



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Obsolete                                                                        |
|----------------------------|---------------------------------------------------------------------------------|
| Core Processor             | RL78                                                                            |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 24MHz                                                                           |
| Connectivity               | CSI, I <sup>2</sup> C, UART/USART                                               |
| Peripherals                | LVD, POR, PWM, WDT                                                              |
| Number of I/O              | 14                                                                              |
| Program Memory Size        | 16KB (16K x 8)                                                                  |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | -                                                                               |
| RAM Size                   | 1.5K x 8                                                                        |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 5.5V                                                                     |
| Data Converters            | A/D 11x8/10b                                                                    |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 20-LSSOP (0.173", 4.40mm Width)                                                 |
| Supplier Device Package    | 20-LSSOP                                                                        |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f1036aasp-v5 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| Table 1-1. | List of | Ordering | Part | Numbers |
|------------|---------|----------|------|---------|
|------------|---------|----------|------|---------|

|         | Pin<br>count | Package                                                                         | Data flash       | Fields of<br>Application | Part Number                                                                                                                                                            |                                                                                                                                                                        |   |                                                                                                                                     |
|---------|--------------|---------------------------------------------------------------------------------|------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------|
| <r></r> | 20<br>pins   | 20-pin plastic<br>LSSOP<br>$(4.4 \times 6.5 \text{ mm}, 0.65 \text{ mm pitch})$ | Mounted          | A                        | R5F1026AASP#V5, R5F10269ASP#V5, R5F10268ASP#V5, R5F10267ASP#V5,<br>R5F10266ASP#V5<br>R5F1026AASP#X5, R5F10269ASP#X5, R5F10268ASP#X5, R5F10267ASP#X5,<br>R5F10266ASP#X5 |                                                                                                                                                                        |   |                                                                                                                                     |
|         |              |                                                                                 |                  | D                        | R5F1026ADSP#V5, R5F10269DSP#V5, R5F10268DSP#V5, R5F10267DSP#V5,<br>R5F10266DSP#V5<br>R5F1026ADSP#X5, R5F10269DSP#X5, R5F10268DSP#X5, R5F10267DSP#X5,<br>R5F10266DSP#X5 |                                                                                                                                                                        |   |                                                                                                                                     |
|         |              |                                                                                 |                  |                          | G                                                                                                                                                                      | R5F1026AGSP#V5, R5F10269GSP#V5, R5F10268GSP#V5, R5F10267GSP#V5,<br>R5F10266GSP#V5<br>R5F1026AGSP#X5, R5F10269GSP#X5, R5F10268GSP#X5, R5F10267GSP#X5,<br>R5F10266GSP#X5 |   |                                                                                                                                     |
|         |              |                                                                                 | Not mounted      | A                        | R5F1036AASP#V5, R5F10369ASP#V5, R5F10368ASP#V5, R5F10367ASP#V5,<br>R5F10366ASP#V5<br>R5F1036AASP#X5, R5F10369ASP#X5, R5F10368ASP#X5, R5F10367ASP#X5,<br>R5F10366ASP#X5 |                                                                                                                                                                        |   |                                                                                                                                     |
|         |              |                                                                                 |                  | D                        | R5F1036ADSP#V5, R5F10369DSP#V5, R5F10368DSP#V5, R5F10367DSP#V5,<br>R5F10366DSP#V5<br>R5F1036ADSP#X5, R5F10369DSP#X5, R5F10368DSP#X5, R5F10367DSP#X5,<br>R5F10366DSP#X5 |                                                                                                                                                                        |   |                                                                                                                                     |
| <r></r> | 24<br>pins   | 24-pin plastic<br>HWQFN<br>$(4 \times 4 \text{ mm}, 0.5)$                       | Mounted          | A                        | R5F1027AANA#U5, R5F10279ANA#U5, R5F10278ANA#U5, R5F10277ANA#U5<br>R5F1027AANA#W5, R5F10279ANA#W5, R5F10278ANA#W5,<br>R5F10277ANA#W5                                    |                                                                                                                                                                        |   |                                                                                                                                     |
|         | mm pitcn)    | mm pitch)                                                                       | bitch)           |                          |                                                                                                                                                                        |                                                                                                                                                                        | D | R5F1027ADNA#U5, R5F10279DNA#U5, R5F10278DNA#U5, R5F10277DNA#U5<br>R5F1027ADNA#W5, R5F10279DNA#W5, R5F10278DNA#W5,<br>R5F10277DNA#W5 |
|         |              |                                                                                 |                  | G                        | R5F1027AGNA#U5, R5F10279GNA#U5, R5F10278GNA#U5,<br>R5F10277GNA#U5<br>R5F1027AGNA#W5, R5F10279GNA#W5, R5F10278GNA#W5,<br>R5F10277GNA#W5                                 |                                                                                                                                                                        |   |                                                                                                                                     |
|         |              |                                                                                 | Not mounted      | А                        | R5F1037AANA#V5, R5F10379ANA#V5, R5F10378ANA#V5, R5F10377ANA#V5                                                                                                         |                                                                                                                                                                        |   |                                                                                                                                     |
|         |              |                                                                                 |                  |                          | R5F1037AANA#X5, R5F10379ANA#X5, R5F10378ANA#X5, R5F10377ANA#X5                                                                                                         |                                                                                                                                                                        |   |                                                                                                                                     |
|         |              |                                                                                 |                  | D                        | R5F1037ADNA#V5, R5F10379DNA#V5, R5F10378DNA#V5, R5F10377DNA#V5<br>R5F1037ADNA#X5, R5F10379DNA#X5, R5F10378DNA#X5, R5F10377DNA#X5                                       |                                                                                                                                                                        |   |                                                                                                                                     |
|         | 30<br>pins   | 30-pin plastic<br>LSSOP                                                         | Mounted          | A                        | R5F102AAASP#V0, R5F102A9ASP#V0, R5F102A8ASP#V0, R5F102A7ASP#V0<br>R5F102AAASP#X0, R5F102A9ASP#X0, R5F102A8ASP#X0, R5F102A7ASP#X0                                       |                                                                                                                                                                        |   |                                                                                                                                     |
|         |              | (7.62 mm<br>(300), 0.65 mm                                                      |                  | D                        | R5F102AADSP#V0, R5F102A9DSP#V0, R5F102A8DSP#V0, R5F102A7DSP#V0<br>R5F102AADSP#X0, R5F102A9DSP#X0, R5F102A8DSP#X0, R5F102A7DSP#X0                                       |                                                                                                                                                                        |   |                                                                                                                                     |
|         |              | pitch)                                                                          | )<br>Not mounted | G                        | R5F102AAGSP#V0, R5F102A9GSP#V0, R5F102A8GSP#V0,<br>R5F102A7GSP#V0<br>R5F102AAGSP#X0, R5F102A9GSP#X0, R5F102A8GSP#X0,<br>R5F102A7GSP#X0                                 |                                                                                                                                                                        |   |                                                                                                                                     |
|         |              |                                                                                 |                  | A                        | R5F103AAASP#V0, R5F103A9ASP#V0, R5F103A8ASP#V0, R5F103A7ASP#V0<br>R5F103AAASP#X0, R5F103A9ASP#X0, R5F103A8ASP#X0, R5F103A7ASP#X0                                       |                                                                                                                                                                        |   |                                                                                                                                     |
|         |              |                                                                                 |                  | D                        | R5F103AADSP#V0, R5F103A9DSP#V0, R5F103A8DSP#V0, R5F103A7DSP#V0<br>R5F103AADSP#X0, R5F103A9DSP#X0, R5F103A8DSP#X0, R5F103A7DSP#X0                                       |                                                                                                                                                                        |   |                                                                                                                                     |

Note For fields of application, see Figure 1-1 Part Number, Memory Size, and Package of RL78/G12.

