillator clock is stopped.
- **3.** When high-speed system clock is stopped
- 4. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode: $V_{DD} = 2.7$ V to 5.5 V @1 MHz to 24 MHz V_{DD} = 2.4 V to 5.5 V @1 MHz to 16 MHz

- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$.

(1/2)

(2) 30-pin products

<u>(Ta = -40 to</u>	+105°C,	2.4 V ≤ V	DD \leq 5.5 V, Vss =	= 0 V)		_	-		(2/2)
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	DD2 Note 2	HALT	HS (High-speed	$f_{IH} = 24 \text{ MHz}^{Note 4}$	$V_{DD} = 5.0 V$		440	2300	μA
current Note 1		mode	main) mode ^{Note 6}		$V_{DD} = 3.0 V$		440	2300	
				$f_{IH} = 16 \text{ MHz}^{Note 4}$	$V_{DD} = 5.0 V$		400	1700	μA
					$V_{DD} = 3.0 V$		400	1700	
				$f_{MX} = 20 \text{ MHz}^{Note 3}$,	Square wave input		280	1900	μA
			$V_{DD} = 5.$	$V_{DD} = 5.0 V$	Resonator connection		450	2000	
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		280	1900	μA
				$V_{DD} = 3.0 V$	Resonator connection		450	2000	
				$\label{eq:MX} \begin{split} f_{\text{MX}} &= 10 \ \text{MHz}^{\text{Note 3}}, \\ V_{\text{DD}} &= 5.0 \ \text{V} \end{split}$	Square wave input		190	1020	μA
					Resonator connection		260	1100	
				$f_{MX} = 10 \text{ MHz}^{Note 3}$,	Square wave input		190	1020	μA
				$V_{DD} = 3.0 V$	Resonator connection		260	1100	
	DD3 Note 5	STOP	$T_A = -40^{\circ}C$				0.18	0.50	μA
	m	mode	T _A = +25°C				0.23	0.50	
			T _A = +50°C				0.30	1.10	
			T _A = +70°C	$T_A = +70^{\circ}C$			0.46	1.90	
			T _A = +85°C				0.75	3.30	
			T _A = +105°C				2.94	15.30	

Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. During HALT instruction execution by flash memory.
- 3. When high-speed on-chip oscillator clock is stopped.
- 4. When high-speed system clock is stopped.
- Not including the current flowing into the 12-bit interval timer and watchdog timer. 5.
- 6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS (High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz VDD = 2.4 V to 5.5 V @1 MHz to 16 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except STOP mode, temperature condition of the TYP. value is TA = 25°C.

Baud rate error (theoretical value) =

$$) = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \,[\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
- 5. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq VDD < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =

 $\begin{array}{c} \displaystyle \frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \\ \hline \\ \displaystyle (\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits} \end{array} \times 100 \ [\%]$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- 6. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 5** above to calculate the maximum transfer rate under conditions of the customer.
- 7. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.4 V \leq V_DD < 3.3 V, 1.6 V \leq V_b \leq 2.0 V

Maximum transfer rate =

$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = $\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \,[\%]$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 7 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3)

Symbol		Conditions	HS (high-speed	Unit	
			MIN.	MAX.	
tkcy1	$t_{KCY1} \geq 4/f_{CLK}$	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	600		ns
		$2.7~V \leq V_{b} \leq 4.0~V,$			
		C_b = 30 pF, R_b = 1.4 k Ω			
		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	1000		ns
		$2.3~V \leq V_{b} \leq 2.7~V,$			
		C_b = 30 pF, R_b = 2.7 k Ω			
		$2.4~V \leq V_{\text{DD}} < 3.3~V,$	2300		ns
		$1.6 V \le V_b \le 2.0 V$,			
		C_b = 30 pF, R_b = 5.5 k Ω			
tкнı	$4.0 \text{ V} \le V_{\text{DD}} \le 5.5 \text{ V}, 2.7 \text{ V} \le V_{\text{b}} \le 4.0 \text{ V},$		tксү1/2 –150		ns
	$C_b = 30 \text{ pF}, R_b = 1.4 k\Omega$				
	$2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V,$		tĸcy1/2 –340		ns
	$C_b = 30 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$				
			tксү1/2 –916		ns
tĸ∟1	$4.0 V \leq V_{DD} \leq$	5.5 V, 2.7 V \leq V _b \leq 4.0 V,	tксү1/2 –24		ns
			tксү1/2 –36		ns
			tkcy1/2 -100		ns
		, , , , ,			
	tксу1 tксу1 tкн1 tкн1	tkcy1 tkcy1 ≥ 4/fcLk tkcy1 tkcy1 ≥ 4/fcLk tkH1 4.0 V ≤ VDD ≤ Cb = 30 pF, Ri 2.7 V ≤ VDD <	$\begin{tabular}{ c c c c c c c } t κ CY1 & t t κ CY1 & t t κ CY1 & t t k CY1 & t t t t t t t t t $$	$\begin{tabular}{ c c c c } \hline trcy1 & trcy1 \ge 4/f_{GLK} & 4.0 \ V \le V_{DD} \le 5.5 \ V, & 600 \\ \hline trcy1 & trcy1 \ge 4/f_{GLK} & 4.0 \ V \le V_{DD} \le 5.5 \ V, & 600 \\ \hline 2.7 \ V \le V_b \le 4.0 \ V, & 2.7 \ V \le V_b \le 4.0 \ V, & 2.7 \ V \le V_{DD} < 4.0 \ V, & 2.7 \ V \le V_{DD} < 4.0 \ V, & 1000 \\ \hline 2.3 \ V \le V_{DD} < 4.0 \ V, & 2.7 \ V \le V_{DD} < 4.0 \ V, & 2.3 \ V \le 2.7 \ V, & 2300 \\ \hline 1.6 \ V \le V_{DD} < 3.3 \ V, & 1.6 \ V \le 2.0 \ V, & 1000 \\ \hline C_b = 30 \ pF, \ R_b = 1.4 \ R\Omega & 2000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 5.5 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 1.4 \ R\Omega & 2000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 1.4 \ R\Omega & 2000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 2.7 \ R\Omega & 2000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 2.7 \ R\Omega & 2.4 \ V \le V_{DD} < 4.0 \ V, \ 2.3 \ V \le V_b \le 2.0 \ V, & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 5.5 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 5.5 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 5.5 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 1.4 \ R\Omega & 2000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 5.5 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 5.5 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 1.4 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 1.4 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 1.4 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 1.4 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 1.4 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 1.4 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 1.4 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 1.4 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ pF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ PF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ PF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ PF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ PF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline T_{Cb} = 30 \ PF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline T_{Cb} = 300 \ PF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline T_{Cb} = 300 \ PF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline T_{Cb} = 300 \ PF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline T_{Cb} = 300 \ PF, \ R_b = 2.7 \ R\Omega$	$ \begin{array}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.
- **Remarks 1.** R_b [Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b [F]: Communication line (SCKp, SOp) load capacitance, V_b [V]: Communication line voltage
 - **2.** p: CSI number (p = 00, 20)

