

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	14
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10369asp-v5

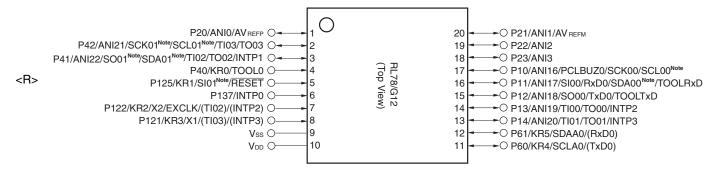
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1-1.	List of	Ordering	Part	Numbers
------------	---------	----------	------	---------

	Pin count	Package	Data flash	Fields of Application	Part Number
<r></r>	20 20-pin plastic Mounte pins LSSOP (4.4 × 6.5 mm, 0.65 mm pitch)	Mounted	A	R5F1026AASP#V5, R5F10269ASP#V5, R5F10268ASP#V5, R5F10267ASP#V5, R5F10266ASP#V5 R5F1026AASP#X5, R5F10269ASP#X5, R5F10268ASP#X5, R5F10267ASP#X5, R5F10266ASP#X5	
				D	R5F1026ADSP#V5, R5F10269DSP#V5, R5F10268DSP#V5, R5F10267DSP#V5, R5F10266DSP#V5 R5F1026ADSP#X5, R5F10269DSP#X5, R5F10268DSP#X5, R5F10267DSP#X5, R5F10266DSP#X5
				G	R5F1026AGSP#V5, R5F10269GSP#V5, R5F10268GSP#V5, R5F10267GSP#V5, R5F10266GSP#V5 R5F1026AGSP#X5, R5F10269GSP#X5, R5F10268GSP#X5, R5F10267GSP#X5, R5F10266GSP#X5
			Not mounted	A	R5F1036AASP#V5, R5F10369ASP#V5, R5F10368ASP#V5, R5F10367ASP#V5, R5F10366ASP#V5 R5F1036AASP#X5, R5F10369ASP#X5, R5F10368ASP#X5, R5F10367ASP#X5, R5F10366ASP#X5
				D	R5F1036ADSP#V5, R5F10369DSP#V5, R5F10368DSP#V5, R5F10367DSP#V5, R5F10366DSP#V5 R5F1036ADSP#X5, R5F10369DSP#X5, R5F10368DSP#X5, R5F10367DSP#X5, R5F10366DSP#X5
<r></r>	pins H ¹ (4	24-pin plastic HWQFN (4 × 4 mm, 0.5 mm pitch)	Mounted	A	R5F1027AANA#U5, R5F10279ANA#U5, R5F10278ANA#U5, R5F10277ANA#U5 R5F1027AANA#W5, R5F10279ANA#W5, R5F10278ANA#W5, R5F10277ANA#W5
				D	R5F1027ADNA#U5, R5F10279DNA#U5, R5F10278DNA#U5, R5F10277DNA#U5 R5F1027ADNA#W5, R5F10279DNA#W5, R5F10278DNA#W5, R5F10277DNA#W5
					G
			Not mounted	А	R5F1037AANA#V5, R5F10379ANA#V5, R5F10378ANA#V5, R5F10377ANA#V5
					R5F1037AANA#X5, R5F10379ANA#X5, R5F10378ANA#X5, R5F10377ANA#X5
				D	R5F1037ADNA#V5, R5F10379DNA#V5, R5F10378DNA#V5, R5F10377DNA#V5 R5F1037ADNA#X5, R5F10379DNA#X5, R5F10378DNA#X5, R5F10377DNA#X5
	30 pins	30-pin plastic LSSOP	Mounted	A	R5F102AAASP#V0, R5F102A9ASP#V0, R5F102A8ASP#V0, R5F102A7ASP#V0 R5F102AAASP#X0, R5F102A9ASP#X0, R5F102A8ASP#X0, R5F102A7ASP#X0
		(7.62 mm (300), 0.65 mm		D	R5F102AADSP#V0, R5F102A9DSP#V0, R5F102A8DSP#V0, R5F102A7DSP#V0 R5F102AADSP#X0, R5F102A9DSP#X0, R5F102A8DSP#X0, R5F102A7DSP#X0
		pitch)		G	R5F102AAGSP#V0, R5F102A9GSP#V0, R5F102A8GSP#V0, R5F102AAGSP#V0 R5F102AAGSP#X0, R5F102A9GSP#X0, R5F102A8GSP#X0, R5F102A7GSP#X0
			Not mounted	А	R5F103AAASP#V0, R5F103A9ASP#V0, R5F103A8ASP#V0, R5F103A7ASP#V0 R5F103AAASP#X0, R5F103A9ASP#X0, R5F103A8ASP#X0, R5F103A7ASP#X0
				D	R5F103AADSP#V0, R5F103A9DSP#V0, R5F103A8DSP#V0, R5F103A7DSP#V0 R5F103AADSP#X0, R5F103A9DSP#X0, R5F103A8DSP#X0, R5F103A7DSP#X0

Note For fields of application, see Figure 1-1 Part Number, Memory Size, and Package of RL78/G12.


Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.4 Pin Configuration (Top View)

1.4.1 20-pin products

• 20-pin plastic LSSOP (4.4 × 6.5 mm, 0.65 mm pitch)

Note Provided only in the R5F102 products.

- Remarks 1. For pin identification, see 1.5 Pin Identification.
 - 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR).

Item		20-	pin	24-	pin	30-p	oin			
		R5F1026x	R5F1036x	R5F1027x	R5F1037x	R5F102Ax	R5F103Ax			
Clock output/buzzer ou	utput			1		2 Hz operation) 8 channels				
		2.44 kHz to 10	10 MHz: (Peripheral hardware clock: fmain = 20 MHz operation) 11 channels 8 cl							
8/10-bit resolution A/D	converter		11 ch	annels		8 char	nnels			
Serial interface		[R5F1026x (20	-pin), R5F1027	k (24-pin)]						
		• CSI: 2 chann	els/Simplified I ²	C: 2 channels/U	ART: 1 channel					
		[R5F102Ax (30)-pin)]							
		・CSI: 1 chann	el/Simplified I ² C	: 1 channel/UAF	RT: 1 channel					
		・CSI: 1 chann	el/Simplified I ² C	: 1 channel/UAF	RT: 1 channel					
		・CSI: 1 chann	el/Simplified I ² C	: 1 channel/UAF	RT: 1 channel					
		[R5F1036x (20	-pin), R5F1037:	k (24-pin)]						
		CSI: 1 chann	el/Simplified I ² C	: 0 channel/UAF	RT: 1 channel					
		[R5F103Ax (30-pin)]								
		CSI: 1 channel/Simplified I ² C: 0 channel/UART: 1 channel								
	I ² C bus			1 cha	annel					
Multiplier and divider/m	nultiply-	• 16 bits × 16 bits = 32 bits (unsigned or signed)								
accumulator		• 32 bits × 32 bits = 32 bits (unsigned)								
		• 16 bits × 16 b	its + 32 bits = 3	2 bits (unsigned	or signed)	T				
DMA controller	1	2 channels		2 channels		2 channels				
Vectored interrupt	Internal	18	16	18	16	26	19			
sources	External			5		6				
Key interrupt		6		1	0	_	-			
Reset		Reset by RES								
			by watchdog til							
			Internal reset by power-on-resetInternal reset by voltage detector							
		 Internal reset by illegal instruction execution ^{Note} 								
		Internal reset by RAM parity error								
		Internal reset by illegal-memory access								
Power-on-reset circuit		Power-on-reset: 1.51 V (TYP) Power-down-reset: 1.50 V (TYP)								
Voltage detector		Rising edge :	1.88 to 4.06 V	(12 stages)						
		• Falling edge : 1.84 to 3.98 V (12 stages)								
On-chip debug function	n	Provided								
Power supply voltage		V _{DD} = 1.8 to 5.5	5 V							
Operating ambient terr	perature	$T_A = -40$ to +85°C (A: Consumer applications, D: Industrial applications), $T_A = -40$ to +105°C (G: Industrial applications)								

 $\label{eq:Note} \textbf{Note} \quad \text{The illegal instruction is generated when instruction code FFH is executed.}$

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

2.3 DC Characteristics

2.3.1 Pin characteristics

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42 30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147				-10.0 Note 2	mA
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-30.0	mA
		Total of P40 to P42	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-6.0	mA
		30-pin products: Total of P00, P01, P40, P120 (When duty \leq 70% ^{Note 3})	$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			-4.5	mA
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-80.0	mA
		Total of P00 to P03 ^{Note 4} , P10 to P14	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-18.0	mA
		30-pin products: Total of P10 to P17, P30, P31, P50, P51, P147 (When duty \leq 70% ^{Note 3})	$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			-10.0	mA
		Total of all pins (When duty $\leq 70\%^{Note 3}$)				-100	mA
	Іон2	Per pin for P20 to P23				-0.1	mA
utput current, high ^{Note 1}		Total of all pins				-0.4	mA

Notes 1. value of current at which the device operation is guaranteed even if the current flows from the VDD pin to an output pin.