**Caution** The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.



| (T <sub>A</sub> = −40 to +85°C, | 1.8 V ≤ Vo       | o ≤ 5.5 V, Vss = 0                                                                                                                                                                                            | ) V)                           |                                                                                                                                               |      |      |      | (4/4) |
|---------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|-------|
| Parameter                       | Symbol           |                                                                                                                                                                                                               | Conditic                       | ns                                                                                                                                            | TYP. | MAX. | Unit |       |
| Output voltage, low             | V <sub>OL1</sub> | 20-, 24-pin product<br>P00 to P03 <sup>Note</sup> , P10                                                                                                                                                       | s:<br>) to P14,                | $\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 20.0 \ mA \end{array} \label{eq:DD_eq}$                        |      |      | 1.3  | V     |
|                                 |                  | P40 to P42       4.         30-pin products: P00, P01,       lo         P10 to P17, P30, P31, P40,       2.         P50, P51, P120, P147       lo         10       1.         10       1.         10       1. |                                | $\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.5 \ mA \end{array} \end{array} \label{eq:DD}$                |      |      | 0.7  | V     |
|                                 |                  |                                                                                                                                                                                                               |                                | $\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 3.0 \ mA \end{array} \label{eq:DD}$                            |      |      | 0.6  | V     |
|                                 |                  |                                                                                                                                                                                                               |                                | $\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 1.5 \ mA \end{array} \end{array} \label{eq:DD}$                |      |      | 0.4  | V     |
|                                 |                  |                                                                                                                                                                                                               |                                | $\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{ V}_{\mbox{DD}} \leq 5.5 \mbox{ V}, \\ I_{\mbox{DL1}} = 0.6 \mbox{ mA} \end{array}$ |      |      | 0.4  | V     |
|                                 | Vol2             | P20 to P23                                                                                                                                                                                                    |                                | lol2 = 400 μA                                                                                                                                 |      |      | 0.4  | V     |
|                                 | Vol3             | P60, P61 4                                                                                                                                                                                                    |                                | $\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 15.0 \ mA \end{array} \end{array} \label{eq:VDD}$              |      |      | 2.0  | V     |
|                                 |                  |                                                                                                                                                                                                               |                                | $\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 5.0 \ mA \end{array} \label{eq:DD}$                            |      |      | 0.4  | V     |
|                                 |                  |                                                                                                                                                                                                               |                                | $\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 3.0 \ mA \end{array} \label{eq:DD}$                            |      |      | 0.4  | V     |
|                                 |                  |                                                                                                                                                                                                               |                                | $\label{eq:VDD} \begin{array}{l} 1.8 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 2.0 \ mA \end{array}$                           |      |      | 0.4  | V     |
| Input leakage current,<br>high  | Ішні             | Other than P121,<br>P122                                                                                                                                                                                      | $V_{\text{I}} = V_{\text{DD}}$ |                                                                                                                                               |      |      | 1    | μA    |
|                                 | Ілн2             | P121, P122<br>(X1, X2/EXCLK)                                                                                                                                                                                  | $V_I = V_{DD}$                 | Input port or external<br>clock input                                                                                                         |      |      | 1    | μA    |
|                                 |                  |                                                                                                                                                                                                               |                                | When resonator connected                                                                                                                      |      |      | 10   | μA    |
| Input leakage current,<br>low   | ILIL1            | Other than P121,<br>P122                                                                                                                                                                                      | VI = Vss                       |                                                                                                                                               |      |      | -1   | μA    |
|                                 | ILIL2            | P121, P122<br>(X1, X2/EXCLK)                                                                                                                                                                                  | VI = Vss                       | Input port or external<br>clock input                                                                                                         |      |      | -1   | μA    |
|                                 |                  |                                                                                                                                                                                                               |                                | When resonator connected                                                                                                                      |      |      | -10  | μA    |
| On-chip pull-up<br>resistance   | Ru               | 20-, 24-pin product<br>P00 to P03 <sup>№™</sup> , P10<br>P40 to P42, P125,                                                                                                                                    | s:<br>) to P14,<br>RESET       | VI = Vss, input port                                                                                                                          | 10   | 20   | 100  | kΩ    |
|                                 |                  | 30-pin products: P0<br>P10 to P17, P30, F<br>P50, P51, P120, P                                                                                                                                                | 00, P01,<br>P31, P40,<br>147   |                                                                                                                                               |      |      |      |       |

#### $40 \text{ to } 185^{\circ}$ 18V < Vpp < 55 V Vcc -0 1/1

Note 24-pin products only.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.



# 2.5 Peripheral Functions Characteristics

#### **AC Timing Test Point**



### 2.5.1 Serial array unit

LS (low-spee

#### (1) During communication at same potential (UART mode) ( $T_A = -40$ to $+85^{\circ}$ C, 1.8 V $\leq$ V<sub>DD</sub> $\leq$ 5.5 V, V<sub>SS</sub> = 0 V)

| Parameter     | Symbol |                                               | Conditions                        | HS (hig<br>main) | h-speed<br>Mode | LS (low<br>main) | /-speed<br>Mode | Unit |
|---------------|--------|-----------------------------------------------|-----------------------------------|------------------|-----------------|------------------|-----------------|------|
|               |        |                                               |                                   | MIN.             | MAX.            | MIN.             | MAX.            |      |
| Transfer rate |        |                                               |                                   |                  | fмск/6          |                  | fмск/6          | bps  |
| Note 1        |        | Theoretical v<br>fc∟к = fмск <sup>Note2</sup> | alue of the maximum transfer rate |                  | 4.0             |                  | 1.3             | Mbps |

**Notes 1.** Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are: HS (high-speed main) mode: 24 MHz (2.7 V  $\leq$  VDD  $\leq$  5.5 V)

16 MHz (2.4 V 
$$\leq$$
 VDD  $\leq$  5.5 V)

d main) mode: 8 MHz (1.8 V 
$$\leq$$
 VDD  $\leq$  5.5 V)

