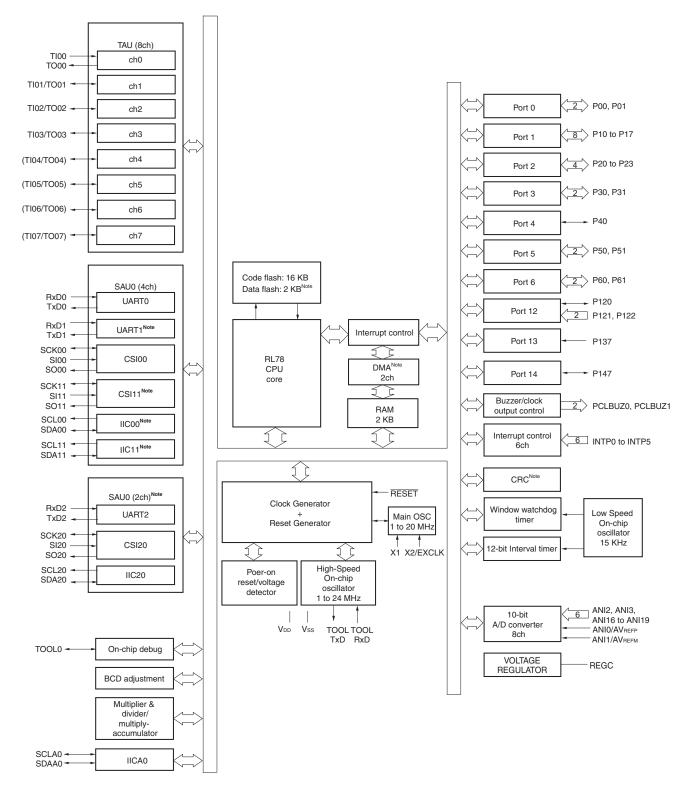


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details


Details	
Product Status	Discontinued at Digi-Key
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	14
Program Memory Size	16KB (16K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f1036adsp-v0

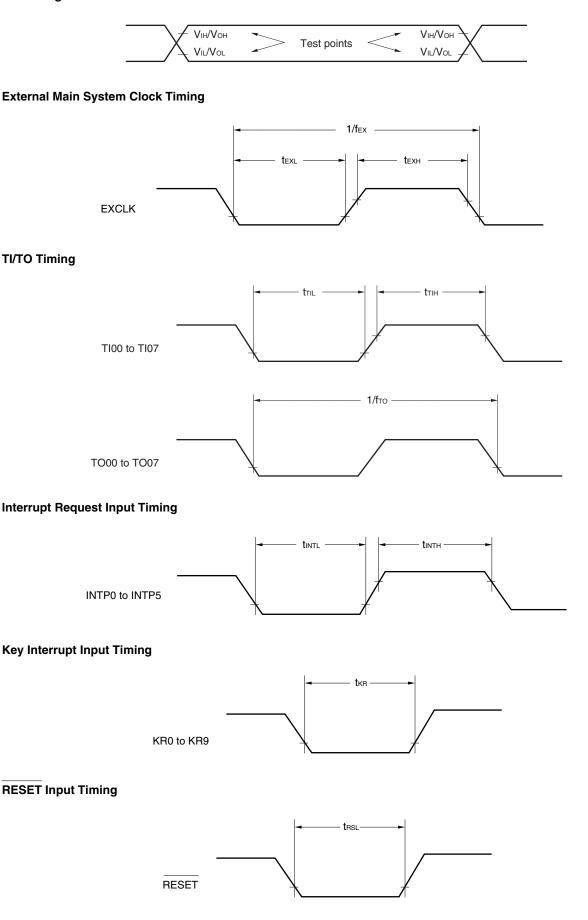
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.6.3 30-pin products

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR).