- 2. However, do not exceed the total current value.
- 3. The output current value under conditions where the duty factor \leq 70%. If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).
 - Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$ <Example> Where n = 80% and IOH = -10.0 mA
 - Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

- 4. 24-pin products only.
- Caution P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24-pin products, and P00, P10 to P15, P17, and P50 for 30-pin products do not output high level in N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(1/2)

(2) 30-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit		
Supply	IDD1	Operating	, U I	$f_{\text{IH}} = 24 \; MHz^{\text{Note 3}}$	Basic	$V_{DD} = 5.0 V$		1.5		mA		
current Note 1		mode	main) mode ^{™e₄}		operation	$V_{DD} = 3.0 V$		1.5				
					Normal	$V_{DD} = 5.0 V$		3.7	5.5	mA		
					operation	V _{DD} = 3.0 V		3.7	5.5			
	$f_{IH} = 16 \ MHz^{Note \ 3}$		$V_{DD} = 5.0 V$		2.7	4.0	mA					
						V _{DD} = 3.0 V		2.7	4.0			
			LS (Low-speed main) mode ^{Note 4}	f⊩ = 8 MHz ^{№te3}		$V_{DD} = 3.0 V$		1.2	1.8	mA		
						V _{DD} = 2.0 V		1.2	1.8			
			HS (High-speed main) mode ^{Note 4}	$f_{\text{MX}} = 20 \text{ MHz}^{\text{Note 2}},$ $V_{\text{DD}} = 5.0 \text{ V}$		Square wave input		3.0	4.6	mA		
						Resonator connection		3.2	4.8			
				$f_{MX} = 20 \text{ MHz}^{Note 2},$		Square wave input		3.0	4.6	mA		
				$V_{DD} = 3.0 \text{ V}$		Resonator connection		3.2	4.8			
				$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		1.9	2.7	mA		
				$V_{DD} = 5.0 V$		Resonator connection		1.9	2.7			
				$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		1.9	2.7	mA		
				$V_{DD} = 3.0 V$		Resonator connection		1.9	2.7			
				Ī	LS (Low-speed	$f_{MX} = 8 \text{ MHz}^{Note 2}$,		Square wave input		1.1	1.7	mA
			main) mode ^{Note 4} V _{DD} =	$V_{DD} = 3.0 V$		Resonator connection		1.1	1.7			
				$f_{MX} = 8 \text{ MHz}^{Note 2},$		Square wave input		1.1	1.7	mA		
				$V_{DD} = 2.0 V$		Resonator connection		1.1	1.7			

Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. When high-speed on-chip oscillator clock is stopped.
- 3. When high-speed system clock is stopped
- 4. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode: $V_{DD} = 2.7 \text{ V}$ to 5.5 V @1 MHz to 24 MHz $V_{DD} = 2.4 \text{ V}$ to 5.5 V @1 MHz to 16 MHz

LS(Low speed main) mode: $V_{DD} = 1.8 V$ to 5.5 V @1 MHz to 8 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$.

- 5. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
- 6. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq V_DD < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-Cb \times Rb \times ln (1 - \frac{2.0}{Vb})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =

 $\begin{array}{c} \displaystyle \frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \\ \hline \\ \displaystyle (\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits} \end{array} \times 100 \ [\%]$ * This value is the theoretical value of the relative difference between the transmission and reception sides.

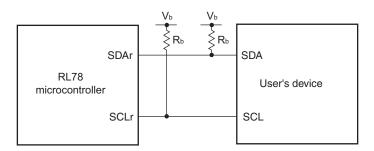
- 7. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.
- 8. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq V_DD < 3.3 V, 1.6 V \leq V_b \leq 2.0 V

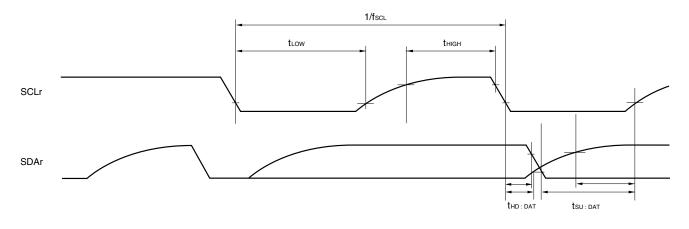
Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =

$$\frac{1}{\text{ransfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\}$$


$$\frac{1}{(1 - \frac{1.5}{V_b})} \times 100 \,[\%]$$
Transfer rate

* This value is the theoretical value of the relative difference between the transmission and reception sides.


- 9. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 8 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDg pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and V_{IL}, see the DC characteristics with TTL input buffer selected.

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b [Ω]: Communication line (SDAr, SCLr) pull-up resistance, C_b [F]: Communication line (SDAr, SCLr) load capacitance, V_b [V]: Communication line voltage
 - **2.** r: IIC Number (r = 00, 20)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number (m = 0,1), n: Channel number (n = 0))
 - 4. Simplified l^2 C mode is supported only by the R5F102 products.