**Caution** Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

#### UART mode connection diagram (during communication at same potential)



#### UART mode bit width (during communication at same potential) (reference)



**Remarks 1.** q: UART number (q = 0 to 2), g: PIM, POM number (g = 0, 1)

2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))



| Parameter                                      | Symbol        | Cond                                  | litions                                                      | HS (higł<br>main)          | n-speed<br>Mode | LS (low-sp<br>Mo | beed main)<br>bde | Unit |
|------------------------------------------------|---------------|---------------------------------------|--------------------------------------------------------------|----------------------------|-----------------|------------------|-------------------|------|
|                                                |               |                                       |                                                              | MIN.                       | MAX.            | MIN.             | MAX.              |      |
| SCKp cycle time Note4                          | <b>t</b> ксү2 | $4.0~V \leq V_{\text{DD}} \leq 5.5~V$ | 20 MHz < fмск                                                | <b>8/f</b> мск             |                 | -                |                   | ns   |
|                                                |               |                                       | fмск ≤ 20 MHz                                                | 6/fмск                     |                 | 6/fмск           |                   | ns   |
|                                                |               | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$ | 16 MHz < fмск                                                | 8/fмск                     |                 | -                |                   | ns   |
|                                                |               |                                       | fмск $\leq$ 16 MHz                                           | 6/fмск                     |                 | 6/fмск           |                   | ns   |
|                                                |               | $2.4~V \leq V_{\text{DD}} \leq 5.5~V$ |                                                              | 6/fмск                     |                 | 6/fмск           |                   | ns   |
|                                                |               |                                       |                                                              | and 500                    |                 | and 500          |                   |      |
|                                                |               | $1.8~V \leq V_{\text{DD}} \leq 5.5~V$ |                                                              | -                          |                 | 6/fмск           |                   | ns   |
|                                                |               |                                       |                                                              |                            |                 | and 750          |                   |      |
| SCKp high-/low-level                           | tкн2,         | $4.0~V \leq V_{\text{DD}} \leq 5.5~V$ |                                                              | tксү2/2-7                  |                 | tксү2/2-7        |                   | ns   |
| width                                          | tĸ∟2          | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$ |                                                              | tксү2/2-8                  |                 | tксү2/2-8        |                   | ns   |
|                                                |               | $2.4~V \leq V_{\text{DD}} \leq 5.5~V$ |                                                              | tксү2/2–18                 |                 | tксү2/2-18       |                   | ns   |
|                                                |               | $1.8~V \leq V_{\text{DD}} \leq 5.5~V$ |                                                              | -                          |                 | tксү2/2-18       |                   | ns   |
| SIp setup time<br>(to SCKp↑) <sup>Note 1</sup> | tsik2         | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$ |                                                              | 1/fмск +<br>20             |                 | 1/fмск +<br>30   |                   | ns   |
|                                                |               | $2.4~V \leq V_{\text{DD}} \leq 5.5~V$ |                                                              | 1/fмск +<br>30             |                 | 1/fмск +<br>30   |                   | ns   |
|                                                |               | $1.8~V \leq V_{\text{DD}} \leq 5.5~V$ |                                                              | _                          |                 | 1/fмск +<br>30   |                   | ns   |
| SIp hold time<br>(from SCKp↑) <sup>№te 2</sup> | tksi2         |                                       |                                                              | 1/f <sub>мск</sub> +<br>31 |                 | 1/fмск +<br>31   |                   | ns   |
| Delay time from<br>SCKp↓ to                    | tkso2         | C = 30 pF <sup>Note4</sup>            | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$                        |                            | 2/fмск +<br>44  |                  | 2/fмск +<br>110   | ns   |
| SOp output Note 3                              |               |                                       | $2.4~V \leq V_{\text{DD}} \leq 5.5~V$                        |                            | 2/fмск +<br>75  |                  | 2/fмск +<br>110   | ns   |
|                                                |               |                                       | $1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$ |                            | _               |                  | 2/fмск +<br>110   | ns   |

# (4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) ( $T_A = -40$ to $+85^{\circ}$ C, 1.8 V $\leq V_{DD} \leq 5.5$ V, Vss = 0 V)

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp<sup>↑</sup>" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
  - 4. C is the load capacitance of the SOp output lines.
  - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- **Caution** Select the normal input buffer for the SIp and SCKp pins and the normal output mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).



#### UART mode connection diagram (during communication at different potential)



#### UART mode bit width (during communication at different potential) (reference)





- **Remarks 1.** R<sub>b</sub>[Ω]: Communication line (TxDq) pull-up resistance, C<sub>b</sub>[F]: Communication line (TxDq) load capacitance, V<sub>b</sub>[V]: Communication line voltage
  - **2.** q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)
  - fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
    - m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))
  - **4.** UART0 of the 20- and 24-pin products supports communication at different potential only when the peripheral I/O redirection function is not used.



- **Notes 1.** When DAP00 = 0 and CKP00 = 0, or DAP00 = 1 and CKP00 = 1
  - **2.** When DAP00 = 0 and CKP00 = 1, or DAP00 = 1 and CKP00 = 0.
- Caution Select the TTL input buffer for the SI00 pin and the N-ch open drain output (V<sub>DD</sub> tolerance) mode for the SO00 pin and SCK00 pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V<sub>IH</sub> and V<sub>IL</sub>, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R<sub>b</sub> [Ω]:Communication line (SCK00, SO00) pull-up resistance, C<sub>b</sub> [F]: Communication line (SCK00, SO00) load capacitance, V<sub>b</sub> [V]: Communication line voltage
  - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register 0 (SPS0) and the CKS00 bit of serial mode register 00 (SMR00).)



#### **Notes 1.** Excludes quantization error ( $\pm 1/2$ LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When AV<sub>REFP</sub> < V<sub>DD</sub>, the MAX. values are as follows. Overall error: Add ±1.0 LSB to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>. Zero-scale error/Full-scale error: Add ±0.05%FSR to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>. Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>.
- 4. Values when the conversion time is set to 57  $\mu s$  (min.) and 95  $\mu s$  (max.).
- 5. Refer to 28.6.2 Temperature sensor/internal reference voltage characteristics.
- (2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI22

