

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-WFQFN Exposed Pad
Supplier Device Package	24-HWQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10377ana-w0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

							(2/2		
Item		20-	pin	24-	pin	30-	pin		
		R5F1026x	R5F1036x	R5F1027x	R5F1037x	R5F102Ax	R5F103Ax		
Clock output/buzzer ou	tput		1 2						
		2.44 kHz to 10	MHz: (Peripher	al hardware cloc	:k: fмаіn = 20 MH	z operation)			
8/10-bit resolution A/D	converter		11 ch	annels		8 cha	nnels		
Serial interface		[R5F1026x (20)-pin), R5F1027:	(24-pin)]					
		• CSI: 2 chanr	nels/Simplified I ²	C: 2 channels/U	ART: 1 channel				
		[R5F102Ax (30-pin)]							
		CSI: 1 chann	nel/Simplified I ² C	: 1 channel/UAF	T: 1 channel				
		CSI: 1 chann	nel/Simplified I ² C	: 1 channel/UAF	T: 1 channel				
		CSI: 1 chann	nel/Simplified I ² C	: 1 channel/UAF	T: 1 channel				
		[R5F1036x (20)-pin), R5F1037	(24-pin)]					
		CSI: 1 chann	nel/Simplified I ² C	: 0 channel/UAF	RT: 1 channel				
		[R5F103Ax (30	D-pin)]						
		CSI: 1 chann	nel/Simplified I ² C	: 0 channel/UAF	RT: 1 channel				
	I ² C bus		1 channel						
Multiplier and divider/m	ultiply-	• 16 bits × 16 bits = 32 bits (unsigned or signed)							
accumulator		• 32 bits × 32 b	oits = 32 bits (un	signed)					
		• 16 bits × 16 b	• 16 bits × 16 bits + 32 bits = 32 bits (unsigned or signed)						
DMA controller		2 channels	_	2 channels		2 channels —			
Vectored interrupt	Internal	18	16	18	16	26	19		
sources	External		!	5		e	6		
Key interrupt		e	6	1	0	_	_		
Reset		Reset by RE	SET pin						
		 Internal reset 	t by watchdog ti	ner					
		Internal reset	t by power-on-re	set					
		Internal reset	t by voltage dete	ctor	lote				
		Internal reset	t by RAM parity	error					
		 Internal reset 	t by illegal-mem	ory access					
Power-on-reset circuit		Power-on-res	set: 1.51 V	(TYP)					
		Power-down-	-reset: 1.50 V	(TYP)					
Voltage detector		Rising edge :	1.88 to 4.06 V	(12 stages)					
		• Falling edge	: 1.84 to 3.98 V	(12 stages)					
On-chip debug function		Provided							
Power supply voltage		V _{DD} = 1.8 to 5.	5 V						
Operating ambient tem	perature	$T_A = -40$ to +85 (G: Industrial a	5°C (A: Consum	er applications, I	D: Industrial app	lications), T _A = -	40 to +105°C		

 $\label{eq:Note} \textbf{Note} \quad \text{The illegal instruction is generated when instruction code FFH is executed.}$

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

(TA = −40 to +85°C, 1	$1.8 V \le V$	$DD \leq 5.5 V, Vss = 0 V$					(2/4)
Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	Iol1	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42				20.0 Note 2	mA
		30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147					
		Per pin for P60, P61				15.0 Note 2	mA
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			60.0	mA
		Total of P40 to P42 30-pin products: Total of P00, P01, P40, P120 (When duty ≤ 70% ^{Note 3})	$2.7~V \leq V_{\text{DD}} < 4.0~V$			9.0	mA
			$1.8~V \leq V_{\text{DD}} < 2.7~V$			1.8	mA
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			80.0	mA
		Total of P00 to P03 ^{Note 4} ,	$2.7~V \leq V_{\text{DD}} < 4.0~V$			27.0	mA
		30-pin products: Total of P10 to P17, P30, P31, P50, P51, P60, P61, P147 (When duty \leq 70% ^{Note 3})	$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			5.4	mA
		Total of all pins (When duty $\leq 70\%^{Note 3}$)				140	mA
	IOL2	Per pin for P20 to P23				0.4	mA
		Total of all pins				1.6	mA

(0)

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.