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Input channel		Reference Voltage						
	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = VDD Reference voltage (-) = Vss	Reference voltage (+) = VBGR Reference voltage (-) = AVREFM					
ANI0 to ANI3	Refer to 28.6.1 (1).	Refer to 28.6.1 (3).	Refer to 28.6.1 (4).					
ANI16 to ANI22	Refer to 28.6.1 (2).							
Internal reference voltage	Refer to 28.6.1 (1).		-					
Temperature sensor output voltage								

(1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI2, ANI3, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{VDD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{AV}_{\text{REFP}}, \text{ Reference voltage (-)} = \text{AV}_{\text{REFM}} = 0 \text{ V})$

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution		1.2	±3.5	LSB	
		$AV_{REFP} = V_{DD}{}^{Note 3}$			1.2	$\pm 7.0^{\text{Note 4}}$	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V\text{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI2, ANI3	$2.7~V \leq V \text{dd} \leq 5.5~V$	3.1875		39	μS
			$1.8~V \leq V \text{DD} \leq 5.5~V$	17		39	μS
				57		95	μS
		10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: Internal	$2.7~V \leq V\text{DD} \leq 5.5~V$	3.5625		39	μS
		reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution AVREFP = VDD Note 3				±0.25 ±0.50 ^{Note 4}	%FSR
Full-scale error ^{Notes 1, 2}	EFS	10-bit resolution					%FSR
Full-scale error	EFS	$AV_{REFP} = V_{DD}^{Note 3}$				±0.25 ±0.50 ^{Note 4}	%FSR %FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution				±0.50 ±2.5	LSB
		$AV_{REFP} = V_{DD}^{Note 3}$				$\pm 5.0^{\text{Note 4}}$	LSB
Differential linearity error	DLE	10-bit resolution				±1.5	LSB
Note 1		$AV_{REFP} = V_{DD}^{Note 3}$				$\pm 2.0^{\text{Note 4}}$	LSB
Analog input voltage	VAIN	ANI2, ANI3		0		AVREFP	V
		Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, HS		VBGR ^{Note 5}		V	
		Temperature sensor outp (2.4 V \leq VDD \leq 5.5 V, HS	VTMPS25 Note 5			V	

(Notes are listed on the next page.)

3.3 DC Characteristics

3.3.1 Pin characteristics

Γ _A = –40 to +105°C,	2.4 V ≤	$V_{DD} \leq 5.5 V, V_{SS} = 0 V$					(1/4)
Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Output current, high ^{№ote 1}	Іонı	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42 30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147				-3.0 Note 2	mA
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-9.0	mA
		Total of P40 to P42	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-6.0	mA
		30-pin products: Total of P00, P01, P40, P120 (When duty $\leq 70\%^{\text{Note 3}}$)	$2.4~V \leq V_{DD} < 2.7~V$			-4.5	mA
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-27.0	mA
		Total of P00 to P03 ^{Note 4} , P10 to P14	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-18.0	mA
	30-pin products: Total of P10 to P17, P30, P31, P50, P51, P147 (When duty $\leq 70\%^{\text{Note 3}}$)	$2.4~V \leq V_{\text{DD}} < 2.7~V$			-10.0	mA	
		Total of all pins (When duty $\leq 70\%^{Note 3}$)				-36.0	mA
	Іон2	Per pin for P20 to P23				-0.1	mA
		Total of all pins				-0.4	mA

Notes 1. value of current at which the device operation is guaranteed even if the current flows from the VDD pin to an output pin.

- 2. However, do not exceed the total current value.
- 3. The output current value under conditions where the duty factor \leq 70%. If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).
 - Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$ <Example> Where n = 80% and $I_{OH} = -10.0$ mA
 - Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

- 4. 24-pin products only.
- Caution P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24-pin products, and P00, P10 to P15, P17, and P50 for 30-pin products do not output high level in N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(1) 20-, 24-pin products

(IA = -40 tO)	+105°C, 2	2.4 V ≤ '	Vdd ≤ 5.5 V, Vss	= 0 V					(2/2)				
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit				
Supply	DD2 Note 2	HALT	HS (High-speed	$f_{IH} = 24 \text{ MHz}^{Note 4}$	V _{DD} = 5.0 V		440	2230	μA				
current ^{Note 1}		mode	main) mode ^{Note 6}		V _{DD} = 3.0 V		440	2230					
				$f_{IH} = 16 \text{ MHz}^{Note 4}$	$V_{DD} = 5.0 V$		400	1650	μA				
					V _{DD} = 3.0 V		400	1650					
				fмх = 20 MHz ^{Note 3} ,	Square wave input		280	1900	μA				
				$V_{DD} = 5.0 V$	Resonator connection		450	2000					
				$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$ $V_{\text{DD}} = 3.0 \text{ V}$	Square wave input		280	1900	μA				
					Resonator connection		450	2000					
							fмx =	$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		190	1010	μA
				VDD = 5.0 V	Resonator connection		260	1090					
				$\label{eq:max} \begin{split} f_{\text{MX}} &= 10 \text{ MHz}^{\text{Note 3}}, \\ V_{\text{DD}} &= 3.0 \text{ V} \end{split}$	Square wave input		190	1010	μA				
					Resonator connection		260	1090					
	DD3 Note 5	STOP	$T_A = -40^{\circ}C$				0.19	0.50	μA				
		mode	T _A = +25°C				0.24	0.50					
			$T_A = +50^{\circ}C$				0.32	0.80					
			$T_{A} = +70^{\circ}C$ $T_{A} = +85^{\circ}C$				0.48	1.20					
							0.74	2.20					
				T _A = +105°C				1.50	10.20				

Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. During HALT instruction execution by flash memory.
- **3.** When high-speed on-chip oscillator clock is stopped.
- 4. When high-speed system clock is stopped.
- 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.
- 6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS (High speed main) mode: $V_{DD} = 2.7$ V to 5.5 V @1 MHz to 24 MHz $V_{DD} = 2.4$ V to 5.5 V @1 MHz to 16 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fill: high-speed on-chip oscillator clock frequency
 - 3. Except temperature condition of the TYP. value is $T_A = 25^{\circ}C$, other than STOP mode

(2/2)

(2) 30-pin products

<u>(Ta = -40 to</u>	+105°C,	2.4 V ≤ V	DD \leq 5.5 V, Vss =	= 0 V)		_	-		(2/2)
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	DD2 Note 2	HALT	HS (High-speed	$f_{IH} = 24 \text{ MHz}^{Note 4}$	$V_{DD} = 5.0 V$		440	2300	μA
current Note 1		mode	main) mode ^{№066}		$V_{DD} = 3.0 V$		440	2300	
				$f_{IH} = 16 \text{ MHz}^{Note 4}$	$V_{DD} = 5.0 V$		400	1700	μA
					$V_{DD} = 3.0 V$		400	1700	
				$f_{MX} = 20 \text{ MHz}^{Note 3}$,	Square wave input		280	1900	μA
				$V_{DD} = 5.0 V$	Resonator connection		450	2000	
				$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$ $V_{\text{DD}} = 3.0 \text{ V}$	Square wave input		280	1900	μA
					Resonator connection		450	2000	
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		190	1020	μA
				$V_{DD} = 5.0 V$	Resonator connection		260	1100	
				$f_{MX} = 10 \text{ MHz}^{Note 3}$,	Square wave input		190	1020	μA
				$V_{DD} = 3.0 V$	Resonator connection		260	1100	
	DD3 Note 5	STOP	$T_A = -40^{\circ}C$				0.18	0.50	μA
		mode	T _A = +25°C				0.23	0.50	
			T _A = +50°C				0.30	1.10	
			T _A = +70°C				0.46	1.90	
			T _A = +85°C				0.75	3.30	
			T _A = +105°C				2.94	15.30	

Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. During HALT instruction execution by flash memory.
- 3. When high-speed on-chip oscillator clock is stopped.
- 4. When high-speed system clock is stopped.
- Not including the current flowing into the 12-bit interval timer and watchdog timer. 5.
- 6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

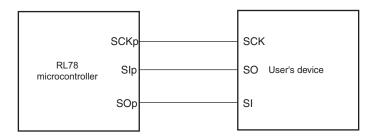
HS (High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz VDD = 2.4 V to 5.5 V @1 MHz to 16 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except STOP mode, temperature condition of the TYP. value is TA = 25°C.

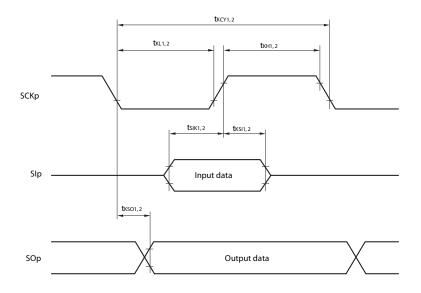
Parameter	Symbol	Conditions		HS (high-spee	Unit	
				MIN.	MAX.	
SCKp cycle time	tKCY1	$t_{\text{KCY1}} \geq 4/f_{\text{CLK}}$	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	334		ns
			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	500		ns
SCKp high-/low-level width	p high-/low-level width tkH1, $4.0 V \le V_{DD} \le 5.5 V$.5 V	tксү1/2–24		ns
	tĸ∟ı	sl $2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		tксү1/2–36		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		tксү1/2–76		ns
SIp setup time (to SCKp \uparrow) ^{Note 1}	tsik1	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		66		ns
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		66		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		113		ns
SIp hold time (from SCKp \uparrow) Note 2	tksi1			38		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	$C = 30 \text{ pF}^{Note4}$			50	ns

(2) During communication at same potential (CSI mode) (master mode, SCKp internal clock output)
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