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{AV}_{REFP}, \text{ Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$ 

| Parameter                       | Symbol        | Conditio                       | ns                                                | MIN.   | TYP.  | MAX.                       | Unit |
|---------------------------------|---------------|--------------------------------|---------------------------------------------------|--------|-------|----------------------------|------|
| Resolution                      | Res           |                                |                                                   | 8      |       | 10                         | bit  |
| Overall error Note 1            | AINL          | 10-bit resolution              |                                                   |        | 1.2   | ±5.0                       | LSB  |
|                                 |               | $AV_{REFP} = V_{DD}^{Note 3}$  |                                                   |        | 1.2   | $\pm 8.5^{\text{Note 4}}$  | LSB  |
| Conversion time                 | <b>t</b> CONV | 10-bit resolution              | $3.6~V \leq V \text{DD} \leq 5.5~V$               | 2.125  |       | 39                         | μS   |
|                                 |               | Target ANI pin: ANI16 to ANI22 | $2.7~V \leq V \text{DD} \leq 5.5~V$               | 3.1875 |       | 39                         | μs   |
|                                 |               | 1.                             | $1.8~V \leq V \text{DD} \leq 5.5~V$               | 17     |       | 39                         | μs   |
|                                 |               |                                |                                                   | 57     |       | 95                         | μs   |
| Zero-scale error Notes 1, 2     | EZS           | 10-bit resolution              |                                                   |        | ±0.35 | %FSR                       |      |
|                                 |               | $AV_{REFP} = V_{DD}^{Note 3}$  |                                                   |        |       | $\pm 0.60^{\text{Note 4}}$ | %FSR |
| Full-scale error Notes 1, 2     | EFS           | 10-bit resolution              |                                                   |        |       | ±0.35                      | %FSR |
|                                 |               | $AV_{REFP} = V_{DD}^{Note 3}$  |                                                   |        |       | $\pm 0.60^{\text{Note 4}}$ | %FSR |
| Integral linearity error Note 1 | ILE           | 10-bit resolution              |                                                   |        |       | ±3.5                       | LSB  |
|                                 |               | $AV_{REFP} = V_{DD}^{Note 3}$  |                                                   |        |       | $\pm 6.0^{\text{Note 4}}$  | LSB  |
| Differential linearity          | DLE           | 10-bit resolution              |                                                   |        |       | ±2.0                       | LSB  |
| error <sup>Note 1</sup>         |               | $AV_{REFP} = V_{DD}^{Note 3}$  | $V_{\text{REFP}} = V_{\text{DD}}^{\text{Note 3}}$ |        |       | ±2.5 <sup>Note 4</sup>     | LSB  |
| Analog input voltage            | VAIN          | ANI16 to ANI22                 |                                                   | 0      |       | AVREFP<br>and VDD          | V    |

**Notes 1.** Excludes quantization error ( $\pm 1/2$  LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- **3.** When AV<sub>REFP</sub>  $\leq$  V<sub>DD</sub>, the MAX. values are as follows. Overall error: Add ±4.0 LSB to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>. Zero-scale error/Full-scale error: Add ±0.20%FSR to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>. Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AV<sub>REFP</sub> = V<sub>DD</sub>.
- 4. When the conversion time is set to 57  $\mu$ s (min.) and 95  $\mu$ s (max.).



# (3) When reference voltage (+) = V<sub>DD</sub> (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V<sub>ss</sub> (ADREFM = 0), target pin: ANI0 to ANI3, ANI16 to ANI22, internal reference voltage, and temperature sensor output voltage

| Parameter                                  | Symbol                                                                                   | Condition                                                            | Conditions MIN. TYP. MAX.                          |                |     |                     | Unit |
|--------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------|----------------|-----|---------------------|------|
| Resolution                                 | Res                                                                                      |                                                                      | 8                                                  |                | 10  | bit                 |      |
| Overall error <sup>Note 1</sup>            | AINL                                                                                     | 10-bit resolution                                                    |                                                    |                | 1.2 | ±7.0                | LSB  |
|                                            |                                                                                          |                                                                      |                                                    |                | 1.2 | $\pm 10.5^{Note 3}$ | LSB  |
| Conversion time                            | <b>t</b> CONV                                                                            | 10-bit resolution                                                    | $3.6~V \leq V \text{DD} \leq 5.5~V$                | 2.125          |     | 39                  | μS   |
|                                            |                                                                                          | Target pin: ANI0 to ANI3,                                            | $2.7~V \leq V \text{DD} \leq 5.5~V$                | 3.1875         |     | 39                  | μs   |
|                                            |                                                                                          | ANI16 to ANI22                                                       | $1.8~V \leq V \text{DD} \leq 5.5~V$                | 17             |     | 39                  | μS   |
|                                            |                                                                                          |                                                                      |                                                    | 57             |     | 95                  | μS   |
| Conversion time                            | <b>t</b> CONV                                                                            | 10-bit resolution                                                    | $3.6~V \leq V \text{DD} \leq 5.5~V$                | 2.375          |     | 39                  | μS   |
|                                            |                                                                                          | Target pin: internal reference                                       | $2.7 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$ | 3.5625         |     | 39                  | μS   |
|                                            |                                                                                          | sensor output voltage (HS<br>(high-speed main) mode)                 | $2.4~V \leq V_{DD} \leq 5.5~V$                     | 17             |     | 39                  | μS   |
| Zero-scale error <sup>Notes 1, 2</sup>     | EZS                                                                                      | 10-bit resolution                                                    | 10-bit resolution                                  |                |     | ±0.60               | %FSR |
|                                            |                                                                                          |                                                                      |                                                    |                |     | ±0.85<br>Note 3     | %FSR |
| Full-scale error <sup>Notes 1, 2</sup>     | EFS                                                                                      | 10-bit resolution                                                    |                                                    |                |     | ±0.60               | %FSR |
|                                            |                                                                                          |                                                                      |                                                    |                |     | ±0.85<br>Note 3     | %FSR |
| Integral linearity error <sup>Note 1</sup> | ILE                                                                                      | 10-bit resolution                                                    |                                                    |                |     | ±4.0                | LSB  |
|                                            |                                                                                          |                                                                      |                                                    |                |     | ±6.5 Note 3         | LSB  |
| Differential linearity error Note 1        | DLE                                                                                      | 10-bit resolution                                                    |                                                    |                |     | ±2.0                | LSB  |
|                                            |                                                                                          |                                                                      |                                                    |                |     | $\pm 2.5$ Note 3    | LSB  |
| Analog input voltage                       | VAIN                                                                                     | ANI0 to ANI3, ANI16 to ANI2                                          | 2                                                  | 0              |     | VDD                 | V    |
|                                            | Internal reference voltage<br>(2.4 V $\leq$ VDD $\leq$ 5.5 V, HS (high-speed main) mode) |                                                                      |                                                    | VBGR Note 4    |     | V                   |      |
|                                            |                                                                                          | Temperature sensor output v (2.4 V $\leq$ VDD $\leq$ 5.5 V, HS (high | roltage<br>n-speed main) mode)                     | VTMPS25 Note 4 |     |                     | V    |

| $(T_{A} = -40 \text{ to } +85^{\circ}\text{C})$ | $18V < V_{DD} < 55V$ | $V_{SS} = 0 V$ Reference    | voltage (+) = Vpp            | Reference voltage ( | -) = Vss)         |
|-------------------------------------------------|----------------------|-----------------------------|------------------------------|---------------------|-------------------|
| (1A = -40 10 + 05 C,                            |                      | $, v_{33} = 0 v, neielence$ | $=$ voltage ( $\pm$ ) = vol, | nelelence vollage ( | _j <b>–</b> v ssj |

**Notes 1.** Excludes quantization error ( $\pm 1/2$  LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When the conversion time is set to 57  $\mu s$  (min.) and 95  $\mu s$  (max.).
- 4. Refer to 28.6.2 Temperature sensor/internal reference voltage characteristics.