Parameter	Symbol		Conditio	ons	MIN.	TYP.	MAX.	Unit
Output voltage, low	Vol1			$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 20.0 \ mA \end{array} \label{eq:DD}$			1.3	V
		P40 to P42 30-pin products: P0		$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.5 \ mA \end{array} \label{eq:DD}$			0.7	V
		P10 to P17, P30, F P50, P51, P120, P		$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 3.0 \ mA \end{array} \label{eq:DD}$			0.6	V
				$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 1.5 \ mA \end{array} \label{eq:DD}$			0.4	V
				$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq V_{\mbox{DD}} \leq 5.5 \mbox{ V}, \\ I_{\mbox{DL1}} = 0.6 \mbox{ mA} \end{array}$			0.4	V
	Vol2	P20 to P23		lol2 = 400 μA			0.4	v
	Vol3			$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 15.0 \ mA \end{array} \label{eq:DD}$			2.0	V
				$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 5.0 \ mA \end{array} \label{eq:DD}$			0.4	V
				$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 3.0 \ mA \end{array} \label{eq:DD}$			0.4	V
				$\label{eq:VDD} \begin{array}{l} 1.8 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 2.0 \ mA \end{array}$			0.4	V
nput leakage current, nigh	Ішні	Other than P121, P122	$V_{\text{I}} = V_{\text{DD}}$				1	μA
	Ішна	P121, P122 (X1, X2/EXCLK)	$V_{\text{I}} = V_{\text{DD}}$	Input port or external clock input			1	μA
				When resonator connected			10	μA
nput leakage current, ow	ILIL1	Other than P121, P122	VI = Vss				-1	μA
	ILIL2	P121, P122 (X1, X2/EXCLK)	$V_I = V_{SS}$	Input port or external clock input			-1	μA
				When resonator connected			-10	μA
Dn-chip pull-up resistance	P00 to P03 ^{Note} , P10 to P14, P40 to P42, P125, RESET 30-pin products: P00, P01,		VI = Vss, input port	10	20	100	kΩ	
		P10 to P17, P30, F P50, P51, P120, P						


$40 \text{ to } 185^{\circ}$ 18V < Vpp < 55 V Vcc -0 1/1

Note 24-pin products only.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

AC Timing Test Point

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-sp Mo	Unit	
			MIN.	MAX.	MIN.	MAX.		
SCKp cycle time Note4	t ксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	20 MHz < fмск	8/f мск		-		ns
			fмск ≤ 20 MHz	6/fмск		6/fмск		ns
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	16 MHz < fмск	8/fмск		-		ns
			fмск ≤ 16 MHz	6/fмск		6/fмск		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		6/fмск		6/fмск		ns
				and 500		and 500		
		$1.8~V \le V_{\text{DD}} \le 5.5~V$		-		6/fмск		ns
						and 750		
SCKp high-/low-level width	tкн2,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2-7		tксү2/2-7		ns
	tĸ∟2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2-8		tксү2/2-8		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2–18		tксү2/2-18		ns
		$1.8~V \leq V_{\text{DD}} \leq 5.5~V$		-		tксү2/2-18		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsık2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск + 20		1/fмск + 30		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск + 30		1/fмск + 30		ns
		$1.8~V \le V_{\text{DD}} \le 5.5~V$		-		1/fмск + 30		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi2			1/f _{мск} + 31		1/fмск + 31		ns
Delay time from SCKp↓ to	tkso2	C = 30 pF ^{Note4}	$2.7~V \le V_{\text{DD}} \le 5.5~V$		2/fмск + 44		2/fмск + 110	ns
SOp output Note 3			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		2/fмск + 75		2/fмск + 110	ns
			$1.8~V \leq V_{\text{DD}} \leq 5.5~V$		-		2/fмск + 110	ns

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (T_A = -40 to +85°C, 1.8 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- **Caution** Select the normal input buffer for the SIp and SCKp pins and the normal output mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).

- 5. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
- 6. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq V_DD < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-Cb \times Rb \times ln (1 - \frac{2.0}{Vb})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =

 $\begin{array}{c} \displaystyle \frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \\ \hline \\ \displaystyle (\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits} \end{array} \times 100 \ [\%]$ * This value is the theoretical value of the relative difference between the transmission and reception sides.

- 7. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.
- 8. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq V_DD < 3.3 V, 1.6 V \leq V_b \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =

$$\frac{1}{\text{ransfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\}$$

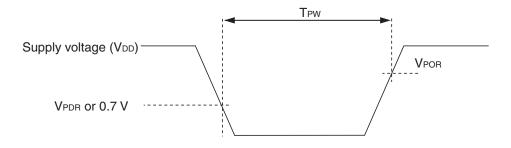
$$\frac{1}{(1 - \frac{1.5}{V_b})} \times 100 \,[\%]$$
Transfer rate

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- 9. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 8 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDg pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and V_{IL}, see the DC characteristics with TTL input buffer selected.

