

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	14
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f1036aasp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RL78/G12 1. OUTLINE

1.5 Pin Identification

ANI0 to ANI3,		REGC:	Regulator Capacitance
ANI16 to ANI22:	Analog input	RESET:	Reset
AVREFM:	Analog Reference Voltage Minus	RxD0 to RxD2:	Receive Data
AVREFP:	Analog reference voltage plus	SCK00, SCK01, SCK11,	
EXCLK:	External Clock Input	SCK20:	Serial Clock Input/Output
	(Main System Clock)	SCL00, SCL01,	
INTP0 to INTP5	Interrupt Request From Peripheral	SCL11, SCL20, SCLA0:	Serial Clock Input/Output
KR0 to KR9:	Key Return	SDA00, SDA01, SDA11,	
P00 to P03:	Port 0	SDA20, SDAA0:	Serial Data Input/Output
P10 to P17:	Port 1	SI00, SI01, SI11, SI20:	Serial Data Input
P20 to P23:	Port 2	SO00, SO01, SO11,	
P30 to P31:	Port 3	SO20:	Serial Data Output
P40 to P42:	Port 4	TI00 to TI07:	Timer Input
P50, P51:	Port 5	TO00 to TO07:	Timer Output
P60, P61:	Port 6	TOOL0:	Data Input/Output for Tool
P120 to P122, P125:	Port 12	TOOLRxD, TOOLTxD:	Data Input/Output for External
P137:	Port 13		Device
P147:	Port 14	TxD0 to TxD2:	Transmit Data
PCLBUZ0, PCLBUZ1:	Programmable Clock Output/	VDD:	Power supply
	Buzzer Output	Vss:	Ground
		X1, X2:	Crystal Oscillator (Main System Clock)

<R>

<R>

- <R> 2. ELECTRICAL SPECIFICATIONS ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)
- <R> This chapter describes the following electrical specifications.
 - Target products A: Consumer applications $T_A = -40 \text{ to } +85^{\circ}\text{C}$ R5F102xxAxx, R5F103xxAxx
 - D: Industrial applications T_A = -40 to +85°C R5F102xxDxx, R5F103xxDxx
 - G: Industrial applications when T_A = -40 to +105°C products is used in the range of T_A = -40 to +85°C R5F102xxGxx
 - Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product.

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbols		Conditions	Ratings	Unit
Supply Voltage	V _{DD}			-0.5 to + 6.5	V
REGC terminal input voltage ^{Note1}	VIREGC	REGC		-0.3 to +2.8 and -0.3 to V _{DD} + 0.3 _{Note 2}	V
Input Voltage	VII	Other than P60, F	P61	-0.3 to V _{DD} + 0.3 ^{Note 3}	V
	Vı2	P60, P61 (N-ch o	pen drain)	-0.3 to 6.5	V
Output Voltage	Vo			-0.3 to V _{DD} + 0.3 ^{Note 3}	V
Analog input voltage	Val	20-, 24-pin produc	cts: ANI0 to ANI3, ANI16 to ANI22	-0.3 to V _{DD} + 0.3	V
		30-pin products: A	ANIO to ANI3, ANI16 to ANI19	and -0.3 to AVREF(+)+0.3 Notes 3, 4	
Output current, high	І он1	Per pin	Other than P20 to P23	-40	mA
		Total of all pins	All the terminals other than P20 to P23	-170	mA
			20-, 24-pin products: P40 to P42	-70	mA
			30-pin products: P00, P01, P40, P120		
			20-, 24-pin products: P00 to P03 ^{Note 5} , P10 to P14 30-pin products: P10 to P17, P30, P31, P50, P51, P147	-100	mA
	І он2	Per pin	P20 to P23	-0.5	mA
		Total of all pins		-2	mA
Output current, low	lo _{L1}	Per pin	Other than P20 to P23	40	mA
		Total of all pins	All the terminals other than P20 to P23	170	mA
			20-, 24-pin products: P40 to P42 30-pin products: P00, P01, P40, P120	70	mA
			20-, 24-pin products: P00 to P03 ^{Note 5} , P10 to P14, P60, P61 30-pin products: P10 to P17, P30, P31, P50, P51, P60, P61, P147	100	mA
	lo _{L2}	Per pin	P20 to P23	1	mA
		Total of all pins		5	mA
Operating ambient temperature	Та			-40 to +85	°C
Storage temperature	T _{stg}			-65 to +150	°C

Notes 1. 30-pin product only.

