

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-WFQFN Exposed Pad
Supplier Device Package	24-HWQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10377ana-u5

Email: info@E-XFL.COM

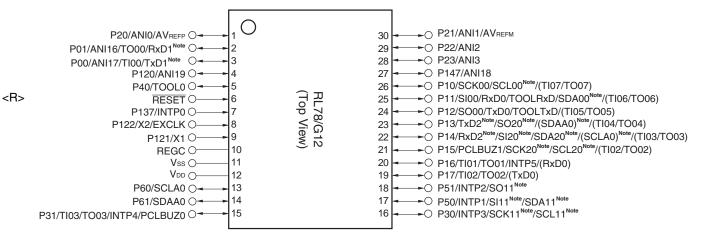
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RL78/G12 1. OUTLINE

1.4.2 24-pin products

<R> • 24-pin plastic HWQFN (4 × 4 mm, 0.5 mm pitch)

Note Provided only in the R5F102 products.


Remarks 1. For pin identification, see 1.5 Pin Identification.

- 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR).
- 3. It is recommended to connect an exposed die pad to Vss.

RL78/G12 1. OUTLINE

1.4.3 30-pin products

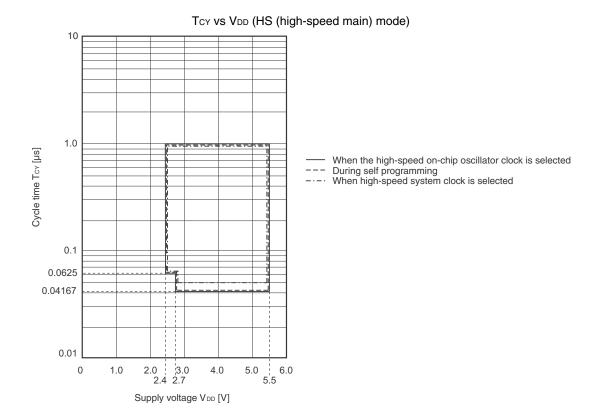
• 30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)

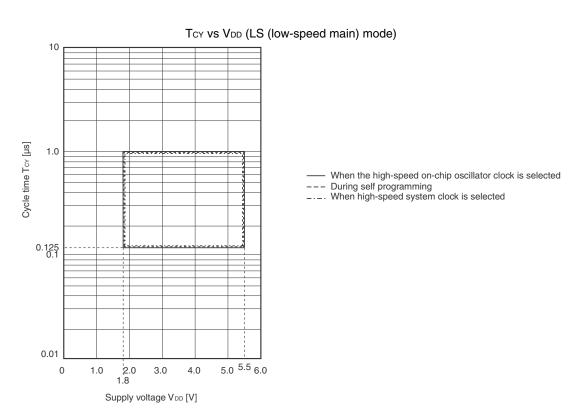
Note Provided only in the R5F102 products.

Caution Connect the REGC pin to Vss via capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.5 Pin Identification.

2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR).


<R>


<R>

<R>

- <R> 2. ELECTRICAL SPECIFICATIONS ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)
- <R> This chapter describes the following electrical specifications.
 - Target products A: Consumer applications $T_A = -40 \text{ to } +85^{\circ}\text{C}$ R5F102xxAxx, R5F103xxAxx
 - D: Industrial applications T_A = -40 to +85°C R5F102xxDxx, R5F103xxDxx
 - G: Industrial applications when T_A = -40 to +105°C products is used in the range of T_A = -40 to +85°C R5F102xxGxx
 - Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product.

Minimum Instruction Execution Time during Main System Clock Operation

(7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCK00... internal clock output, corresponding CSI00 only)