2.6.2 Temperature sensor/internal reference voltage characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.50	V
Temperature coefficient	Fvtmps	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs


(T_A = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, HS (high-speed main) mode

2.6.3 POR circuit characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.47	1.51	1.55	V
	VPDR	Power supply fall time	1.46	1.50	1.54	V
Minimum pulse width Note	TPW		300			μS

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

3.1 Absolute Maximum Ratings

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbols		Conditions	Ratings	Unit
Supply Voltage	VDD			-0.5 to + 6.5	V
REGC terminal input voltage ^{Note1}	VIREGC	REGC		-0.3 to +2.8 and -0.3 to V _{DD} + 0.3 _{Note 2}	V
Input Voltage	VI1	Other than P60, F	261	-0.3 to V _{DD} + 0.3 ^{Note 3}	V
	VI2	P60, P61 (N-ch o	pen drain)	-0.3 to 6.5	V
Output Voltage	Vo			-0.3 to V _{DD} + $0.3^{Note 3}$	V
Analog input voltage	VAI	20, 24-pin produc	ts: ANI0 to ANI3, ANI16 to ANI22	-0.3 to V _{DD} + 0.3	V
		30-pin products: A	ANIO to ANI3, ANI16 to ANI19	and -0.3 to AVREF(+)+0.3 ^{Notes 3, 4}	
Output current, high	Іон1	Per pin	Other than P20 to P23	-40	mA
		Total of all pins	All the terminals other than P20 to P23	-170	mA
			20-, 24-pin products: P40 to P42	-70	mA
			30-pin products: P00, P01, P40, P120		
			20-, 24-pin products: P00 to P03 ^{Note 5} , P10 to P14 30-pin products: P10 to P17, P30, P31, P50, P51, P147	-100	mA
	Іон2	Per pin	P20 to P23	-0.5	mA
		Total of all pins		-2	mA
Output current, low	IOL1	Per pin	Other than P20 to P23	40	mA
		Total of all pins	All the terminals other than P20 to P23	170	mA
			20-, 24-pin products: P40 to P42 30-pin products: P00, P01, P40, P120	70	mA
			20-, 24-pin products: P00 to P03 ^{Note 5} , P10 to P14, P60, P61 30-pin products: P10 to P17, P30, P31, P50, P51, P60, P61, P147	100	mA
	I _{OL2}	Per pin	P20 to P23	1	mA
		Total of all pins		5	mA
Operating ambient temperature	Та			-40 to +105	°C
Storage temperature	Tstg			-65 to +150	°C

Notes 1. 30-pin product only.

- 2. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value determines the absolute maximum rating of the REGC pin. Do not use it with voltage applied.
- 3. Must be 6.5 V or lower.
- 4. Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.
- 5. 24-pin products only.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** AVREF(+) : + side reference voltage of the A/D converter.
 - 3. Vss : Reference voltage

3.2 Oscillator Characteristics

3.2.1 X1 oscillator characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) ^{Note}	Ceramic resonator /	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
	crystal oscillator	$2.4~V \leq V_{\text{DD}} < 2.7~V$	1.0		8.0	

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

- **Caution** Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- Remark When using the X1 oscillator, refer to 5.4 System Clock Oscillator.

3.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Oscillators	Parameters	Сог	nditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		24	MHz
High-speed on-chip oscillator		R5F102 products	T _A = -20 to +85°C	-1.0		+1.0	%
clock frequency accuracy			$T_A = -40$ to $-20^{\circ}C$	-1.5		+1.5	%
			T _A = +85 to +105°C	-2.0		+2.0	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H) and bits 0 to 2 of HOCODIV register.