- 2. Connect the REGC pin to V_{SS} via a capacitor (0.47 to 1 μ F). This value determines the absolute maximum rating of the REGC pin. Do not use it with voltage applied.
- 3. Must be 6.5 V or lower.
- 4. Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.
- 5. 24-pin products only.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remarks 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port

- **2.** AVREF(+): + side reference voltage of the A/D converter.
- 3. Vss: Reference voltage

(2/4)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	lol1	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42				20.0 Note 2	mA
		30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147					
		Per pin for P60, P61				15.0 Note 2	mA
		20-, 24-pin products:	$4.0~V \leq V_{DD} \leq 5.5~V$			60.0	mA
		Total of P40 to P42	$2.7~V \leq V_{DD} < 4.0~V$			9.0	mA
		30-pin products: Total of P00, P01, P40, P120 (When duty ≤ 70% Note 3)	1.8 V ≤ V _{DD} < 2.7 V			1.8	mA
		20-, 24-pin products:	$4.0~V \leq V_{DD} \leq 5.5~V$			80.0	mA
		Total of P00 to P03 ^{Note 4} ,	$2.7~V \leq V_{DD} < 4.0~V$			27.0	mA
		P10 to P14, P60, P61 30-pin products: Total of P10 to P17, P30, P31, P50, P51, P60, P61, P147 (When duty ≤ 70% Note 3)	1.8 V ≤ V _{DD} < 2.7 V			5.4	mA
		Total of all pins (When duty ≤ 70% Note 3)				140	mA
	lol2	Per pin for P20 to P23				0.4	mA
		Total of all pins				1.6	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.
 - 2. However, do not exceed the total current value.
 - 3. The output current value under conditions where the duty factor $\leq 70\%$.

If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).

- Total output current of pins = $(lol \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

4. 24-pin products only.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.3.2 Supply current characteristics

(1) 20-, 24-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

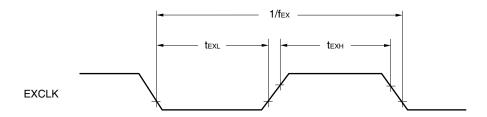
(1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit						
Supply	I _{DD1}	Operating	HS(High-speed	f⊩ = 24 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		1.5		mA						
current ^{Note 1}		mode	main) mode Note 4		operation	V _{DD} = 3.0 V		1.5								
				Normal	V _{DD} = 5.0 V		3.3	5.0	mA							
					operation	V _{DD} = 3.0 V		3.3	5.0							
				f⊩ = 16 MHz ^{Note 3}		V _{DD} = 5.0 V		2.5	3.7	mA						
					V _{DD} = 3.0 V		2.5	3.7								
			LS(Low-speed	f⊩ = 8 MHz ^{Note 3}		V _{DD} = 3.0 V		1.2	1.8	mA						
			main) mode Note 4				V _{DD} = 2.0 V		1.2	1.8						
			HS(High-speed	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$		Square wave input		2.8	4.4	mA						
	İ	main) mode ^{Note4}		main) mode Note4	$V_{DD} = 5.0 \text{ V}$		Resonator connection		3.0	4.6						
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$		Square wave input		2.8	4.4	mA						
				$V_{DD} = 3.0 \text{ V}$		Resonator connection		3.0	4.6							
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$								Square wave input		1.8	2.6
				$V_{DD} = 5.0 \text{ V}$		Resonator connection		1.8	2.6							
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$		Square wave input		1.8	2.6	mA						
				$V_{DD} = 3.0 \text{ V}$		Resonator connection		1.8	2.6							
			LS(Low-speed	$f_{MX} = 8 \text{ MHz}^{\text{Note 2}},$		Square wave input		1.1	1.7	mA						
		main) mode Note 4		main) mode $^{Note 4}$ $V_{DD} = 3.0 \text{ V}$	main) mode Note 4	$V_{DD} = 3.0 \text{ V}$	$V_{DD} = 3.0 \text{ V}$	$V_{DD} = 3.0 \text{ V}$	⁴ V _{DD} = 3.0 V	ode Note 4 $V_{DD} = 3.0 \text{ V}$		Resonator connection		1.1	1.7	
				f _{MX} = 8 MHz ^{Note 2} ,		Square wave input		1.1	1.7	mA						
				$V_{DD} = 2.0 \text{ V}$		Resonator connection		1.1	1.7							