2. However, do not exceed the total current value.

3. The output current value under conditions where the duty factor \leq 70%.

If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).

• Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and $I_{OL} = 10.0 \text{ mA}$

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \cong 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

- 4. 24-pin products only.
- Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

(Remarks are listed on the next page.)

- **Remarks 1.** p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products.)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products.))

(5)	During communication at same potential (simplified I ² C mode)
(T _▲	$= -40$ to $+85^{\circ}$ C, 1.8 V \leq Vpp \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	HS (high-speed	I main) Mode	Unit
			LS (low-speed	main) Mode	
			MIN.	MAX.	
SCLr clock frequency	fsc∟	$1.8~V \leq V_{\text{DD}} \leq 5.5~V,$		400 Note 1	kHz
		C_b = 100 pF, R_b = 3 k Ω			
		$1.8~V \leq V_{\text{DD}} < 2.7~V,$		300 Note 1	kHz
		C_b = 100 pF, R_b = 5 k Ω			
Hold time when SCLr = "L"	t∟ow	$1.8~V \leq V_{\text{DD}} \leq 5.5~V,$	1150		ns
		C_b = 100 pF, R_b = 3 k Ω			
		$1.8~V \leq V_{\text{DD}} < 2.7~V,$	1550		ns
		C_b = 100 pF, R_b = 5 k Ω			
Hold time when SCLr = "H"	tнıgн	$1.8~V \leq V_{\text{DD}} \leq 5.5~V,$	1150		ns
		C_b = 100 pF, R_b = 3 k Ω			
		$1.8~V \leq V_{\text{DD}} < 2.7~V,$	1550		ns
		$C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega$			
Data setup time (reception)	tsu:dat	$1.8~V \leq V_{\text{DD}} \leq 5.5~V,$	1/fмск + 145 Note 2		ns
		C_b = 100 pF, R_b = 3 k Ω			
		$1.8~V \leq V_{\text{DD}} < 2.7~V,$	1/fмск + 230 ^{Note 2}		ns
		$C_{\text{b}} = 100 \text{ pF}, \text{R}_{\text{b}} = 5 \text{k}\Omega$			
Data hold time (transmission)	thd:dat	$1.8~V \leq V_{\text{DD}} \leq 5.5~V,$	0	355	ns
		$C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega$			
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V},$	0	405	ns
		$C_b = 100 \text{ pF}, \text{ R}_b = 5 \text{ k}\Omega$			

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

2. Set tsu:DAT so that it will not exceed the hold time when SCLr = "L" or SCLr = "H".

Caution Select the N-ch open drain output (VDD tolerance) mode for SDAr by using port output mode register h (POMh).

(Remarks are listed on the next page.)

Parameter	Symbol	Conditions				igh-speed n) Mode	LS (low-speed main) Mode		Unit
					MIN.	MAX.	MIN.	MAX.	
Transfer		Reception	$4.0~V \leq V_{\text{DD}} \leq$	$0 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V},$		fмск/6		fмск/6	bps
rate ^{№te4}		$2.7~V \leq V_b \leq 4.0~V$			Note1		Note1		
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note3}$		4.0		1.3	Mbps
			$2.7 V \le V_{DD} <$	4.0 V,		fмск/6		fмск/6	bps
			$2.3~V \leq V_b \leq 2.7~V$			Note1		Note1	
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note3}$		4.0		1.3	Mbps
			$1.8 V \le V_{DD} <$	3.3 V,		fмск/6		fмск/6	bps
			$1.6~V \leq V_b \leq 2$	2.0 V		Notes1, 2		Notes1, 2	
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note3}$		4.0		1.3	Mbps
		Transmission	$4.0 V \le V_{DD} \le$	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$		Note4		Note4	bps
		2.7 V ≤ V	$2.7~V \leq V_b \leq 4.0~V$						
				Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, V_b = 2.7 \text{ V}$		2.8 Note5		2.8 Note5	Mbps
			$2.7 V \le V_{DD} <$	4.0 V,		Note6		Note6	bps
			$2.3~V \leq V_b \leq 2$	2.7 V,					
				Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$		1.2 Note7		1.2 Note7	Mbps
			$1.8 V \le V_{DD} <$	3.3 V,		Notes		Notes	bps
			$1.6~V \leq V_b \leq 2.0~V$			2, 8		2, 8	
				Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$		0.43 Note9		0.43 Note9	Mbps