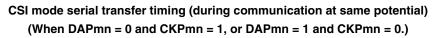
- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SCKp and SOp output lines.
- **Caution** Select the normal input buffer for the SIp pin and the normal output mode for the SOp and SCKp pins by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).
- **Remarks 1.** p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3)
 - 2. fmck: Serial array unit operation clock frequency
 - (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3))

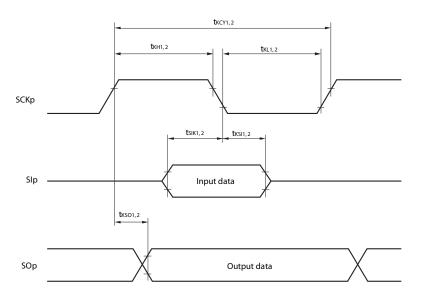


Parameter	Symbol	Con	HS (high-speed	Unit			
				MIN. MAX.			
SCKp cycle time Note4	tксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	20 MHz < fмск	16/fмск		ns	
			fмск ≤ 20 MHz	12/fмск		ns	
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	16 MHz < fмск	16/fмск		ns	
			fмск ≤ 16 MHz	12/fмск		ns	
	$2.4~V \le V_{\text{DD}} \le 5.5~V$			12/fмск		ns	
		and 1000					
SCKp high-/low-level width	tкн2,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2–14		ns	
	tĸ∟2	$2.7~V \le V_{\text{DD}} \le 5.5~V$		tксү2/2–16		ns	
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2–36		ns	
SIp setup time (to SCKp↑)	tsik2			1/fмск + 40		ns	
Note 1				1/fмск + 60		ns	
SIp hold time (from SCKp↑) ^{Note 2}	tksi2			1/fмск + 62		ns	
Delay time from SCKp \downarrow to	tĸso2	C = 30 pF Note4	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		2/fмск + 66	ns	
SOp output Note 3			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		2/fмск + 113	ns	


(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- **Caution** Select the normal input buffer for the SIp and SCKp pins and the normal output mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).


CSI mode connection diagram (during communication at same potential)



CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- Remarks 1. p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3)
 2. fMCK: Serial array unit operation clock frequency
 - (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3))

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp external clock input)
(T₄ = –40 to +105°C, 2.4 V ≤ V _{DD} ≤ 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions		HS (high-spe Mod	Unit	
				MIN.	MAX.	
SCKp cycle time Note 1	t кСY2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	20 MHz < fmck \leq 24 MHz	24/f мск		ns
		$2.7~V \leq V_b \leq 4.0~V$	8 MHz < fмск ≤ 20 MHz	20/f мск		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	16/f мск		ns
			fмск \leq 4 MHz	12/ fмск		ns
		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	20 MHz < fмск ≤ 24 MHz	32/ fмск		ns
		$2.3~V \leq V_b \leq 2.7~V$	16 MHz < fмск \leq 20 MHz	28/ fмск		ns
			8 MHz < fмск \leq 16 MHz	24/fмск		ns
			4 MHz < fмск \leq 8 MHz	16/ fмск		ns
			fмск \leq 4 MHz	12/fмск		ns
		$2.4~V \leq V_{\text{DD}} < 3.3~V,$	20 MHz < fмск \leq 24 MHz	72/fмск		ns
		$1.6~V \leq V_b \leq 2.0~V$	16 MHz < fмск ≤ 20 MHz	6 4/fмск		ns
			8 MHz < fмск \leq 16 MHz	52/ fмск		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	32/fмск		ns
			fмск \leq 4 MHz	20/fмск		ns
SCKp high-/low-level	tkh2, tkl2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,~2.7~V \leq V_{\text{b}} \leq 4.0~V$		tkcy2/2 – 24		ns
width		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V}$	$3~V \leq V_b \leq 2.7~V$	tkcy2/2 – 36		ns
		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V}, 1.0 \text{ V}$	$6 \text{ V} \leq V_b \leq 2.0 \text{ V}$	tkcy2/2 – 100		ns
SIp setup time	tsik2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,~2.7~V \leq V_{\text{DD}} \leq 4.0~V$		1/fмск + 40		ns
(to SCKp↑) Note 2		$2.7 \ V \le V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \le V_{\text{b}} \le 2.7 \ V$		1/fмск + 40		ns
		$2.4~V \leq V_{\text{DD}} < 3.3~V,~1.6~V \leq V_{\text{DD}} \leq 2.0~V$		1/fмск + 60		ns
SIp hold time (from SCKp↑) ^{№ote 3}	tksi2			1/fмск + 62		ns
Delay time from SCKp \downarrow to	tĸso2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,~2.7$	$7 \text{ V} \leq V_b \leq 4.0 \text{ V},$		2/fмск +	ns
SOp output Note 4		$C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ km}$	2		240	
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V}$	$3 V \leq V_b \leq 2.7 V,$		2/fмск +	ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ ks}$	2		428	
		$2.4 \text{ V} \le \text{V}_{\text{DD}}$ < 3.3 V , 1.0 C	$6 \text{ V} \leq \text{V}_{b} \leq 2.0 \text{ V},$		2/fмск +	ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ kg}$	2		1146	

Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Cautions 1. Select the TTL input buffer for the SIp and SCKp pins and the N-ch open drain output (Vbb tolerance) mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.