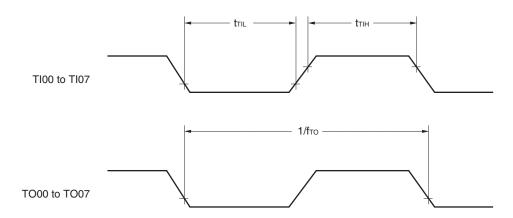
- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator clock is stopped.
 - 3. When high-speed system clock is stopped
 - **4.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

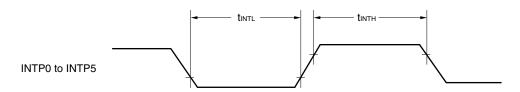
HS(High speed main) mode: $V_{DD} = 2.7 \text{ V to } 5.5 \text{ V } @ 1 \text{ MHz to } 24 \text{ MHz}$

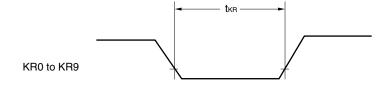
 $V_{DD} = 2.4 \text{ V to } 5.5 \text{ V } @ 1 \text{ MHz to } 16 \text{ MHz}$

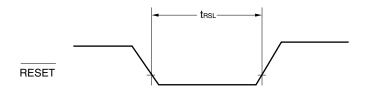

LS(Low speed main) mode: $V_{DD} = 1.8 \text{ V to } 5.5 \text{ V } @ 1 \text{ MHz to } 8 \text{ MHz}$

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fil: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25$ °C.


AC Timing Test Point


External Main System Clock Timing


TI/TO Timing


Interrupt Request Input Timing

Key Interrupt Input Timing

RESET Input Timing

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol		Conditions	,	nigh-speed in) Mode		ow-speed n) Mode	Unit
				MIN.	MAX.	MIN.	MAX.	
Transfer rate Note4		Reception	$\begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_{b} \leq 4.0 \ V \end{aligned}$		fMCK/6 Note1		fMCK/6 Note1	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$		4.0		1.3	Mbps
			$\begin{split} 2.7 \ V &\leq V_{DD} < 4.0 \ V, \\ 2.3 \ V &\leq V_{b} \leq 2.7 \ V \end{split}$		fмск/6 Note1		fmck/6 Note1	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note3}$		4.0		1.3	Mbps
			$\begin{aligned} 1.8 \ V &\leq V_{\text{DD}} < 3.3 \ V, \\ 1.6 \ V &\leq V_{\text{b}} \leq 2.0 \ V \end{aligned}$		fMCK/6 Notes1, 2		fMCK/6 Notes1, 2	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note3}$		4.0		1.3	Mbps
		Transmission	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V}$		Note4		Note4	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, V_b = 2.7 \text{ V}$		2.8 Note5		2.8 Note5	Mbps
			$\begin{aligned} 2.7 \ V &\leq V_{DD} < 4.0 \ V, \\ 2.3 \ V &\leq V_{b} \leq 2.7 \ V, \end{aligned}$		Note6		Note6	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$		1.2 Note7		1.2 Note7	Mbps
			$1.8 \ V \le V_{DD} < 3.3 \ V,$ $1.6 \ V \le V_{b} \le 2.0 \ V$		Notes 2, 8		Notes 2, 8	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$		0.43 Note9		0.43 Note9	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