(Ta = -40 to +85°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

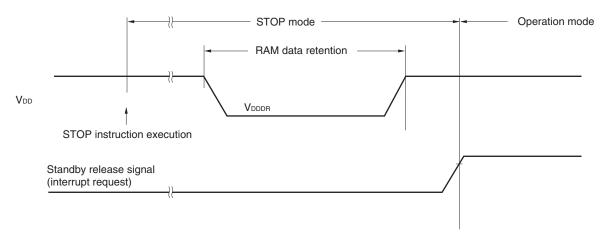
Parameter	Symbol	Conditions		HS (high		1	/-speed Mode	Unit
				MIN.	MAX.	MIN.	MAX.	
SCK00 cycle time	tkcy1	tkcy1 ≥ 2/fcLK	$\begin{aligned} 4.0 &\ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 &\ V \leq V_b \leq 4.0 \ V, \\ C_b = 20 &\ pF, \ R_b = 1.4 \ k\Omega \end{aligned}$	200		1150		ns
			$\begin{split} 2.7 \ V &\leq V_{DD} < 4.0 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 20 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	300		1150		ns
SCK00 high-level width	t _{KH1}	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5$ $C_b = 20 \text{ pF}, R_b = 10.5$	5 V, 2.7 V \leq V _b \leq 4.0 V, : 1.4 k Ω	tксу1/2 — 50		tkcy1/2-		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0$ $C_b = 20 \text{ pF}, R_b = 0.0$	0 V, 2.3 V \leq Vb \leq 2.7 V, $: 2.7 \; k\Omega$	tксу1/2 — 120		tксү1/2 – 120		ns
SCK00 low-level width	t _{KL1}	$4.0 \text{ V} \le V_{DD} \le 5.8$ $C_b = 20 \text{ pF}, R_b =$	5 V, 2.7 V \leq V _b \leq 4.0 V, : 1.4 k Ω	tксу1/2 — 7		tксү1/2 – 50		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0$ $C_b = 20 \text{ pF}, R_b =$	0 V, 2.3 V \leq V _b \leq 2.7 V, $ = 2.7 \text{ k}\Omega $	tксу1/2 – 10		tксү1/2 – 50		ns
SI00 setup time (to SCK00↑) Note 1	tsıĸ1	$\begin{array}{c} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \\ \\ 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ \\ C_b = 20 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		58		479		ns
				121		479		ns
SI00 hold time (from SCK00↑) Note 1	tksi1	$4.0~V \leq V_{DD} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$ $C_b = 20~pF,~R_b = 1.4~k\Omega$		10		10		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0$ $C_b = 20 \text{ pF}, R_b = 0.0$	10		10		ns	
Delay time from SCK00↓ to SO00 output Note 1	tkso1	$4.0 \text{ V} \le \text{V}_{DD} \le 5.8$ $C_b = 20 \text{ pF}, R_b =$	5 V, 2.7 V \leq V _b \leq 4.0 V, : 1.4 kΩ		60		60	ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0$ $C_b = 20 \text{ pF}, R_b = 0.0$	0 V, 2.3 V \leq V _b \leq 2.7 V, $ = 2.7 \text{ k} \Omega $		130		130	ns
SI00 setup time (to SCK00↓) Note 2	tsıĸı	$4.0 \text{ V} \le \text{V}_{DD} \le 5.8$ $C_b = 20 \text{ pF}, R_b =$	5 V, 2.7 V \leq V _b \leq 4.0 V, : 1.4 k Ω	23		110		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0$ $C_b = 20 \text{ pF}, R_b =$	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 k Ω	33		110		ns
SI00 hold time (from SCK00↓) Note 2	tksi1	$4.0~V \leq V_{DD} \leq 5.8$ $C_b = 20~pF,~R_b =$	5 V, 2.7 V \leq V _b \leq 4.0 V, : 1.4 k Ω	10		10		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0$ $C_b = 20 \text{ pF}, R_b = 0.0$	0 V, 2.3 V \leq V _b \leq 2.7 V, $ = 2.7 \text{ k} \Omega $	10		10		ns
Delay time from SCK00↑ to SO00 output Note 2	t _{KSO1}	$4.0 \text{ V} \le \text{V}_{DD} \le 5.8$ $C_b = 20 \text{ pF}, R_b =$	5 V, 2.7 V \leq V _b \leq 4.0 V, : 1.4 k Ω		10		10	ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0$ $C_b = 20 \text{ pF}, R_b = 0.0$	0 V, 2.3 V \leq V _b \leq 2.7 V, : 2.7 kΩ		10		10	ns

(Notes, Caution, and Remarks are listed on the next page.)