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) ($T_A = -40$ to $+85^{\circ}$ C, 1.8 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- $\textbf{2.} \quad \textbf{Use it with } V_{\text{DD}} \geq V_{\text{b}}.$
- 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are: HS (high-speed main) mode: 24 MHz (2.7 V \leq V_{DD} \leq 5.5 V)

16 MHz (2.4 V
$$\leq$$
 V_{DD} \leq 5.5 V)

LS (low-speed main) mode: 8 MHz (1.8 V \leq V_DD \leq 5.5 V)

4. The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq V_DD \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =

$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =

 $\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}$ $(\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits} \times 100 [\%]$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- **Remarks 1.** R_b[Ω]: Communication line (TxDq) pull-up resistance, C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)
 - fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 - m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))
 - **4.** UART0 of the 20- and 24-pin products supports communication at different potential only when the peripheral I/O redirection function is not used.

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3)

Parameter	Symbol		Conditions	HS (high-spe Mode	ed main) e	LS (low-spee Mode	d main)	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү1	$t_{KCY1} \geq 4/f_{CLK}$	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	300		1150		ns
			$2.7~V \leq V_b \leq 4.0~V,$					
			C_b = 30 pF, R_b = 1.4 k Ω					
			$2.7~V \leq V_{\text{DD}} < 4.0~V,$	500		1150		ns
			$2.3~V \leq V_b \leq 2.7~V,$					
			C_b = 30 pF, R_b = 2.7 k Ω					
			$1.8~V \leq V_{\text{DD}} < 3.3~V,$	1150		1150		ns
			$1.6~V \leq V_{b} \leq 2.0~V^{\text{ Note}},$					
			$C_b = 30 \text{ pF}, \text{ R}_b = 5.5 \text{ k}\Omega$					
SCKp high-level width	tкнı	$4.0~V \leq V_{\text{DD}} \leq$	$0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V},$			tксү1/2-75		ns
		C_b = 30 pF, R_b = 1.4 k Ω						
		$2.7 \text{ V} \leq \text{V}_{\text{DD}}$ <	$4.0~V,~2.3~V \le V_b \le 2.7~V,~$	tксү1/2 –170		tксү1/2–170		ns
		$C_b = 30 \text{ pF}, \text{ R}$	$h_b = 2.7 \text{ k}\Omega$					
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} <$	3.3 V, 1.6 V \leq V $_{b}$ \leq 2.0 V $^{\text{Note}},$	tксү1/2 –458		tксү1/2-458		ns
		$C_b = 30 \text{ pF}, \text{ F}$	C_b = 30 pF, R_b = 5.5 k Ω					
SCKp low-level width	tĸ∟1	$4.0~V \leq V_{\text{DD}} \leq$	$5.5~V,~2.7~V \le V_b \le 4.0~V,$	tксү1/2-12		tксү1/2–50		ns
		$C_{b} = 30 \text{ pF}, \text{ R}$	lb = 1.4 kΩ					
		$2.7 \text{ V} \leq \text{V}_{\text{DD}}$ <	$4.0~V,~2.3~V \le V_b \le 2.7~V,~$	tксү1/2 –18		tксү1/2–50		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$						
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V}. 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}^{\text{Note}}.$		tксү1/2 –50		tксү1/2–50		ns
		C _b = 30 pF, R	$h_b = 5.5 \text{ k}\Omega$					

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

 $\label{eq:Note} \textbf{Note} \quad \textbf{Use it with } V_{\text{DD}} \geq V_{\text{b}}.$

- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.
- **Remarks 1.** R_b [Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b [F]: Communication line (SCKp, SOp) load capacitance, V_b [V]: Communication line voltage
 - **2.** p: CSI number (p = 00, 20)