#### <R> 2.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

| $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$ |        |            |           |      |      |      |
|-------------------------------------------------------------------------|--------|------------|-----------|------|------|------|
| Parameter                                                               | Symbol | Conditions | MIN.      | TYP. | MAX. | Unit |
| Data retention supply voltage                                           | VDDDR  |            | 1.46 Note |      | 5.5  | V    |

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.



#### 2.8 Flash Memory Programming Characteristics

| $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{DD}$ |
|------------------------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------------------------|

| <r></r> | Parameter                                        | Symbol | Conditions            | MIN.    | TYP.      | MAX. | Unit  |
|---------|--------------------------------------------------|--------|-----------------------|---------|-----------|------|-------|
|         | System clock frequency                           | fclk   |                       | 1       |           | 24   | MHz   |
|         | Code flash memory rewritable times               | Cerwr  | Retained for 20 years | 1,000   |           |      | Times |
| -       | Notes 1, 2, 3                                    |        | $T_A = 85^{\circ}C$   |         |           |      |       |
|         | Data flash memory rewritable times Notes 1, 2, 3 |        | Retained for 1 year   |         | 1,000,000 |      |       |
|         |                                                  |        | $T_A = 25^{\circ}C$   |         |           |      |       |
|         |                                                  |        | Retained for 5 years  | 100,000 |           |      |       |
|         |                                                  |        | T <sub>A</sub> = 85°C |         |           |      |       |
|         |                                                  |        | Retained for 20 years | 10,000  |           |      |       |
|         |                                                  |        | T <sub>A</sub> = 85°C |         |           |      |       |

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

- 2. When using flash memory programmer and Renesas Electronics self programming library
- 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.



| Parameter            | Symbol           | Condition                                                                                         | MIN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TYP.    | MAX.               | Unit               |   |
|----------------------|------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------|--------------------|---|
| Input voltage, high  | VIH1             | Normal input buffer                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.8VDD  |                    | Vdd                | V |
|                      |                  | 20-, 24-pin products: P00 to P0<br>P40 to P42                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                    |                    |   |
|                      |                  | 30-pin products: P00, P01, P1<br>P40, P50, P51, P120, P147                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                    |                    |   |
|                      | VIH2             | TTL input buffer                                                                                  | $4.0~V \leq V_{\text{DD}} \leq 5.5~V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.2     |                    | VDD                | V |
|                      |                  | 20-, 24-pin products: P10, P11                                                                    | $3.3~V \leq V_{\text{DD}} < 4.0~V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.0     |                    | VDD                | V |
|                      |                  | 30-pin products: P01, P10,<br>P11, P13 to P17                                                     | $2.4~V \leq V_{\text{DD}} < 3.3~V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.5     |                    | Vdd                | V |
|                      | VIH3             | Normal input buffer<br>P20 to P23                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7Vdd  |                    | Vdd                | V |
|                      | VIH4             | P60, P61                                                                                          | 0.7Vdd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | 6.0                | V                  |   |
|                      | VIH5             | P121, P122, P125 <sup>Note 1</sup> , P137, E                                                      | 0.8Vdd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         | Vdd                | V                  |   |
| Input voltage, low   | VIL1             | Normal input buffer                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | 0.2V <sub>DD</sub> | V                  |   |
|                      |                  | 20-, 24-pin products: P00 to P0<br>P40 to P42                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                    |                    |   |
|                      |                  | 30-pin products: P00, P01, P10 to P17, P30, P31,<br>P40, P50, P51, P120, P147                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                    |                    |   |
|                      | VIL2             | TTL input buffer                                                                                  | $4.0~V \leq V_{\text{DD}} \leq 5.5~V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0       |                    | 0.8                | V |
|                      |                  | 20-, 24-pin products: P10, P11                                                                    | $3.3~V \leq V_{\text{DD}} < 4.0~V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       |                    | 0.5                | V |
|                      |                  | 30-pin products: P01, P10,<br>P11, P13 to P17                                                     | $2.4~V \leq V_{\text{DD}} < 3.3~V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0       |                    | 0.32               | V |
|                      | VIL3             | P20 to P23                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | 0.3VDD             | V                  |   |
|                      | VIL4             | P60, P61                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       |                    | 0.3VDD             | V |
|                      | VIL5             | P121, P122, P125 <sup>Note 1</sup> , P137, EXCLK, RESET                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0       |                    | 0.2V <sub>DD</sub> | V |
| Output voltage, high | V <sub>OH1</sub> | 20-, 24-pin products:<br>P00 to P03 <sup>Note 2</sup> , P10 to P14,                               | $\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -3.0 \ mA \end{array} \end{array} eq:delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_delta_d$ | VDD-0.7 |                    |                    | V |
|                      |                  | P40 to P42<br>30-pin products:<br>P00, P01, P10 to P17, P30,<br>P31, P40, P50, P51, P120,<br>P147 | $\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -2.0 \ \text{mA} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VDD-0.6 |                    |                    | V |
|                      |                  |                                                                                                   | $\begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -1.5 \ mA \end{array} \end{array} \label{eq:VDD}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VDD-0.5 |                    |                    | V |
|                      | Vон2             | P20 to P23                                                                                        | Іон2 = -100 <i>µ</i> А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VDD-0.5 |                    |                    | V |

#### $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

(3/4)

Notes 1. 20, 24-pin products only.

**2.** 24-pin products only.

- CautionThe maximum value of VIH of pins P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24-<br/>pin products, and P00, P10 to P15, P17, and P50 for 30-pin products is VDD even in N-ch open-drain mode.High level is not output in the N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.