2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

3.3 DC Characteristics

3.3.1 Pin characteristics

Γ _A = –40 to +105°C,	2.4 V ≤	$V_{DD} \leq 5.5 V, V_{SS} = 0 V$				(1/4)	
Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Output current, high ^{№ote 1}	Іонı	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42 30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147				-3.0 Note 2	mA
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-9.0	mA
		Total of P40 to P42	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-6.0	mA
		30-pin products: Total of P00, P01, P40, P120 (When duty $\leq 70\%^{\text{Note 3}}$)	$2.4~V \leq V_{DD} < 2.7~V$			-4.5	mA
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-27.0	mA
		Total of P00 to P03 ^{Note 4} , P10 to P14	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-18.0	mA
		30-pin products: Total of P10 to P17, P30, P31, P50, P51, P147 (When duty \leq 70% ^{Note 3})	$2.4~V \leq V_{\text{DD}} < 2.7~V$			-10.0	mA
		Total of all pins (When duty $\leq 70\%^{Note 3}$)				-36.0	mA
	Іон2	Per pin for P20 to P23				-0.1	mA
		Total of all pins				-0.4	mA

Notes 1. value of current at which the device operation is guaranteed even if the current flows from the VDD pin to an output pin.

- 2. However, do not exceed the total current value.
- 3. The output current value under conditions where the duty factor \leq 70%. If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).
 - Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$ <Example> Where n = 80% and $I_{OH} = -10.0$ mA
 - Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

- 4. 24-pin products only.
- Caution P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24-pin products, and P00, P10 to P15, P17, and P50 for 30-pin products do not output high level in N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

$(1A = -40 \text{ to } +105^{\circ}\text{C})$	-40 to $+105^{\circ}$ C, 2.4 V \leq V dd \leq 5.5 V, Vss = 0 V)							
Parameter	Symbol	Conditions			TYP.	MAX.	Unit	
Output current, low ^{Note 1}	Iol1	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42 30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147				8.5 Note 2	mA	
		Per pin for P60, P61				15.0 Note 2	mA	
		Total of P40 to P42	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			25.5	mA	
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			9.0	mA	
			$2.4~V \leq V_{\text{DD}} < 2.7~V$			1.8	mA	
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			40.0	mA	
		Total of P00 to P03 ^{Note 4} ,	$2.7~V \leq V_{\text{DD}} < 4.0~V$			27.0	mA	
		P10 to P14, P60, P61 30-pin products: Total of P10 to P17, P30, P31, P50, P51, P60, P61, P147 (When duty \leq 70% ^{Note 3})	$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			5.4	mA	
		Total of all pins (When duty $\leq 70\%^{Note 3}$)				65.5	mA	
	IOL2	Per pin for P20 to P23				0.4	mA	
		Total of all pins				1.6	mA	

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

(2/4)

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.

2. However, do not exceed the total current value.

3. The output current value under conditions where the duty factor \leq 70%.

If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).

• Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and I_{OL} = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \cong 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

- **4.** 24-pin products only.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

3.3.2 Supply current characteristics

(1) 20-, 24-pin products

<u>(1A = 10 to</u>	1100 0,		<u> </u>	•••)						("-/
Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply		Operating	HS (High-speed	$f_{\text{IH}} = 24 \text{ MHz}^{\text{Note 3}}$	Basic	$V_{DD} = 5.0 V$		1.5		mA
current ^{Note 1}		mode	main) mode ^{Note 4}		operation	VDD = 3.0 V		1.5		
					Normal	$V_{DD} = 5.0 V$		3.3	5.3	mA
					operation	$V_{DD} = 3.0 V$		3.3	5.3	
				f⊪ = 16 MHz ^{№te 3}		$V_{DD} = 5.0 V$		2.5	3.9	mA
						$V_{DD} = 3.0 V$		2.5	3.9	
				$f_{MX} = 20 \text{ MHz}^{Note 2},$		Square wave input		2.8	4.7	mA
				$V_{DD} = 5.0 V$		Resonator connection		3.0	4.8	
				$f_{MX} = 20 \text{ MHz}^{Note 2},$		Square wave input		2.8	4.7	mA
				$V_{DD} = 3.0 V$		Resonator connection		3.0	4.8	
				$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		1.8	2.8	mA
				$V_{DD} = 5.0 V$		Resonator connection		1.8	2.8	
				$f_{MX} = 10 \text{ MHz}^{Note 2}$,		Square wave input		1.8	2.8	mA
				$V_{DD} = 3.0 V$		Resonator connection		1.8	2.8	

Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. When high-speed on-chip oscillator clock is stopped.
- **3.** When high-speed system clock is stopped
- 4. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode: $V_{DD} = 2.7$ V to 5.5 V @1 MHz to 24 MHz V_{DD} = 2.4 V to 5.5 V @1 MHz to 16 MHz

- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fil: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$.