19

25

25

25

19

25

25

25

ns

ns

ns

ns

Delay time from

SOp output Note 1

SCKp↑ to

tkso1

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$ Parameter Symbol Conditions HS (high-speed LS (low-speed Unit main) Mode main) Mode MIN. MAX. MIN. MAX. SIp setup time $4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$ 44 tsik1 110 ns (to SCKp↓) Note 1 $C_{\text{b}}=30 \text{ pF}, \text{ R}_{\text{b}}=1.4 \text{ k}\Omega$ $2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ 44 110 ns $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ 1.8 V \leq V_{DD} < 3.3 V, 1.6 V \leq V_b \leq 2.0 V $^{\text{Note 2}},$ 110 110 ns $C_b = 30 \text{ pF}, \text{ } \text{R}_b = 5.5 \text{ } \text{k}\Omega$ Slp hold time 4.0 V \leq V_{DD} \leq 5.5 V, 2.7 V \leq V_b \leq 4.0 V, 19 tksi1 19 ns (from SCKp \downarrow) ^{Note 1} $C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$ $2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ 19 19 ns $C_b = 30 \text{ pF}, \text{ } \text{R}_b = 2.7 \text{ } \text{k}\Omega$

 $1.8 \text{ V} \le V_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le V_{\text{b}} \le 2.0 \text{ V}^{\text{Note 2}},$

 $4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$

 $2.7~V \leq V_{\text{DD}} < 4.0~V,\, 2.3~V \leq V_{\text{b}} \leq 2.7~V,$

 $1.8 \text{ V} \le V_{\text{DD}} < 3.3 \text{ V}, \ 1.6 \text{ V} \le V_{b} \le 2.0 \text{ V}^{\text{Note 2}},$

 $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$

 $C_b = 30 \text{ pF}, R_b = 1.4 \text{ } \text{k}\Omega$

 $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$

 $C_{\text{b}}=30 \text{ pF}, \text{ } \text{R}_{\text{b}}=5.5 \text{ } \text{k}\Omega$

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock

output) (3/3) (T_1 = 40 to 180 (

- **Notes 1.** When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0. **2.** Use it with $V_{DD} \ge V_b$.
- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.
- **Remarks 1.** R_b [Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b [F]: Communication line (SCKp, SOp) load capacitance, V_b [V]: Communication line voltage
 - **2.** p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

CSI mode connection diagram (during communication at different potential)

Parameter	Symbol	Co	onditions	HS (high-sp Moc	eed main) le	LS (low-spe Mod	eed main) de	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	t ксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	20 MHz < fмск ≤ 24 MHz	12/f мск		-		ns
		$2.7~V \leq V_b \leq 4.0~V$	8 MHz < fмск ≤ 20 MHz	10/f мск		-		ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/f мск		ns
			fмск ≤ 4 MHz	6/fмск		10/f мск		ns
		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	20 MHz < fмск ≤ 24 MHz	16/f мск		-		ns
		$2.3~V \leq V_b \leq 2.7~V$	16 MHz < fмск ≤ 20 MHz	14/f мск		-		ns
			8 MHz < fmck \leq 16 MHz	12/f мск		-		ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/f мск		ns
			fмск ≤ 4 MHz	6/fмск		10/f мск		ns
		$1.8~V \leq V_{\text{DD}} < 3.3~V,$	20 MHz < fмск ≤ 24 MHz	36/f мск		-		ns
		$1.6~V \leq V_b \leq 2.0~V$	16 MHz < fмск ≤ 20 MHz	32/f мск		-		ns
		Note 2	8 MHz < fmck \leq 16 MHz	26/f мск		-		ns
			4 MHz < fмск ≤ 8 MHz	16/f мск		16/f мск		ns
			fмск ≤ 4 MHz	10/f мск		10/f мск		ns
SCKp high-/low-level	tкн2,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V$		tĸcy2/2 – 12		tксү2/2 – 50		ns
SCKp high-/low-level width	tĸ∟2	$2.7~V \leq V_{\text{DD}} < 4.0~V,$	$2.7 \text{ V} \le V_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \le V_{b} \le 2.7 \text{ V}$			tксү2/2 – 50		ns
		$1.8~V \leq V_{\text{DD}} < 3.3~V,$	$1.6~V \leq V_b \leq 2.0~V^{\text{Note 2}}$	MIN. MAX. MIN. MAX. < fMCK \leq 24 MHz 12/fmck - 1 :fMCK \leq 20 MHz 10/fmck - 1 :fMCK \leq 20 MHz 8/fmck 16/fmck 1 MHz 6/fmck 10/fmck - 1 <fmck <math="">\leq 24 MHz 16/fmck - 1 1 <fmck <math="">\leq 24 MHz 16/fmck - 1 1 <fmck <math="">\leq 24 MHz 16/fmck - 1 1 <fmck <math="">\leq 20 MHz 14/fmck - 1 1 <fmck <math="">\leq 20 MHz 14/fmck - 1 1 <fmck <math="">\leq 16 MHz 12/fmck - 1 1 MHz 6/fmck 10/fmck - 1 1 <fmck <math="">\leq 20 MHz 32/fmck - 1 1 1 <fmck <math="">\leq 8 MHz 16/fmck 10/fmck 1 1 1 1 MHz 10/fmck 10/fmck 1 1 1 1 <td< td=""><td>ns</td></td<></fmck></fmck></fmck></fmck></fmck></fmck></fmck></fmck>	ns			
SIp setup time	tsik2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		ns			
(to SCKp↑) ^{Note 3}		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	$2.3~V \leq V_{b} \leq 2.7~V$	1/fмск + 20		1/fмск + 30		ns
		$1.8~V \leq V_{\text{DD}} < 3.3~V,$	$1.6~V \leq V_{\text{DD}} \leq 2.0~V^{\text{Note 2}}$	1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) ^{№te 4}	tksi2			1/fмск + 31		1/fмск + 31		ns
Delay time from	tĸso2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	$2.7~V \leq V_b \leq 4.0~V,$		2/fмск +		2/fмск +	ns
SCKp↓ to SOp		$C_b = 30 \text{ pF}, R_b = 1.4$	kΩ		120		573	
output Notes		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	$2.3~V \leq V_{b} \leq 2.7~V,$		2/fмск +		2/fмск +	ns
		$C_b = 30 \text{ pF}, R_b = 2.7$	kΩ		214		573	
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V},$	$1.6~V \leq V_b \leq 2.0~V^{\text{Note 2}},$		2/fмск +		2/fмск +	ns
		$C_{\rm b} = 30 \text{ pE}$ B _b = 5.5	kO		573		573	