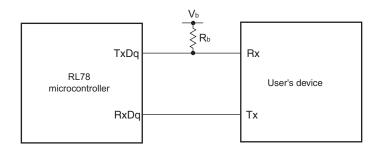
- 2. Use it with $V_{DD} \ge V_b$.
- 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq V_{DD} \leq 5.5 V)

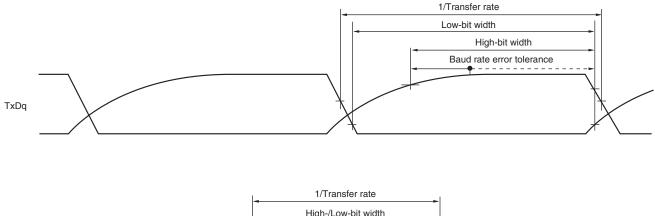
16 MHz (2.4 V
$$\leq$$
 V_{DD} \leq 5.5 V)

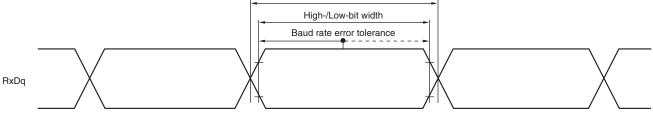
LS (low-speed main) mode: $8 \text{ MHz} (1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V})$

4. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

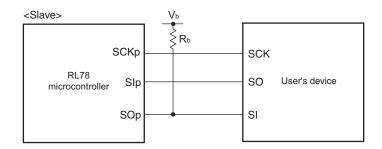

Expression for calculating the transfer rate when 4.0 V \leq V_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

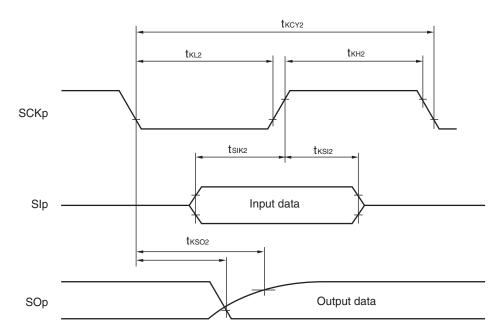
$$\label{eq:maximum transfer rate} \text{Maximum transfer rate} = \frac{1}{\left\{-C_b \times R_b \times \text{ln } (1-\frac{2.2}{V_b})\right\} \times 3} \quad \text{[bps]}$$


Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-\text{Cb} \times \text{Rb} \times \text{ln } (1 - \frac{2.2}{\text{Vb}})\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

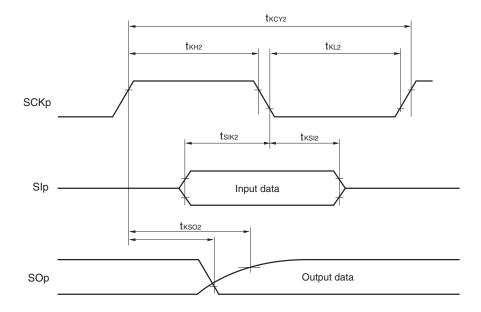

^{*} This value is the theoretical value of the relative difference between the transmission and reception sides.

UART mode connection diagram (during communication at different potential)


UART mode bit width (during communication at different potential) (reference)


- **Remarks 1.** R_b[Ω]: Communication line (TxDq) pull-up resistance, C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 - m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))
 - **4.** UART0 of the 20- and 24-pin products supports communication at different potential only when the peripheral I/O redirection function is not used.