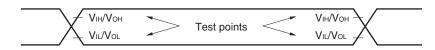
(1/2)

(2) 30-pin products

<u>(Ta = -40 to</u>	+105°C,	2.4 V ≤ V	DD \leq 5.5 V, Vss =	= 0 V)		_	-		(2/2)
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	DD2 Note 2	HALT	HS (High-speed	$f_{IH} = 24 \text{ MHz}^{Note 4}$	$V_{DD} = 5.0 V$		440	2300	μA
current Note 1		mode	main) mode ^{№066}		$V_{DD} = 3.0 V$		440	2300	
				$f_{IH} = 16 \text{ MHz}^{Note 4}$	$V_{DD} = 5.0 V$		400	1700	μA
					$V_{DD} = 3.0 V$		400	1700	
				$f_{MX} = 20 \text{ MHz}^{Note 3}$,	Square wave input		280	1900	μA
				$V_{DD} = 5.0 V$	Resonator connection		450	2000	
				$f_{MX} = 20 \text{ MHz}^{Note 3},$	Square wave input		280	1900	μA
				$V_{DD} = 3.0 V$	Resonator connection		450	2000	
				$f_{MX} = 10 \text{ MHz}^{Note 3}$,	Square wave input		190	1020	μA
				$V_{DD} = 5.0 V$	Resonator connection		260	1100	
				$f_{MX} = 10 \text{ MHz}^{Note 3}$,	Square wave input		190	1020	μA
				$V_{DD} = 3.0 V$	Resonator connection		260	1100	
	DD3 Note 5	STOP	$T_A = -40^{\circ}C$				0.18	0.50	μA
		mode	T _A = +25°C				0.23	0.50	
			T _A = +50°C				0.30	1.10	
			T _A = +70°C				0.46	1.90	
			T _A = +85°C				0.75	3.30	
			T _A = +105°C				2.94	15.30	

Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. During HALT instruction execution by flash memory.
- 3. When high-speed on-chip oscillator clock is stopped.
- 4. When high-speed system clock is stopped.
- Not including the current flowing into the 12-bit interval timer and watchdog timer. 5.
- 6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

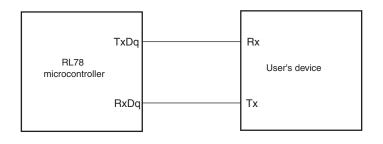

HS (High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz VDD = 2.4 V to 5.5 V @1 MHz to 16 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except STOP mode, temperature condition of the TYP. value is TA = 25°C.

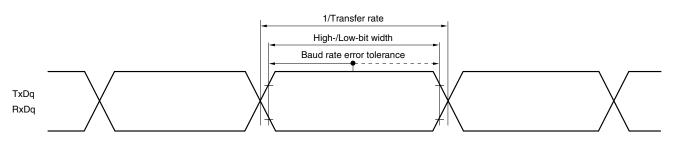
3.5 Peripheral Functions Characteristics

AC Timing Test Point

3.5.1 Serial array unit

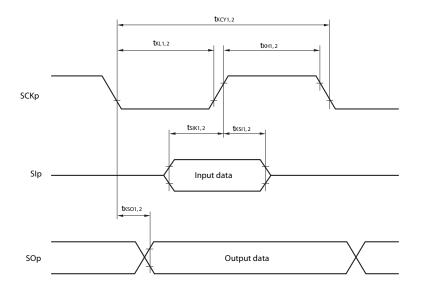

(1) During communication at same potential (UART mode) (T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

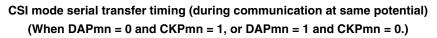
Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
Transfer rate				fмск/12	bps
Note 1		Theoretical value of the maximum transfer rate $f_{CLK} = f_{MCK}^{Note2}$		2.0	Mbps

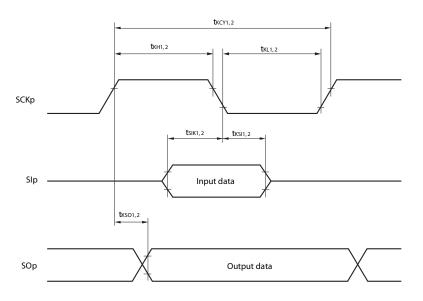

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- 2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are: HS (high-speed main) mode: 24 MHz (2.7 V \leq V_{DD} \leq 5.5 V) 16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)
- **Caution** Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)