#### 3.3.2 Supply current characteristics

#### (1) 20-, 24-pin products

|                                                                                                                           | ,                                                          |                                    |                                     |                                     |                                 |                          |                      |                      |      |      |     |  |
|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|---------------------------------|--------------------------|----------------------|----------------------|------|------|-----|--|
| Parameter                                                                                                                 | Symbol                                                     | Conditions                         |                                     |                                     |                                 |                          |                      | TYP.                 | MAX. | Unit |     |  |
| Supply<br>current <sup>Note 1</sup> IDD1         Operating<br>mode         HS (High-speed<br>main) mode <sup>Note 4</sup> | HS (High-speed                                             | $f_{IH} = 24 \text{ MHz}^{Note 3}$ | Basic                               | $V_{DD} = 5.0 V$                    |                                 | 1.5                      |                      | mA                   |      |      |     |  |
|                                                                                                                           | rrrent <sup>Note 1</sup> mode main) mode <sup>Note 4</sup> | mode                               | main) mode <sup>Note 4</sup>        |                                     | operation                       | V <sub>DD</sub> = 3.0 V  |                      | 1.5                  |      |      |     |  |
|                                                                                                                           |                                                            |                                    |                                     | Normal                              | V <sub>DD</sub> = 5.0 V         |                          | 3.3                  | 5.3                  | mA   |      |     |  |
|                                                                                                                           |                                                            |                                    |                                     |                                     | operation                       | V <sub>DD</sub> = 3.0 V  |                      | 3.3                  | 5.3  |      |     |  |
|                                                                                                                           | -                                                          | $f_{IH} = 16 \; MHz^{Note \; 3}$   |                                     | V <sub>DD</sub> = 5.0 V             |                                 | 2.5                      | 3.9                  | mA                   |      |      |     |  |
|                                                                                                                           |                                                            |                                    |                                     | V <sub>DD</sub> = 3.0 V             |                                 | 2.5                      | 3.9                  |                      |      |      |     |  |
|                                                                                                                           |                                                            |                                    |                                     | $f_{MX} = 20 \text{ MHz}^{Note 2},$ |                                 | Square wave input        |                      | 2.8                  | 4.7  | mA   |     |  |
|                                                                                                                           |                                                            |                                    |                                     | $V_{\text{DD}} = 5.0 \text{ V}$     | $V_{\text{DD}} = 5.0 \text{ V}$ | $V_{DD} = 5.0 \text{ V}$ |                      | Resonator connection |      | 3.0  | 4.8 |  |
|                                                                                                                           | f <sub>MX</sub> = 20 MHz <sup>Note 2</sup> ,               | Square wa                          | Square wave input                   |                                     | 2.8                             | 4.7                      | mA                   |                      |      |      |     |  |
|                                                                                                                           |                                                            |                                    | V <sub>DD</sub> :                   | $V_{DD} = 3.0 V$                    | $V_{DD} = 3.0 \text{ V}$        |                          | Resonator connection |                      | 3.0  | 4.8  |     |  |
|                                                                                                                           |                                                            |                                    | $f_{MX} = 10 \text{ MHz}^{Note 2},$ |                                     | Square wave input               |                          | 1.8                  | 2.8                  | mA   |      |     |  |
|                                                                                                                           |                                                            |                                    |                                     | VDD = 5.0 V                         |                                 | Resonator connection     |                      | 1.8                  | 2.8  |      |     |  |
|                                                                                                                           |                                                            |                                    | $f_{MX} = 10 \text{ MHz}^{Note 2},$ |                                     | Square wave input               |                          | 1.8                  | 2.8                  | mA   |      |     |  |
|                                                                                                                           |                                                            |                                    |                                     | $V_{\text{DD}} = 3.0 \text{ V}$     |                                 | Resonator connection     |                      | 1.8                  | 2.8  |      |     |  |

**Notes 1.** Total current flowing into V<sub>DD</sub>, including the input leakage current flowing when the level of the input pin is fixed to V<sub>DD</sub> or V<sub>SS</sub>. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. When high-speed on-chip oscillator clock is stopped.
- **3.** When high-speed system clock is stopped
- 4. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode:  $V_{DD} = 2.7$  V to 5.5 V @1 MHz to 24 MHz V<sub>DD</sub> = 2.4 V to 5.5 V @1 MHz to 16 MHz

- **Remarks 1.** f<sub>MX</sub>: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
  - 2. fil: high-speed on-chip oscillator clock frequency
  - **3.** Temperature condition of the TYP. value is  $T_A = 25^{\circ}C$ .



(1/2)

## 3.4 AC Characteristics

### $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

| Items                                                      | Symbol          | Conditions                                                |                                  |                                       | MIN.    | TYP. | MAX. | Unit |
|------------------------------------------------------------|-----------------|-----------------------------------------------------------|----------------------------------|---------------------------------------|---------|------|------|------|
| Instruction cycle (minimum instruction execution time)     | Тсү             | Main system<br>clock (fMAIN)<br>operation                 | HS (High-<br>speed main)<br>mode | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$ | 0.04167 |      | 1    | μS   |
|                                                            |                 |                                                           |                                  | $2.4~V \leq V_{\text{DD}} < 2.7~V$    | 0.0625  |      | 1    | μS   |
|                                                            |                 | During self<br>programming                                | HS (High-<br>speed main)<br>mode | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$ | 0.04167 |      | 1    | μS   |
|                                                            |                 |                                                           |                                  | $2.4~V \leq V_{\text{DD}} < 2.7~V$    | 0.0625  |      | 1    | μS   |
| External main system clock                                 | fex             | $2.7~V \leq V_{\text{DD}} \leq 5.4$                       | 5 V                              |                                       | 1.0     |      | 20.0 | MHz  |
| frequency                                                  |                 | $2.4~V \leq V_{\text{DD}} < 2$                            | .7 V                             |                                       | 1.0     |      | 16.0 | MHz  |
| External main system clock                                 | texн, texL      | $2.7~V \leq V_{\text{DD}} \leq 5.5~V$                     |                                  |                                       | 24      |      |      | ns   |
| input high-level width, low-<br>level width                |                 | $2.4~V \leq V_{\text{DD}} < 2.7~V$                        |                                  |                                       | 30      |      |      | ns   |
| TI00 to TI07 input high-level width, low-level width       | t⊓∺, t⊤∟        |                                                           | 1/fмск +<br>10                   |                                       |         | ns   |      |      |
| TO00 to TO07 output<br>frequency                           | f <sub>TO</sub> | $4.0~V \leq V_{\text{DD}} \leq 5.5~V$                     |                                  |                                       |         |      | 12   | MHz  |
|                                                            |                 | $2.7~V \leq V_{\text{DD}} < 4.0~V$                        |                                  |                                       |         |      | 8    | MHz  |
|                                                            |                 | $2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$ |                                  |                                       |         |      | 4    | MHz  |
| PCLBUZ0, or PCLBUZ1                                        | <b>f</b> PCL    | $4.0~V \leq V_{\text{DD}} \leq 5$                         | .5 V                             |                                       |         |      | 16   | MHz  |
| output frequency                                           |                 | $2.7~V \leq V_{\text{DD}} < 4.0~V$                        |                                  |                                       |         |      | 8    | MHz  |
|                                                            |                 | $2.4~V \leq V_{\text{DD}} < 2$                            | .7 V                             |                                       |         |      | 4    | MHz  |
| INTP0 to INTP5 input high-<br>level width, low-level width | tinth, tintl    |                                                           |                                  |                                       | 1       |      |      | μS   |
| KR0 to KR9 input available width                           | <b>t</b> KR     |                                                           |                                  |                                       | 250     |      |      | ns   |
| RESET low-level width                                      | trsL            |                                                           |                                  |                                       | 10      |      |      | μS   |

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the timer clock select register 0 (TPS0) and the CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7))





#### CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)





- Remarks 1. p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3)
  2. fMCK: Serial array unit operation clock frequency
  - (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3))



Baud rate error (theoretical value) =

$$) = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \,[\%]$$

\* This value is the theoretical value of the relative difference between the transmission and reception sides.