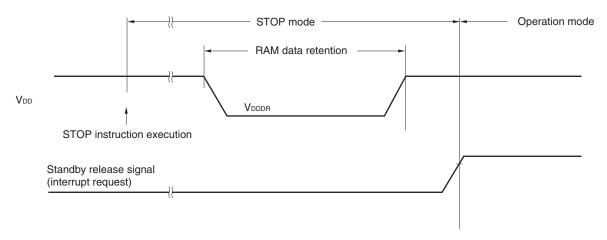
CSI mode connection diagram (during communication at different potential)



- **Remarks 1.** Rb $[\Omega]$: Communication line (SOp) pull-up resistance, Cb [F]: Communication line (SOp) load capacitance, Vb [V]: Communication line voltage
 - 2. p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 10))

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)


Remark p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

<R> 2.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

, , , , , , , , , , , , , , , , , , , ,						
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	V _{DDDR}		1.46 Note		5.5	V

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

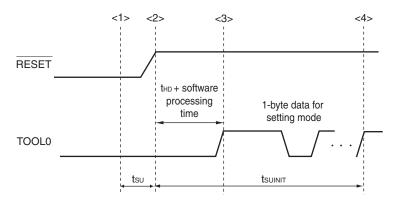
2.8 Flash Memory Programming Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1A = -40 to +65 C, 1.6 V	7 A DD 7 2 2'2 A	, vss = 0 v)		7		
<r> Parameter</r>	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclk		1		24	MHz
Code flash memory rewritable t	imes C _{erwr}	Retained for 20 years	1,000			Times
Notes 1, 2, 3		T _A = 85°C				
Data flash memory rewritable ti	mes	Retained for 1 year		1,000,000		
Notes 1, 2, 3		T _A = 25°C				
		Retained for 5 years	100,000			
		T _A = 85°C				
		Retained for 20 years	10,000			
		T _A = 85°C				

- **Notes 1.** 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite
 - 2. When using flash memory programmer and Renesas Electronics self programming library
 - **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

2.9 Dedicated Flash Memory Programmer Communication (UART)


 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

2.10 Timing of Entry to Flash Memory Programming Modes

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset are released before external reset release			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset are released before external reset release	10			μS
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tнo	POR and LVD reset are released before external reset release	1			ms

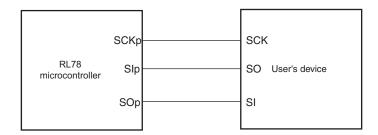
- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.

 t_{SU} : Time to release the external reset after the TOOL0 pin is set to the low level

thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)


 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	ymbol Conditions		HS (high-speed	main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time Note4	tkcy2	$4.0~V \leq V_{DD} \leq 5.5~V$	20 MHz < fmck	16/fмск		ns
			fмcк ≤ 20 MHz	12/fмск		ns
		$2.7~V \leq V_{DD} \leq 5.5~V$	16 MHz < fмск	16/fмск		ns
			fмcκ ≤ 16 MHz	12/fмск		ns
		$2.4~V \leq V_{DD} \leq 5.5~V$		12/fмск		ns
			and 1000			
SCKp high-/low-level width	tĸH2,	$4.0~V \leq V_{DD} \leq 5.5~V$		tксү2/2-14		ns
	t _{KL2}	$2.7~V \leq V_{DD} \leq 5.5~V$		tксү2/2-16		ns
		$2.4~V \leq V_{DD} \leq 5.5~V$		tксү2/2-36		ns
SIp setup time (to SCKp↑)	tsik2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск + 40		ns
Note 1		$2.4~V \leq V_{DD} \leq 5.5~V$		1/fмск + 60		ns
Slp hold time (from SCKp [↑]) Note 2	tksi2			1/fмск + 62		ns
Delay time from SCKp↓ to	t KSO2	C = 30 pF Note4	$2.7~V \leq V_{DD} \leq 5.5~V$		2/fмcк + 66	ns
SOp output Note 3			$2.4~V \leq V_{DD} \leq 5.5~V$		2/fмcк + 113	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp and SCKp pins and the normal output mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).