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

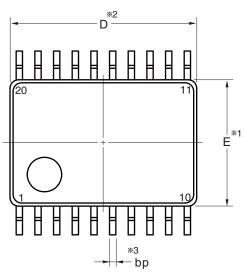
Input channel	Reference Voltage							
	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = VDD Reference voltage (-) = Vss	Reference voltage (+) = VBGR Reference voltage (-) = AVREFM					
ANI0 to ANI3	Refer to 29.6.1 (1).	Refer to 29.6.1 (3).	Refer to 29.6.1 (4).					
ANI16 to ANI22	Refer to 29.6.1 (2) .							
Internal reference voltage	Refer to 29.6.1 (1).		-					
Temperature sensor output voltage								

(1) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin: ANI2, ANI3, internal reference voltage, and temperature sensor output voltage

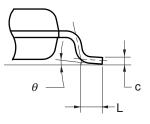
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AV}_{REFP} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}			1.2	±3.5	LSB
Conversion time	tconv	10-bit resolution Target pin: ANI2, ANI3	$3.6~V \leq V\text{DD} \leq 5.5~V$	2.125		39	μS
			$2.7~V \leq V\text{DD} \leq 5.5~V$	3.1875		39	μS
			$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μS
		10-bit resolution Target pin: Internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$3.6~V \leq V\text{DD} \leq 5.5~V$	2.375		39	μS
			$2.7~V \leq V\text{DD} \leq 5.5~V$	3.5625		39	μS
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±0.25	%FSR
Full-scale error ^{Notes 1, 2}	EFS	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±0.25	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±2.5	LSB
Differential linearity error	DLE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±1.5	LSB
Analog input voltage VAIN		ANI2, ANI3		0		AVREFP	V
		Internal reference voltage (HS (high-speed main) mode)		VBGR Note 4			V
		Temperature sensor output voltage (HS (high-speed main) mode)		VTMPS25 Note 4			V

(Notes are listed on the next page.)


4. PACKAGE DRAWINGS

4.1 20-pin products


R5F1026AASP, R5F10269ASP, R5F10268ASP, R5F10267ASP, R5F10266ASP R5F1036AASP, R5F10369ASP, R5F10368ASP, R5F10367ASP, R5F10366ASP R5F1026ADSP, R5F10269DSP, R5F10268DSP, R5F10267DSP, R5F10266DSP R5F1036ADSP, R5F10369DSP, R5F10368DSP, R5F10367DSP, R5F10366DSP R5F1026AGSP, R5F10269GSP, R5F10268GSP, R5F10267GSP, R5F10266GSP

<R>

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP20-4.4x6.5-0.65	PLSP0020JB-A	P20MA-65-NAA-1	0.1

 detail of lead end

	(UNIT:mm)		
ITEM	DIMENSIONS		
D	6.50±0.10		
E	4.40±0.10		
HE	6.40±0.20		
А	1.45 MAX.		
A1	0.10±0.10		
A2	1.15		
е	0.65±0.12		
bp	0.22 + 0.10 - 0.05		
С	0.15 + 0.05 - 0.02		
L	0.50±0.20		
У	0.10		
θ	0° to 10°		

©2012 Renesas Electronics Corporation. All rights reserved.

1.Dimensions "%1" and "%2" do not include mold flash.

2.Dimension "X3" does not include trim offset.

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
- "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information

RENESAS

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

California Eastern Laboratories. Inc. 4590 Patrick Henry Drive, Santa Clara, California 95054-1817, U.S.A Tel: +1-408-919-2500, Fax: +1-408-988-0279 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited ntury Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong t 1601-1611, 16/F., Tower 2, Grand Cen : +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777 Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141