- 4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
- 5. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V  $\leq$  VDD < 4.0 V and 2.3 V  $\leq$  Vb  $\leq$  2.7 V

Maximum transfer rate = 
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =

 $\begin{array}{c} \displaystyle \frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \\ \hline \\ \displaystyle (\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits} \end{array} \times 100 \ [\%]$ 

- \* This value is the theoretical value of the relative difference between the transmission and reception sides.
- 6. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 5** above to calculate the maximum transfer rate under conditions of the customer.
- 7. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.4 V  $\leq$  V\_DD < 3.3 V, 1.6 V  $\leq$  V\_b  $\leq$  2.0 V

Maximum transfer rate =

$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =  $\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \,[\%]$ 

- \* This value is the theoretical value of the relative difference between the transmission and reception sides.
- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 7 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.



(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3)

| Parameter             | Symbol                                                                                                                        | Conditions                                                                                                           |                                                          | HS (high-spee | ed main) Mode | Unit |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------|---------------|------|
|                       |                                                                                                                               |                                                                                                                      |                                                          | MIN.          | MAX.          |      |
| SCKp cycle time       | tkcy1                                                                                                                         | tксү1 ≥ 4/fclк                                                                                                       | $4.0~V \leq V_{\text{DD}} \leq 5.5~V,$                   | 600           |               | ns   |
|                       |                                                                                                                               |                                                                                                                      | $2.7~V \leq V_b \leq 4.0~V,$                             |               |               |      |
|                       |                                                                                                                               |                                                                                                                      | $C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$ |               |               |      |
|                       |                                                                                                                               |                                                                                                                      | $2.7~V \leq V_{DD} < 4.0~V,$                             | 1000          |               | ns   |
|                       |                                                                                                                               |                                                                                                                      | $2.3~V \leq V_{b} \leq 2.7~V,$                           |               |               |      |
|                       |                                                                                                                               |                                                                                                                      | $C_b$ = 30 pF, $R_b$ = 2.7 k $\Omega$                    |               |               |      |
|                       |                                                                                                                               |                                                                                                                      | $2.4~V \leq V_{\text{DD}} < 3.3~V,$                      | 2300          |               | ns   |
|                       |                                                                                                                               |                                                                                                                      | $1.6~V \leq V_b \leq 2.0~V,$                             |               |               |      |
|                       |                                                                                                                               |                                                                                                                      | $C_b$ = 30 pF, $R_b$ = 5.5 k $\Omega$                    |               |               |      |
| SCKp high-level width | $CKp high-level width t_{KH1} 4.0 V \le V_{DD} \le 5.5 V, 2.7 V \le V_b \le 4.0 V,$                                           |                                                                                                                      | 5.5 V, 2.7 V $\leq$ V <sub>b</sub> $\leq$ 4.0 V,         | tксү1/2 –150  |               | ns   |
|                       |                                                                                                                               | $C_b = 30 \text{ pF}, R_b$                                                                                           | = 1.4 kΩ                                                 |               |               |      |
|                       |                                                                                                                               | $2.7 \text{ V} \leq \text{V}_{\text{DD}}$ < 4                                                                        | 4.0 V, 2.3 V $\leq$ V <sub>b</sub> $\leq$ 2.7 V,         | tксү1/2 –340  |               | ns   |
|                       |                                                                                                                               | $C_b=30 \text{ pF},  \text{R}_b=2.7  \text{k}\Omega$                                                                 |                                                          |               |               |      |
|                       |                                                                                                                               | $2.4 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V,$                                    |                                                          | tксү1/2-916   |               | ns   |
|                       |                                                                                                                               | $C_b = 30 \text{ pF}, \text{ R}_b$                                                                                   | = 5.5 kΩ                                                 |               |               |      |
| SCKp low-level width  | CKp low-level width         tkl1         4.0 V $\leq$ V <sub>DD</sub> $\leq$ 5.5 V, 2.7 V $\leq$ V <sub>b</sub> $\leq$ 4.0 V, |                                                                                                                      | 5.5 V, 2.7 V $\leq$ V <sub>b</sub> $\leq$ 4.0 V,         | tксү1/2 –24   |               | ns   |
|                       |                                                                                                                               | $C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$                                                             |                                                          |               |               |      |
|                       |                                                                                                                               | $2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$                                                    |                                                          | tксү1/2 –36   |               | ns   |
|                       |                                                                                                                               | $C_b = 30 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$                                                             |                                                          |               |               |      |
|                       |                                                                                                                               | $2.4 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$ |                                                          | tксү1/2-100   |               | ns   |
|                       |                                                                                                                               | $C_b$ = 30 pF, $R_b$ = 5.5 k $\Omega$                                                                                |                                                          |               |               |      |

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$ 

- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (V<sub>DD</sub> tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V<sub>IH</sub> and V<sub>IL</sub>, see the DC characteristics with TTL input buffer selected.
  - 2. CSI01 and CSI11 cannot communicate at different potential.
- **Remarks 1.** R<sub>b</sub> [Ω]: Communication line (SCKp, SOp) pull-up resistance, C<sub>b</sub> [F]: Communication line (SCKp, SOp) load capacitance, V<sub>b</sub> [V]: Communication line voltage
  - **2.** p: CSI number (p = 00, 20)





CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)









#### CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

**Remark** p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)



## 3.5.2 Serial interface IICA

| Parameter                           | Symbol       | Conditions               | HS (high-speed main) mode |        | iode   | Unit |     |
|-------------------------------------|--------------|--------------------------|---------------------------|--------|--------|------|-----|
|                                     |              |                          | Standar                   | d Mode | Fast I | Mode |     |
|                                     |              |                          | MIN.                      | MAX.   | MIN.   | MAX. |     |
| SCLA0 clock frequency               | fsc∟         | Fast mode: fclк≥ 3.5 MHz |                           |        | 0      | 400  | kHz |
|                                     |              | Normal mode: fc∟k≥ 1 MHz | 0                         | 100    |        |      | kHz |
| Setup time of restart condition     | tsu:sta      |                          | 4.7                       |        | 0.6    |      | μS  |
| Hold time <sup>Note 1</sup>         | thd:sta      |                          | 4.0                       |        | 0.6    |      | μS  |
| Hold time when SCLA0 = "L"          | t∟ow         |                          | 4.7                       |        | 1.3    |      | μS  |
| Hold time when SCLA0 = "H"          | tніgн        |                          | 4.0                       |        | 0.6    |      | μS  |
| Data setup time (reception)         | tsu:dat      |                          | 250                       |        | 100    |      | ns  |
| Data hold time (transmission)Note 2 | thd:dat      |                          | 0                         | 3.45   | 0      | 0.9  | μS  |
| Setup time of stop condition        | tsu:sto      |                          | 4.0                       |        | 0.6    |      | μs  |
| Bus-free time                       | <b>t</b> BUF |                          | 4.7                       |        | 1.3    |      | μs  |