CSI mode connection diagram (during communication at same potential)

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Symbol	Conditions		HS (high-speed main) Mode	
				MIN.	MAX.	
Transfer rate Note4		Reception	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V}$		fMCK/12 Note 1	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		2.0	Mbps
			$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$		fMCK/12 Note 1	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note \ 2}$		2.0	Mbps
			$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$		fMCK/12 Note 1	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note \ 2}$		2.0	Mbps
		Transmission	$4.0 \text{ V} \le V_{DD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le V_b \le 4.0 \text{ V}$		Note 3	bps
			Theoretical value of the maximum transfer rate $C_b = 50$ pF, $R_b = 1.4$ k Ω , $V_b = 2.7$ V		2.0 Note 4	Mbps
			$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$		Note 5	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$		1.2 Note 6	Mbps
			$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$		Notes 2, 7	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$		0.43 Note 8	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 5.5 V)

16 MHz (2.4 V
$$\leq$$
 V_{DD} \leq 5.5 V)

3. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq VDD \leq 5.5 V and 2.7 V \leq Vb \leq 4.0 V

$$\label{eq:maximum transfer rate} \text{Maximum transfer rate} = \frac{1}{\{-C_b \times R_b \times \text{ln } (1-\frac{2.2}{V_b})\} \times 3} \text{ [bps]}$$

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3)

(Ta = -40 to +105°C, 2.4 V \leq VDD \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol		Conditions	HS (high-speed	HS (high-speed main) Mode	
				MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	$4.0~V \leq V_{DD} \leq 5.5~V,$	600		ns
			$2.7~V \leq V_b \leq 4.0~V,$			
			$C_b=30~pF,~R_b=1.4~k\Omega$			
			$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$	1000		ns
			$2.3~V \leq V_b \leq 2.7~V,$			
			$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$			
			$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$	2300		ns
			$1.6 \text{ V} \le V_b \le 2.0 \text{ V},$			
			$C_b = 30$ pF, $R_b = 5.5$ k Ω			
SCKp high-level width t_{KH1} $4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{DD}$		$5.5 \text{ V}, 2.7 \text{ V} \le V_b \le 4.0 \text{ V},$	tксу1/2 -150		ns	
		C _b = 30 pF, R _b	$_{0}$ = 1.4 k Ω			
		2.7 V ≤ V _{DD} < 4	$4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$	tkcy1/2 -340		ns
		C _b = 30 pF, R _b	$_{0}$ = 2.7 k Ω			
		2.4 V ≤ V _{DD} < 3	$3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V},$	tkcy1/2 -916		ns
		C _b = 30 pF, R _b	$_{0}$ = 5.5 k Ω			
SCKp low-level width	t _{KL1}	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$		tkcy1/2 -24		ns
		Сь = 30 pF, R				
			$4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$	tkcy1/2 -36		ns
		C _b = 30 pF, R _b		1.0.1/2 00		0
			$3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V},$	tксү1/2 –100		ns
		$C_b = 30 \text{ pF}, R_b$	•	IKCY1/2 - 100		110
		$C_0 = 30 \text{ pr}, \text{ Re}$	0.0 K22			

- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.
- **Remarks 1.** R_b [Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b [F]: Communication line (SCKp, SOp) load capacitance, V_b [V]: Communication line voltage
 - **2.** p: CSI number (p = 00, 20)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-speed main) Mode	
			MIN.	MAX.	
SCLr clock frequency	fscL	$ 4.0~V \leq V_{DD} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V, $ $C_b = 100~pF,~R_b = 2.8~k\Omega $		100 ^{Note1}	kHz
				100 ^{Note1}	kHz
				100 ^{Note1}	kHz
Hold time when SCLr = "L"	tLOW	$4.0 \; V \leq V_{DD} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V,$ $C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega$	4600		ns
			4600		ns
		$2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V,$ $C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega$	4650		ns
Hold time when SCLr = "H"	tніgн	$ 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega $	2700		ns
			2400		ns
		$2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V,$ $C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega$	1830		ns
Data setup time (reception)	tsu:dat	$ 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega $	1/fмск + 760 Note3		ns
			1/f _{MCK} + 760 Note3		ns
		$2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V,$ $C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega$	1/fмск + 570 ^{Note3}		ns
Data hold time (transmission)	thd:dat	$ 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega $	0	1420	ns
		$ 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega $	0	1420	ns
		$\label{eq:continuous} $	0	1215	ns

- Notes 1. The value must also be equal to or less than fmck/4.
 - 2. Set tsu:DAT so that it will not exceed the hold time when SCLr = "L" or SCLr = "H".
- Cautions 1. Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
 - 2. IIC01 and IIC11 cannot communicate at different potential.

(Remarks are listed on the next page.)

LVD detection voltage of interrupt & reset mode

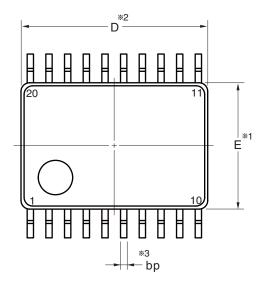
(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol		Conditions			TYP.	MAX.	Unit
Interrupt and reset	V _{LVDD0}	VPOC2,	VPOC1, VPOC1 = 0, 1, 1, falli	2.64	2.75	2.86	V	
mode	V _{LVDD1}		LVIS1, LVIS0 = 1, 0	Rising reset release voltage	2.81	2.92	3.03	V
	Falling interrupt voltage		2.75	2.86	2.97	V		
	V _{LVDD2}		LVIS1, LVIS0 = 0, 1 Rising reset release voltage		2.90	3.02	3.14	V
				Falling interrupt voltage	2.85	2.96	3.07	V
	V _{LVDD3}		LVIS1, LVIS0 = 0, 0	Rising reset release voltage	3.90	4.06	4.22	V
				Falling interrupt voltage	3.83	3.98	4.13	V

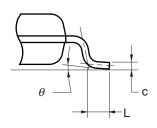
3.6.5 Power supply voltage rising slope characteristics

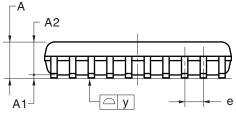
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

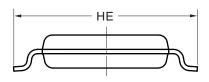
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms


Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 29.4 AC Characteristics.