2.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{PDR} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection supply voltage	V _{LVD0}	Power supply rise time	3.98	4.06	4.14	٧
		Power supply fall time	3.90	3.98	4.06	٧
	V _{LVD1}	Power supply rise time	3.68	3.75	3.82	٧
		Power supply fall time	3.60	3.67	3.74	٧
	V _{LVD2}	Power supply rise time	3.07	3.13	3.19	٧
		Power supply fall time	3.00	3.06	3.12	٧
	V LVD3	Power supply rise time	2.96	3.02	3.08	٧
		Power supply fall time	2.90	2.96	3.02	٧
	V _{LVD4}	Power supply rise time	2.86	2.92	2.97	٧
		Power supply fall time	2.80	2.86	2.91	٧
	V _{LVD5}	Power supply rise time	2.76	2.81	2.87	٧
		Power supply fall time	2.70	2.75	2.81	٧
	V _{LVD6}	Power supply rise time	2.66	2.71	2.76	٧
		Power supply fall time	2.60	2.65	2.70	٧
	V LVD7	Power supply rise time	2.56	2.61	2.66	٧
		Power supply fall time	2.50	2.55	2.60	٧
	V _{LVD8}	Power supply rise time	2.45	2.50	2.55	٧
		Power supply fall time	2.40	2.45	2.50	٧
	V _{LVD9}	Power supply rise time	2.05	2.09	2.13	٧
		Power supply fall time	2.00	2.04	2.08	٧
	V _{LVD10}	Power supply rise time	1.94	1.98	2.02	٧
		Power supply fall time	1.90	1.94	1.98	٧
	V _{LVD11}	Power supply rise time	1.84	1.88	1.91	٧
		Power supply fall time	1.80	1.84	1.87	٧
Minimum pulse width	tLW		300			μS
Detection delay time					300	μS

<R> 2.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

, , , , , , , , , , , , , , , , , , , ,						
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	V _{DDDR}		1.46 Note		5.5	V

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

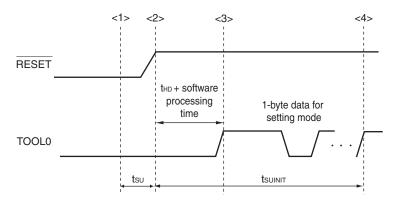
2.8 Flash Memory Programming Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1A = -40 to +65 C, 1.6 V	7 A DD 7 2 2'2 A	, vss = 0 v)		7		
<r> Parameter</r>	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclk		1		24	MHz
Code flash memory rewritable t	imes C _{erwr}	Retained for 20 years	1,000			Times
Notes 1, 2, 3		T _A = 85°C				
Data flash memory rewritable ti	mes	Retained for 1 year		1,000,000		
Notes 1, 2, 3		T _A = 25°C				
		Retained for 5 years	100,000			
		T _A = 85°C				
		Retained for 20 years	10,000			
		T _A = 85°C				

- **Notes 1.** 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite
 - 2. When using flash memory programmer and Renesas Electronics self programming library
 - **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

2.9 Dedicated Flash Memory Programmer Communication (UART)


 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

2.10 Timing of Entry to Flash Memory Programming Modes

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset are released before external reset release			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset are released before external reset release	10			μS
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tнo	POR and LVD reset are released before external reset release	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.

 t_{SU} : Time to release the external reset after the TOOL0 pin is set to the low level

thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

(2/4)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	lol1	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42				8.5 Note 2	mA
		30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147					
		Per pin for P60, P61				15.0 Note 2	mA
		20-, 24-pin products:	$4.0~V \leq V_{DD} \leq 5.5~V$			25.5	mA
		L	$2.7~V \leq V_{\text{DD}} < 4.0~V$			9.0	mA
		30-pin products: Total of P00, P01, P40, P120 (When duty ≤ 70% Note 3)	$2.4~\textrm{V} \leq \textrm{V}_\textrm{DD} < 2.7~\textrm{V}$			1.8	mA
		20-, 24-pin products:	$4.0~V \leq V_{DD} \leq 5.5~V$			40.0	mA
		Total of P00 to P03 ^{Note 4} ,	$2.7~V \leq V_{DD} < 4.0~V$			27.0	mA
		P10 to P14, P60, P61 30-pin products: Total of P10 to P17, P30, P31, P50, P51, P60, P61, P147 (When duty ≤ 70% Note 3)	2.4 V ≤ V _{DD} < 2.7 V			5.4	mA
		Total of all pins (When duty ≤ 70% Note 3)				65.5	mA
	lol2	Per pin for P20 to P23				0.4	mA
		Total of all pins				1.6	mA

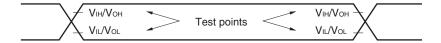
Notes 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.