UART mode bit width (during communication at same potential) (reference)


Remarks 1. q: UART number (q = 0 to 2), g: PIM, POM number (g = 0, 1)


- 2. fMCK: Serial array unit operation clock frequency
 - (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 - m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- Remarks 1. p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3)
 2. fMCK: Serial array unit operation clock frequency
 - (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3))

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3)

Parameter	Symbol	Conditions	HS (high-spee	HS (high-speed main) Mode		
			MIN.	MAX.		
SIp setup time (to SCKp↑) _{Note}	tsik1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 1.4 \ k\Omega \end{array}$	162		ns	
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$	354		ns	
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 5.5 \ k\Omega \end{array}$	958		ns	
SIp hold time (from SCKp↑) ^{Note}	tksi1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$	38		ns	
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$	38		ns	
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	38		ns	
Delay time from SCKp↓ to SOp output ^{Note}	tkso1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$		200	ns	
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$		390	ns	
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 5.5 \ k\Omega \end{array}$		966	ns	

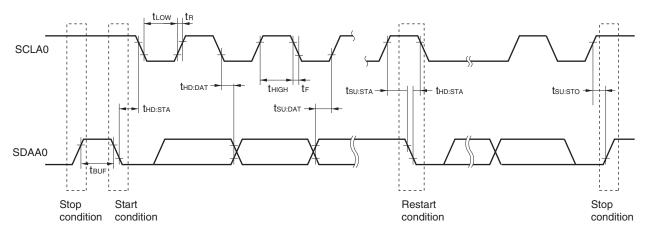
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

Note When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

(Cautions and Remarks are listed on the next page.)

3.5.2 Serial interface IICA

Parameter	Symbol	Conditions	HS (high-speed main) mode		Unit		
			Standa	rd Mode	Fast	Mode	
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode: fc⊥k≥ 3.5 MHz			0	400	kHz
		Normal mode: fcLK≥ 1 MHz	0	100			kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μs
Hold time ^{Note 1}	thd:sta		4.0		0.6		μs
Hold time when SCLA0 = "L"	t∟ow		4.7		1.3		μs
Hold time when SCLA0 = "H"	tніgн		4.0		0.6		μs
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission)Note 2	thd:dat		0	3.45	0	0.9	μs
Setup time of stop condition	tsu:sto		4.0		0.6		μs
Bus-free time	t BUF		4.7		1.3		μS


$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- **Caution** Only in the 30-pin products, the values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

 $\label{eq:cb} \begin{array}{ll} \mbox{Normal mode:} & C_b = 400 \mbox{ pF}, \mbox{ Rb} = 2.7 \mbox{ } k\Omega \\ \mbox{Fast mode:} & C_b = 320 \mbox{ pF}, \mbox{ Rb} = 1.1 \mbox{ } k\Omega \end{array}$

IICA serial transfer timing

<R>

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Input channel		Reference Voltage			
	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = VDD Reference voltage (-) = Vss	Reference voltage (+) = VBGR Reference voltage (-) = AVREFM		
ANI0 to ANI3	Refer to 29.6.1 (1).	Refer to 29.6.1 (3).	Refer to 29.6.1 (4) .		
ANI16 to ANI22	Refer to 29.6.1 (2) .				
Internal reference voltage	Refer to 29.6.1 (1).		-		
Temperature sensor output voltage					

(1) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin: ANI2, ANI3, internal reference voltage, and temperature sensor output voltage

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AV}_{REFP} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}			1.2	±3.5	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI2, ANI3	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μS
			$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μS
		10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: Internal	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.5625		39	μS
		reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±0.25	%FSR
Full-scale error ^{Notes 1, 2}	EFS	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±0.25	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}				±2.5	LSB
Differential linearity error	DLE	10-bit resolution AVREFP = VDD Note 3				±1.5	LSB
Analog input voltage	VAIN	ANI2, ANI3		0		AVREFP	V
		Internal reference voltage (HS (high-speed main) m			VBGR Note 4		V
		Temperature sensor outp (HS (high-speed main) m	•		VTMPS25 ^{Note 4}	l	V

(Notes are listed on the next page.)