4. PACKAGE DRAWINGS


4.1 20-pin products

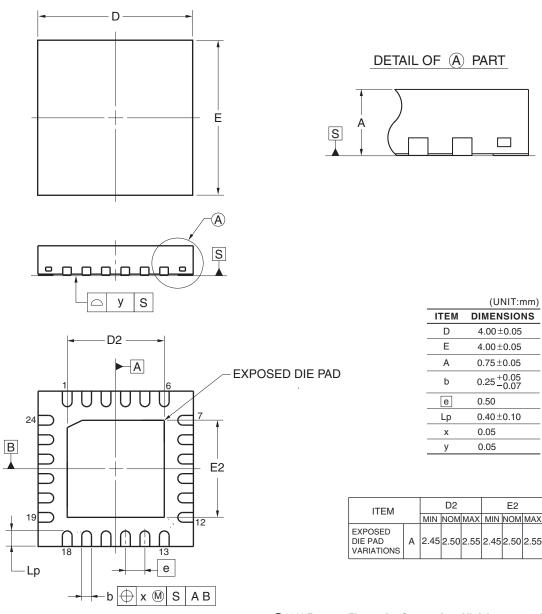

R5F1026AASP, R5F10269ASP, R5F10268ASP, R5F10267ASP, R5F10266ASP R5F1036AASP, R5F10369ASP, R5F10368ASP, R5F10367ASP, R5F10366ASP R5F1026ADSP, R5F10269DSP, R5F10268DSP, R5F10267DSP, R5F10266DSP R5F1036ADSP, R5F10369DSP, R5F10368DSP, R5F10367DSP, R5F10366DSP R5F1026AGSP, R5F10269GSP, R5F10268GSP, R5F10267GSP, R5F10266GSP


JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP20-4.4x6.5-0.65	PLSP0020JB-A	P20MA-65-NAA-1	0.1

detail of lead end

NOTE

- 1.Dimensions "X1" and "X2" do not include mold flash.
- 2.Dimension "X3" does not include trim offset.

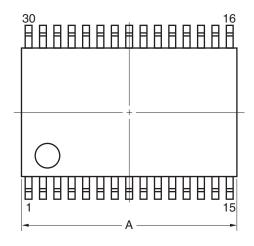

	(UNIT:mm)
ITEM	DIMENSIONS
D	6.50±0.10
E	4.40±0.10
HE	6.40±0.20
Α	1.45 MAX.
A1	0.10±0.10
A2	1.15
е	0.65±0.12
bp	$0.22 + 0.10 \\ -0.05$
С	$0.15 + 0.05 \\ -0.02$
L	0.50±0.20
У	0.10
θ	0° to 10°

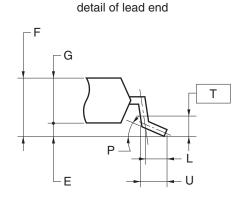
©2012 Renesas Electronics Corporation. All rights reserved.

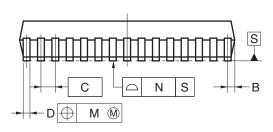
4.2 24-pin products

R5F1027AANA, R5F10279ANA, R5F10278ANA, R5F10277ANA R5F1037AANA, R5F10379ANA, R5F10378ANA, R5F10377ANA R5F1027ADNA, R5F10279DNA, R5F10278DNA, R5F10277DNA R5F1037ADNA, R5F10379DNA, R5F10378DNA, R5F10377DNA R5F1027AGNA, R5F10279GNA, R5F10278GNA, R5F10277GNA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-HWQFN24-4x4-0.50	PWQN0024KE-A	P24K8-50-CAB-1	0.04

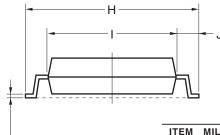



 \bigcirc 2012 Renesas Electronics Corporation. All rights reserved.


4.3 30-pin products

R5F102AAASP, R5F102A9ASP, R5F102A8ASP, R5F102A7ASP R5F103AAASP, R5F103A9ASP, R5F103A8ASP, R5F103A7ASP R5F102AADSP, R5F102A9DSP, R5F102A8DSP, R5F102A7DSP R5F103AADSP, R5F103A9DSP, R5F103A8DSP, R5F103A7DSP R5F102AAGSP, R5F102A9GSP, R5F102A8GSP, R5F102A7GSP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP30-0300-0.65	PLSP0030JB-B	S30MC-65-5A4-3	0.18



NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

Κ

ITEM	MILLIMETERS
Α	9.85±0.15
В	0.45 MAX.
С	0.65 (T.P.)
D	$0.24^{+0.08}_{-0.07}$
Е	0.1±0.05
F	1.3±0.1
G	1.2
Н	8.1±0.2
I	6.1±0.2
J	1.0±0.2
K	0.17±0.03
L	0.5
М	0.13
N	0.10
Р	3°+5°
Т	0.25
U	0.6±0.15

©2012 Renesas Electronics Corporation. All rights reserved.