- 2. However, do not exceed the total current value.
- 3. The output current value under conditions where the duty factor $\leq 70\%$.

If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).

- Total output current of pins = $(lol \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA


However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

4. 24-pin products only.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

3.5 Peripheral Functions Characteristics

AC Timing Test Point

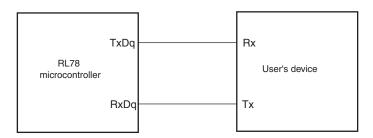
3.5.1 Serial array unit

(1) During communication at same potential (UART mode)

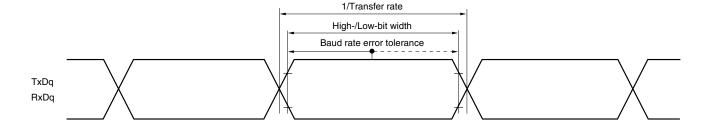
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

_	1	1	,	ı		
Parameter	Symbol	Conditions		HS (high-spee	ed main) Mode	Unit
				MIN.	MAX.	
Transfer rate					fмск/12	bps
Note 1			Theoretical value of the maximum transfer rate $f_{CLK} = f_{MCK}^{Note2}$		2.0	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.


2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 5.5 V)


16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 2), g: PIM, POM number (g = 0, 1)

2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

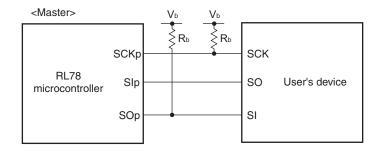
(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