#### $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- **Caution** Only in the 30-pin products, the values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

 $\label{eq:cb} \begin{array}{ll} \mbox{Normal mode:} & C_b = 400 \mbox{ pF}, \mbox{ Rb} = 2.7 \mbox{ } k\Omega \\ \mbox{Fast mode:} & C_b = 320 \mbox{ pF}, \mbox{ Rb} = 1.1 \mbox{ } k\Omega \end{array}$ 



#### IICA serial transfer timing



<sup>&</sup>lt;R>

**Revision History** 

# RL78/G12 Data Sheet

|                           |              |        | Description                                                                                 |  |  |  |  |
|---------------------------|--------------|--------|---------------------------------------------------------------------------------------------|--|--|--|--|
| Rev.                      | Date         | Page   | Summary                                                                                     |  |  |  |  |
| 1.00                      | Dec 10, 2012 | -      | First Edition issued                                                                        |  |  |  |  |
| 2.00                      | Sep 06, 2013 | 1      | Modification of 1.1 Features                                                                |  |  |  |  |
|                           |              | 3      | Modification of 1.2 List of Part Numbers                                                    |  |  |  |  |
|                           |              |        | Modification of Table 1-1. List of Ordering Part Numbers, Note, and Caution                 |  |  |  |  |
|                           |              | 7 to 9 | Modification of package name in 1.4.1 to 1.4.3                                              |  |  |  |  |
|                           |              |        | Modification of tables in 1.7 Outline of Functions                                          |  |  |  |  |
|                           |              | 17     | Modification of description of table in 2.1 Absolute Maximum Ratings (TA = $25^{\circ}$ C)  |  |  |  |  |
|                           | 18           |        | Modification of table, Note, and Caution in 2.2.1 X1 oscillator characteristics             |  |  |  |  |
|                           |              | 18     | Modification of table in 2.2.2 On-chip oscillator characteristics                           |  |  |  |  |
|                           |              | 19     | Modification of Note 3 in 2.3.1 Pin characteristics (1/4)                                   |  |  |  |  |
|                           |              | 20     | Modification of Note 3 in 2.3.1 Pin characteristics (2/4)                                   |  |  |  |  |
|                           |              | 23     | Modification of Notes 1 and 2 in (1) 20-, 24-pin products (1/2)                             |  |  |  |  |
|                           |              | 24     | Modification of Notes 1 and 3 in (1) 20-, 24-pin products (2/2)                             |  |  |  |  |
|                           |              | 25     | Modification of Notes 1 and 2 in (2) 30-pin products (1/2)                                  |  |  |  |  |
|                           |              | 26     | Modification of Notes 1 and 3 in (2) 30-pin products (2/2)                                  |  |  |  |  |
|                           |              | 27     | Modification of (3) Peripheral functions (Common to all products)                           |  |  |  |  |
|                           |              | 28     | Modification of table in 2.4 AC Characteristics                                             |  |  |  |  |
|                           |              | 20     | Addition of Minimum Instruction Execution Time during Main System Clock Operation           |  |  |  |  |
|                           |              | 20     | Modification of figures of AC Timing Test Point and External Main System Clock Timing       |  |  |  |  |
|                           |              | 01     | Modification of figures of AC Timing Test Point and External Main System Glock Hining       |  |  |  |  |
|                           |              | 31     | Medification of description and Nate 2 in (1) During communication at some natential        |  |  |  |  |
|                           |              | 31     | (UART mode)                                                                                 |  |  |  |  |
|                           |              | 32     | Modification of description in (2) During communication at same potential (CSI mode)        |  |  |  |  |
|                           |              | 33     | Modification of description in (3) During communication at same potential (CSI mode)        |  |  |  |  |
|                           |              | 34     | Modification of description in (4) During communication at same potential (CSI mode)        |  |  |  |  |
|                           |              | 36     | Modification of table and Note 2 in (5) During communication at same potential              |  |  |  |  |
|                           |              |        | (simplified I <sup>2</sup> C mode)                                                          |  |  |  |  |
|                           |              | 38, 39 | Modification of table and Notes 1 to 9 in (6) Communication at different potential          |  |  |  |  |
|                           |              | ,      | (1.8 V, 2.5 V, 3 V) (UART mode)                                                             |  |  |  |  |
|                           |              | 40     | Modification of Remarks 1 to 3 in (6) Communication at different potential (1.8 V,          |  |  |  |  |
|                           |              | -      | 2.5 V, 3 V) (UART mode)                                                                     |  |  |  |  |
|                           |              | 41     | Modification of table in (7) Communication at different potential (2.5 V, 3 V) (CSI mode)   |  |  |  |  |
|                           |              | 42     | Modification of Caution in (7) Communication at different potential (2.5 V, 3 V) (CSI mode) |  |  |  |  |
|                           |              | 43     | Modification of table in (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI  |  |  |  |  |
|                           |              |        | mode) (1/3)                                                                                 |  |  |  |  |
|                           |              | 44     | Modification of table and Notes 1 and 2 in (8) Communication at different potential (1.8    |  |  |  |  |
|                           |              |        | V, 2.5 V, 3 V) (CSI mode) (2/3)                                                             |  |  |  |  |
|                           |              | 45     | Modification of table, Note 1, and Caution 1 in (8) Communication at different potential    |  |  |  |  |
|                           |              |        | (1.8 V, 2.5 V, 3 V) (CSI mode) (3/3)                                                        |  |  |  |  |
|                           |              | 47     | Modification of table in (9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI  |  |  |  |  |
|                           | 50           |        | mode)                                                                                       |  |  |  |  |
|                           |              |        | Modification of table, Note 1, and Caution 1 in (10) Communication at different potential   |  |  |  |  |
|                           |              |        | (1.8 V, 2.5 V, 3 V) (simplified I <sup>c</sup> C mode)                                      |  |  |  |  |
| 52 Modification of Remark |              | 52     | Modification of Remark in 2.5.2 Serial interface IICA                                       |  |  |  |  |
|                           |              | 53     | Addition of table to 2.6.1 A/D converter characteristics                                    |  |  |  |  |
|                           |              | 53     | Modification of description in 2.6.1 (1)                                                    |  |  |  |  |
|                           |              | 54     | Modification of Notes 3 to 5 in 2.6.1 (1)                                                   |  |  |  |  |
|                           |              | 54     | Modification of description and Notes 2 to 4 in 2.6.1 (2)                                   |  |  |  |  |

#### NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.