(3) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V_{ss} (ADREFM = 0), target pin: ANI0 to ANI3, ANI16 to ANI22, internal reference voltage, and temperature sensor output voltage

Parameter	Symbol	Condition	ns	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution			1.2	±7.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μs
			$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μs
		ANI16 to ANI22	ANI16 to ANI22 $2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$			39	μs
Conversion time	tconv	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.375		39	μs
		Target pin: internal reference	$2.7 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	3.5625		39	μs
		voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \le V_{DD} \le 5.5~V$	17		39	μS
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution				±0.60	%FSR
Full-scale error ^{Notes 1, 2}	EFS	10-bit resolution				±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution				±4.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution				±2.0	LSB
Analog input voltage	VAIN	ANI0 to ANI3, ANI16 to ANI2	2	0		VDD	V
		Internal reference voltage (HS (high-speed main) mode)			VBGR Note 3		V
		Temperature sensor output v (HS (high-speed main) mode)	0		VTMPS25 Note 3		V

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V})$	$V_{cc} = 0 V Beference voltage (+) = V_{DD}$	Reference voltage (_) – Vee)
$(1A = -40 \ 10 \ +105 \ 0; \ 2.4 \ V \ \le \ V \ DD \ \le \ 5.5 \ V$	$v_{33} = 0 v$, hereference voltage (+) = v_{DD}	, melerence vonage (-) - vssj

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. Refer to 29.6.2 Temperature sensor/internal reference voltage characteristics.

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AV_{REFM} (ADREFM = 1), target pin: ANI0, ANI2, ANI3, and ANI16 to ANI22

(T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, Reference voltage (+) = V_{BGR}^{Note 3}, Reference voltage (-) = AV_{REFM}^{Note 4} = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		bit
Conversion time	t CONV	8-bit resolution	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	8-bit resolution			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution			±1.0	LSB
Analog input voltage	VAIN		0		$V_{\text{BGR}}{}^{\text{Note 3}}$	V

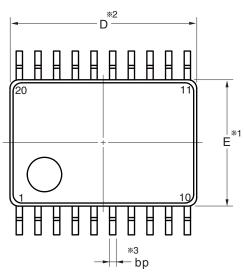
Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

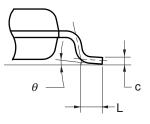
3. Refer to 29.6.2 Temperature sensor/internal reference voltage characteristics.

4. When reference voltage (-) = Vss, the MAX. values are as follows.

Zero-scale error: Add $\pm 0.35\%$ FSR to the MAX. value when reference voltage (–) = AV_{REFM}. Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (–) = AV_{REFM}. Differential linearity error: Add ± 0.2 LSB to the MAX. value when reference voltage (–) = AV_{REFM}.


4. PACKAGE DRAWINGS

4.1 20-pin products


R5F1026AASP, R5F10269ASP, R5F10268ASP, R5F10267ASP, R5F10266ASP R5F1036AASP, R5F10369ASP, R5F10368ASP, R5F10367ASP, R5F10366ASP R5F1026ADSP, R5F10269DSP, R5F10268DSP, R5F10267DSP, R5F10266DSP R5F1036ADSP, R5F10369DSP, R5F10368DSP, R5F10367DSP, R5F10366DSP R5F1026AGSP, R5F10269GSP, R5F10268GSP, R5F10267GSP, R5F10266GSP

<R>

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP20-4.4x6.5-0.65	PLSP0020JB-A	P20MA-65-NAA-1	0.1

 detail of lead end

	(UNIT:mm)
ITEM	DIMENSIONS
D	6.50±0.10
E	4.40±0.10
HE	6.40±0.20
А	1.45 MAX.
A1	0.10±0.10
A2	1.15
е	0.65±0.12
bp	0.22 + 0.10 - 0.05
С	0.15 + 0.05 - 0.02
L	0.50±0.20
У	0.10
θ	0° to 10°

©2012 Renesas Electronics Corporation. All rights reserved.

1.Dimensions "%1" and "%2" do not include mold flash.

2.Dimension "X3" does not include trim offset.