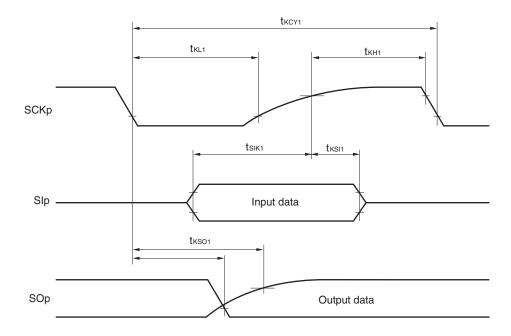
Symbol	Conditions		HS (high-spee	d main) Mode	Unit
			MIN.	MAX.	
tkcy1	tkcy1 ≥ 4/fclk	$4.0~V \leq V_{DD} \leq 5.5~V,$	600		ns
		$2.7~V \leq V_b \leq 4.0~V,$			
		$C_b=30~pF,~R_b=1.4~k\Omega$			
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$	1000		ns
		$2.3~V \leq V_b \leq 2.7~V,$			
		$C_b=30~pF,~R_b=2.7~k\Omega$			
		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V},$	2300		ns
		$1.6 \ V \le V_b \le 2.0 \ V,$			
		$C_b=30~pF,~R_b=5.5~k\Omega$			
t _{KH1}	$\label{eq:controller} 4.0~V \leq V_{DD} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$ $C_b = 30~pF,~R_b = 1.4~k\Omega$		tkcy1/2 -150		ns
	2.7 V ≤ V _{DD} < 4	$4.0 \text{ V}, 2.3 \text{ V} \le \text{Vb} \le 2.7 \text{ V},$	tkcy1/2 -340		ns
	Сь = 30 pF, Rь	$= 2.7 \text{ k}\Omega$			
	2.4 V ≤ V _{DD} < 3	$3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V},$	tксү1/2 –916		ns
	Cb = 30 pF, Rb	= 5.5 kΩ			
t _{KL1}	4.0 V ≤ V _{DD} ≤ 5	$5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$	tkcy1/2 -24		ns
	Cb = 30 pF, Rb	= 1.4 kΩ			
	2.7 V ≤ V _{DD} < 4	$4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V},$	tkcy1/2 -36		ns
	,				
			tkcy1/2 -100		ns
	tkcy1	tkey1 $tkey1 \geq 4/f_{CLK}$ $tkey1 \geq 4/f_{CLK}$ $4.0 \text{ V} \leq \text{V}_{DD} \leq 5$ $C_b = 30 \text{ pF}, \text{ Rb}$ $2.7 \text{ V} \leq \text{V}_{DD} < 4$ $C_b = 30 \text{ pF}, \text{ Rb}$ $2.4 \text{ V} \leq \text{V}_{DD} < 5$ $C_b = 30 \text{ pF}, \text{ Rb}$ $2.7 \text{ V} \leq \text{V}_{DD} < 4$ $C_b = 30 \text{ pF}, \text{ Rb}$ $2.7 \text{ V} \leq \text{V}_{DD} < 4$ $C_b = 30 \text{ pF}, \text{ Rb}$ $2.4 \text{ V} \leq \text{V}_{DD} < 5$	$t_{KCY1} \qquad t_{KCY1} \geq 4/f_{CLK} \qquad 4.0 \text{ V} \leq V_{DD} \leq 5.5 \text{ V}, \\ 2.7 \text{ V} \leq V_b \leq 4.0 \text{ V}, \\ C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega \\ 2.7 \text{ V} \leq V_{DD} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq V_b \leq 2.7 \text{ V}, \\ C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega \\ 2.4 \text{ V} \leq V_{DD} < 3.3 \text{ V}, \\ 1.6 \text{ V} \leq V_b \leq 2.0 \text{ V}, \\ C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega \\ \end{cases}$ $t_{KH1} \qquad 4.0 \text{ V} \leq V_{DD} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq V_b \leq 4.0 \text{ V}, \\ C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega \\ 2.7 \text{ V} \leq V_{DD} < 4.0 \text{ V}, 2.3 \text{ V} \leq V_b \leq 2.7 \text{ V}, \\ C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega \\ 2.4 \text{ V} \leq V_{DD} < 3.3 \text{ V}, 1.6 \text{ V} \leq V_b \leq 2.0 \text{ V}, \\ C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega \\ \end{cases}$	$\begin{array}{c} \text{MIN.} \\ \text{tkcy1} \\ & \text{tkcy1} \geq 4/\text{fclk} \\ & \text{tkcy2} \leq 4.0 \text{ V}, \\ & \text{Cb} = 30 \text{ pF}, \text{ Rb} = 1.4 \text{ k}\Omega \\ & \text{2.7 V} \leq \text{Vdd} < 4.0 \text{ V}, \\ & \text{2.3 V} \leq \text{Vb} \leq 2.7 \text{ V}, \\ & \text{Cb} = 30 \text{ pF}, \text{ Rb} = 2.7 \text{ k}\Omega \\ & \text{2.4 V} \leq \text{Vdd} < 3.3 \text{ V}, \\ & \text{1.6 V} \leq \text{Vb} \leq 2.0 \text{ V}, \\ & \text{Cb} = 30 \text{ pF}, \text{ Rb} = 5.5 \text{ k}\Omega \\ & \text{tkch1} \\ & \text{4.0 V} \leq \text{Vdd} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{Vb} \leq 