Parameter	Symbol	Conditions		HS (high-speed main) Mode		
			MIN.	MAX.		
SCLr clock frequency	fsc∟	$\begin{array}{l} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; V, 2.7 \; V \leq V_{b} \leq 4.0 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 2.8 \; k\Omega \end{array}$		100 ^{Note1}	kHz	
		$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		100 ^{Note1}	kHz	
		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$		100 ^{Note1}	kHz	
Hold time when SCLr = "L"	tLOW	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{array}$	4600		ns	
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ C_{b} = 100 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	4600		ns	
		$\label{eq:VD} \begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	4650		ns	
Hold time when SCLr = "H"	tнıgн	$\begin{array}{l} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; V, 2.7 \; V \leq V_{b} \leq 4.0 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 2.8 \; k\Omega \end{array}$	2700		ns	
		$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	2400		ns	
		$\begin{array}{l} 2.4 \; V \leq V_{DD} < 3.3 \; V, \; 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	1830		ns	
Data setup time (reception)	tsu:dat	$\begin{array}{l} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; V, 2.7 \; V \leq V_{b} \leq 4.0 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 2.8 \; k\Omega \end{array}$	1/fмск + 760 ^{Note3}		ns	
		$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq V_{\text{DD}} < 4.0 \; V, 2.3 \; V \leq V_{\text{b}} \leq 2.7 \; V, \\ C_{\text{b}} = 100 \; pF, \; R_{\text{b}} = 2.7 \; k\Omega \end{array}$	1/fмск + 760 ^{Note3}		ns	
		$\label{eq:VD} \begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	1/fмск + 570 ^{Note3}		ns	
Data hold time (transmission)	thd:dat	$\begin{array}{l} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; V, 2.7 \; V \leq V_{b} \leq 4.0 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 2.8 \; k\Omega \end{array}$	0	1420	ns	
		$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq V_{\text{DD}} < 4.0 \; V, 2.3 \; V \leq V_{\text{b}} \leq 2.7 \; V, \\ C_{\text{b}} = 100 \; pF, \; R_{\text{b}} = 2.7 \; k\Omega \end{array}$	0	1420	ns	
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	0	1215	ns	

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified l^2C mode)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

2. Set $t_{SU:DAT}$ so that it will not exceed the hold time when SCLr = "L" or SCLr = "H".

- Cautions 1. Select the TTL input buffer and the N-ch open drain output (V_{DD} tolerance) mode for the SDAr pin and the N-ch open drain output (V_{DD} tolerance) mode for the SCLr pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
 - 2. IIC01 and IIC11 cannot communicate at different potential.

(Remarks are listed on the next page.)

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Input channel	Reference Voltage						
	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = VDD Reference voltage (-) = Vss	Reference voltage (+) = VBGR Reference voltage (-) = AVREFM				
ANI0 to ANI3	Refer to 29.6.1 (1).	Refer to 29.6.1 (3).	Refer to 29.6.1 (4).				
ANI16 to ANI22	Refer to 29.6.1 (2) .						
Internal reference voltage	Refer to 29.6.1 (1).		-				
Temperature sensor output voltage							

(1) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin: ANI2, ANI3, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AV}_{REFP} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Cor	MIN.	TYP.	MAX.	Unit	
Resolution	RES		8		10	bit	
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}		1.2	±3.5	LSB	
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI2, ANI3	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μS
			$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μS
		10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: Internal	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.5625		39	μS
		reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±0.25	%FSR
Full-scale error ^{Notes 1, 2}	EFS	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±0.25	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	10-bit resolution			±2.5	LSB
Differential linearity error	DLE	10-bit resolution AVREFP = VDD ^{Note 3}			±1.5	LSB	
Analog input voltage	VAIN	ANI2, ANI3	ANI2, ANI3			AVREFP	V
		Internal reference voltage (HS (high-speed main) mode)		V _{BGR} ^{Note 4}			V
		Temperature sensor outp (HS (high-speed main) m	VTMPS25 Note 4			V	

(Notes are listed on the next page.)

Rising reset release voltage

Falling interrupt voltage

MAX.