4.0 \text{ V}, \\ & \text{Cb} = 30 \text{ pF}, \text{ Rb} = 1.4 \text{ k}\Omega \\ & \text{2.7 V} \leq \text{Vdd} < 4.0 \text{ V}, 2.3 \text{ V} \leq \text{Vb} \leq 2.7 \text{ V}, \\ & \text{Cb} = 30 \text{ pF}, \text{ Rb} = 2.7 \text{ k}\Omega \\ & \text{2.4 V} \leq \text{Vdd} < 3.3 \text{ V}, 1.6 \text{ V} \leq \text{Vb} \leq 2.0 \text{ V}, \\ & \text{Cb} = 30 \text{ pF}, \text{ Rb} = 1.4 \text{ k}\Omega \\ & \text{2.7 V} \leq \text{Vdd} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{Vb} \leq 4.0 \text{ V}, \\ & \text{Cb} = 30 \text{ pF}, \text{ Rb} = 1.4 \text{ k}\Omega \\ & \text{2.7 V} \leq \text{Vdd} < 4.0 \text{ V}, 2.3 \text{ V} \leq \text{Vb} \leq 2.0 \text{ V}, \\ & \text{Cb} = 30 \text{ pF}, \text{ Rb} = 1.4 \text{ k}\Omega \\ & \text{2.7 V} \leq \text{Vdd} < 4.0 \text{ V}, 2.3 \text{ V} \leq \text{Vb} \leq 2.7 \text{ V}, \\ & \text{Cb} = 30 \text{ pF}, \text{ Rb} = 2.7 \text{ k}\Omega \\ & \text{2.4 V} \leq \text{Vdd} < 3.3 \text{ V}, 1.6 \text{ V} \leq \text{Vb} \leq 2.0 \text{ V}, \\ & \text{Cb} = 30 \text{ pF}, \text{ Rb} = 2.7 \text{ k}\Omega \\ & \text{2.4 V} \leq \text{Vdd} < 3.3 \text{ V}, 1.6 \text{ V} \leq \text{Vb} \leq 2.0 \text{ V}, \\ & \text{tkcy1/2} - 36 \\ & \text{2.4 V} \leq \text{Vdd} < 3.3 \text{ V}, 1.6 \text{ V} \leq \text{Vb} \leq 2.0 \text{ V}, \\ & \text{tkcy1/2} - 100 \\ & \text{tkcy1/2} - 10$	$t_{KCY1} = t_{KCY1} \ge 4/f_{CLK} = t_{KCY1} \ge 4/f_{CLK} = t_{KCY1} \le 4.0 \text{ V}, \\ t_{Cb} = 30 \text{ pF, R}_b = 1.4 \text{ k}\Omega = t_{KCY1} \ge 4.0 \text{ V}, \\ t_{Cb} = 30 \text{ pF, R}_b = 1.4 \text{ k}\Omega = t_{KCY1} \ge 4.0 \text{ V}, \\ t_{Cb} = 30 \text{ pF, R}_b = 2.7 \text{ k}\Omega = t_{KCY1} \ge 4.0 \text{ V}, \\ t_{Cb} = 30 \text{ pF, R}_b = 2.7 \text{ k}\Omega = t_{KCY1} \ge 4.0 \text{ V}, \\ t_{Cb} = 30 \text{ pF, R}_b = 1.4 \text{ k}\Omega = t_{KCY1} \ge 4.0 \text{ V}, \\ t_{Cb} = 30 \text{ pF, R}_b = 1.4 \text{ k}\Omega = t_{KCY1} \ge 4.0 \text{ V}, \\ t_{Cb} = 30 \text{ pF, R}_b = 2.7 \text{ k}\Omega = t_{KCY1} \ge 4.0 \text{ V}, \\ t_{Cb} = 30 \text{ pF, R}_b = 5.5 \text{ k}\Omega = t_{KCY1} \ge 4.0 \text{ V}, \\ t_{Cb} = 30 \text{ pF, R}_b = 5.5 \text{ k}\Omega = t_{KCY1} \ge 4.0 \text{ V}, \\ t_{Cb} = 30 \text{ pF, R}_b = 1.4 \text{ k}\Omega = t_{KCY1} \ge 4.0 \text{ V}, \\ t_{Cb} = 30 \text{ pF, R}_b = 1.4 \text{ k}\Omega = t_{KCY1} \ge 4.0 \text{ V}, \\ t_{Cb} = 30 \text{ pF, R}_b = 1.4 \text{ k}\Omega = t_{KCY1} \ge 4.0 \text{ V}, \\ t_{Cb} = 30 \text{ pF, R}_b = 1.4 \text{ k}\Omega = t_{KCY1} \ge 4.0 \text{ V}, \\ t_{Cb} = 30 \text{ pF, R}_b = 1.4 \text{ k}\Omega = t_{KCY1} \ge 4.0 \text{ V}, \\ t_{Cb} = 30 \text{ pF, R}_b = 2.7 \text{ k}\Omega = t_{KCY1} \ge 4.0 \text{ V}, \\ t_{Cb} = 30 \text{ pF, R}_b = 2.7 \text{ k}\Omega = t_{KCY1} \ge 4.0 \text{ V}, \\ t_{Cb} = 30 \text{ pF, R}_b = 2.7 \text{ k}\Omega = t_{KCY1} \ge 4.0 \text{ V}, \\ t_{Cb} = 30 \text{ pF, R}_b = 2.7 \text{ k}\Omega = t_{KCY1} \ge 4.0 \text{ V}, \\ t_{Cb} = 30 \text{ pF, R}_b = 2.7 \text{ k}\Omega = t_{KCY1} \ge 4.0 \text{ V}, \\ t_{Cb} = 30 \text{ pF, R}_b = 2.7 \text{ k}\Omega = t_{KCY1} \ge 4.0 \text{ V}, \\ t_{Cb} = 30 \text{ pF, R}_b = 2.7 \text{ k}\Omega = t_{KCY1} \ge 4.0 \text{ V}, \\ t_{Cb} = 30 \text{ pF, R}_b = 2.7 \text{ k}\Omega = t_{Cb} = t_{Cb$

- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VH and VL, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.
- **Remarks 1.** R_b [Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b [F]: Communication line (SCKp, SOp) load capacitance, V_b [V]: Communication line voltage
 - **2.** p: CSI number (p = 00, 20)

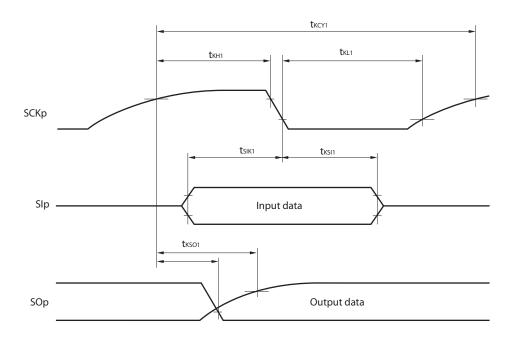
(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)


 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

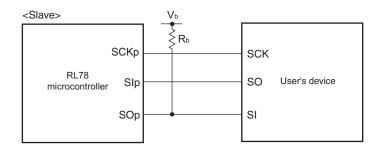
Parameter	Symbol	Conditions	HS (high-speed	I main) Mode	Unit
			MIN.	MAX.	
SIp setup time (to SCKp↓)	tsıĸı	$ 4.0~V \leq V_{DD} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V, $ $C_b = 30~pF,~R_b = 1.4~k\Omega $	88		ns
		$ \label{eq:continuous} $	88		ns
		$ \label{eq:continuous} $	220		ns
SIp hold time (from SCKp↓) Note	tksii	$ \begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $	38		ns
		$ 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, $ $C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega $	38		ns
		$ \label{eq:continuous} $	38		ns
Delay time from SCKp↑ to SOp output Note	tkso1	$ \begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $		50	ns
		$ 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, $ $C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega $		50	ns
				50	ns


Note When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

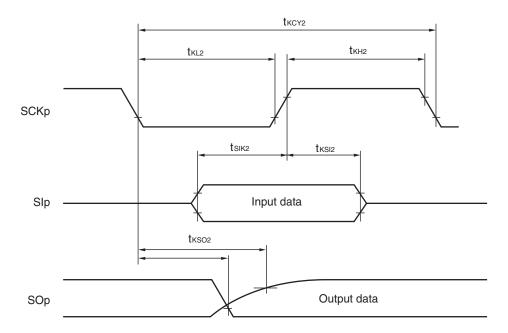
- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.
- **Remarks 1.** Rb $[\Omega]$: Communication line (SCKp, SOp) pull-up resistance, Cb [F]: Communication line (SCKp, SOp) load capacitance, Vb [V]: Communication line voltage
 - 2. p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)


CSI mode connection diagram (during communication at different potential)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1)

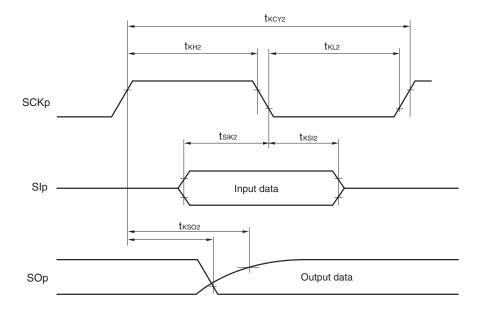


CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)



Remark p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

CSI mode connection diagram (during communication at different potential)


CSI mode serial transfer timing (slave mode) (during communication at different potential)
(When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remarks 1. R_b [Ω]: Communication line (SOp) pull-up resistance, C_b [F]: Communication line (SOp) load capacitance, V_b [V]: Communication line voltage

- 2. p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)
- fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn))

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-speed main) Mode		
			MIN.	MAX.		
SCLr clock frequency	fscL	$ 4.0~V \leq V_{DD} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V, $ $C_b = 100~pF,~R_b = 2.8~k\Omega $		100 ^{Note1}	kHz	
				100 ^{Note1}	kHz	
				100 ^{Note1}	kHz	
Hold time when SCLr = "L"	tLOW	$4.0 \; V \leq V_{DD} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V,$ $C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega$	4600		ns	
			4600		ns	
		$2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V,$ $C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega$	4650		ns	
Hold time when SCLr = "H"	tніgн	$ 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega $	2700		ns	
			2400		ns	
		$2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V,$ $C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega$	1830		ns	
Data setup time (reception)	tsu:dat	$ 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega $	1/fмск + 760 Note3		ns	
			1/f _{MCK} + 760 Note3		ns	
		$2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V,$ $C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega$	1/fмск + 570 ^{Note3}		ns	
Data hold time (transmission)	thd:dat	$ 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega $	0	1420	ns	
		$ 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega $	0	1420	ns	
		$\label{eq:continuous} $	0	1215	ns	

- Notes 1. The value must also be equal to or less than fmck/4.
 - 2. Set tsu:DAT so that it will not exceed the hold time when SCLr = "L" or SCLr = "H".
- Cautions 1. Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
 - 2. IIC01 and IIC11 cannot communicate at different potential.

(Remarks are listed on the next page.)

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM (ADREFM = 1), target pin: ANI0, ANI2, ANI3, and ANI16 to ANI22

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = VBGR Note 3, Reference voltage (-) = AVREFM Note 4 = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		bit
Conversion time	tconv	8-bit resolution	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	8-bit resolution			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution			±1.0	LSB
Analog input voltage	VAIN		0		VBGR Note 3	V

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - 3. Refer to 29.6.2 Temperature sensor/internal reference voltage characteristics.
 - **4.** When reference voltage (–) = Vss, the MAX. values are as follows. Zero-scale error: Add ±0.35%FSR to the MAX. value when reference voltage (–) = AV_{REFM}.

Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (–) = AVREFM.

Differential linearity error: Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

LVD detection voltage of interrupt & reset mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions				TYP.	MAX.	Unit
Interrupt and reset	V _{LVDD0}	VPOC2,	VPOC1, VPOC1 = 0, 1, 1, falli	2.64	2.75	2.86	V	
mode	V _{LVDD1}		LVIS1, LVIS0 = 1, 0	2.81	2.92	3.03	V	
				Falling interrupt voltage	2.75	2.86	2.97	V
	V _{LVDD2}		LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.90	3.02	3.14	V
				Falling interrupt voltage	2.85	2.96	3.07	V
	V _{LVDD3}		LVIS1, LVIS0 = 0, 0	Rising reset release voltage	3.90	4.06	4.22	V
				Falling interrupt voltage	3.83	3.98	4.13	V

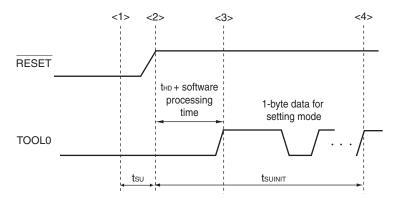
3.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 29.4 AC Characteristics.

3.9 Dedicated Flash Memory Programmer Communication (UART)


$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming			1,000,000	bps

3.10 Timing of Entry to Flash Memory Programming Modes

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

1 11 1, = = 1 1,						
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset are released before external release			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset are released before external release	10			μS
Time to hold the TOOL0 pin at the low level after the external reset is released	thd	POR and LVD reset are released before external release	1			ms
(excluding the processing time of the firmware to control the flash memory)						

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.

tsu: Time to release the external reset after the TOOL0 pin is set to the low level

thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below

"Standard": Computers: office equipment: communications equipment: test and measurement equipment: audio and visual equipment: home electronic appliances: machine tools: personal electronic equipment: and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics
- nt may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information

California Eastern Laboratories, Inc.

4590 Patrick Henry Drive, Santa Clara, California 95054-1817, U.S.A Tel: +1-408-919-2500, Fax: +1-408-988-0279

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141