2.86

3.03

2.97

3.14

3.07

4.22

4.13

3.90

3.83

4.06

3.98

Unit

v

V

V

v

V

V

٧

LVD detection voltage of interrupt & reset mode

(T _A = −40 to +10	5°C, Vpd	$r \leq V dc$	o ≤ 5.5 V, Vss = 0 V)				
Parameter	Symbol		Cone	ditions	MIN.	TYP.	
Interrupt and reset	VLVDD0	VPOC2,	VPOC1, VPOC1 = 0, 1, 1, fal	2.64	2.75		
mode	VLVDD1		LVIS1, LVIS0 = 1, 0	Rising reset release voltage	2.81	2.92	
				Falling interrupt voltage	2.75	2.86	
	VLVDD2		LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.90	3.02	
				Falling interrupt voltage	2.85	2.96	

LVIS1, LVIS0 = 0, 0

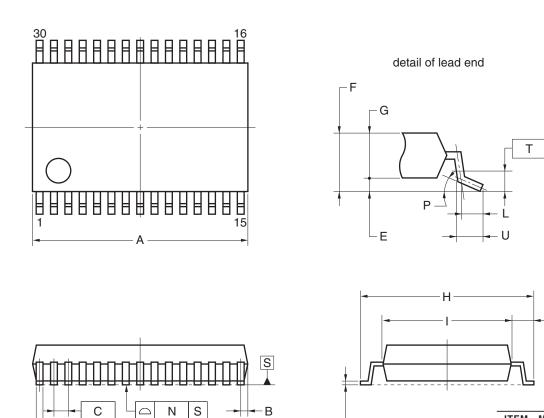
3.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

VLVDD3

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 29.4 AC Characteristics.



<R>

4.3 30-pin products

R5F102AAASP, R5F102A9ASP, R5F102A8ASP, R5F102A7ASP R5F103AAASP, R5F103A9ASP, R5F103A8ASP, R5F103A7ASP R5F102AADSP, R5F102A9DSP, R5F102A8DSP, R5F102A7DSP R5F103AADSP, R5F103A9DSP, R5F103A8DSP, R5F103A7DSP R5F102AAGSP, R5F102A9GSP, R5F102A8GSP, R5F102A7GSP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP30-0300-0.65	PLSP0030JB-B	S30MC-65-5A4-3	0.18

NOTE

DI⊕

MM

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	
А	9.85±0.15	
В	0.45 MAX.	
С	0.65 (T.P.)	
D	$0.24_{-0.07}^{+0.08}$	
E	0.1±0.05	
F	1.3±0.1	
G	1.2	
Н	8.1±0.2	
I	6.1±0.2	
J	1.0±0.2	
К	0.17±0.03	
L	0.5	
М	0.13	
Ν	0.10	
Р	3° ^{+5°} -3°	
Т	0.25	
U	0.6±0.15	

J

©2012 Renesas Electronics Corporation. All rights reserved.

Κ

		Description		
Rev.	Date	Page	Summary	
2.00 Sep 06, 2013	55	Modification of description and Notes 3 and 4 in 2.6.1 (3)		
	56	Modification of description and Notes 3 and 4 in 2.6.1 (4)		
	57	Modification of table in 2.6.2 Temperature sensor/internal reference voltage characteristics		
		57	Modification of table and Note in 2.6.3 POR circuit characteristics	
		58	Modification of table in 2.6.4 LVD circuit characteristics	
		59	Modification of table of LVD detection voltage of interrupt & reset mode	
		59	Modification of number and title to 2.6.5 Power supply voltage rising slope characteristics	
		61	Modification of table, figure, and Remark in 2.10 Timing of Entry to Flash Memory	
		Programming Modes		
		62 to 103	Addition of products of industrial applications (G: $T_A = -40$ to $+105^{\circ}C$)	
		104 to 106	Addition of products of industrial applications (G: $T_A = -40$ to $+105^{\circ}C$)	
2.10	Mar 25, 2016	6	Modification of Figure 1-1 Part Number, Memory Size, and Package of RL78/G12	
		7	Modification of Table 1-1 List of Ordering Part Numbers	
		8	Addition of product name (RL78/G12) and description (Top View) in 1.4.1 20-pin products	
		9	Addition of product name (RL78/G12) and description (Top View) in 1.4.2 24-pin products	
		10	Addition of product name (RL78/G12) and description (Top View) in 1.4.3 30-pin products	
		15	Modification of description in 1.7 Outline of Functions	
		16	Modification of description, and addition of target products	
		52	Modification of note 2 in 2.5.2 Serial interface IICA	
		60	Modification of title and note, and addition of caution in 2.7 RAM Data Retention Characteristics	
		60	Modification of conditions in 2.8 Flash Memory Programming Characteristics	
		62	Modification of description, and addition of target products and remark	
		94	Modification of note 2 in 3.5.2 Serial interface IICA	
		102	Modification of title and note in 3.7 RAM Data Retention Characteristics	
		102	Modification of conditions in 3.8 Flash Memory Programming Characteristics	
		104 to 106	Addition of package name	

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.