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) ($T_A = -40$ to $+85^{\circ}$ C, 1.8 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

 $\textbf{2.} \quad \textbf{Use it with } V_{\text{DD}} \geq V_{\text{b}}.$

- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Cautions 1. Select the TTL input buffer for the SIp and SCKp pins and the N-ch open drain output (Vbb tolerance) mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For ViH and ViL, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.

CSI mode connection diagram (during communication at different potential)

Remarks 1. R_b [Ω]: Communication line (SOp) pull-up resistance, C_b [F]: Communication line (SOp) load capacitance, V_b [V]: Communication line voltage

2. p: CSI number (
$$p = 00, 20$$
), m: Unit number ($m = 0, 1$), n: Channel number ($n = 0$)

 fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 10))

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Parameter	Symbol	Condition	S	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	Normal input buffer		0.8VDD		Vdd	V
		20-, 24-pin products: P00 to P0 P40 to P42					
		30-pin products: P00, P01, P1 P40, P50, P51, P120, P147					
	VIH2	TTL input buffer	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	2.2		VDD	V
		20-, 24-pin products: P10, P11	$3.3~V \leq V_{\text{DD}} < 4.0~V$	2.0		VDD	V
		30-pin products: P01, P10, P11, P13 to P17	$2.4~V \leq V_{\text{DD}} < 3.3~V$	1.5		Vdd	V
	VIH3	Normal input buffer P20 to P23	0.7Vdd		Vdd	V	
	VIH4	P60, P61		0.7Vdd		6.0	V
	VIH5	P121, P122, P125 ^{Note 1} , P137, E	0.8Vdd		Vdd	V	
Input voltage, low	VIL1	Normal input buffer		0		0.2VDD	V
		20-, 24-pin products: P00 to P0 P40 to P42	3 ^{№™ 2} , P10 to P14,				
		30-pin products: P00, P01, P10 P40, P50, P51, P120, P147					
	VIL2	TTL input buffer	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	0		0.8	V
		20-, 24-pin products: P10, P11	$3.3~V \leq V_{\text{DD}} < 4.0~V$	0		0.5	V
		30-pin products: P01, P10, P11, P13 to P17	$2.4~V \leq V_{\text{DD}} < 3.3~V$	0		0.32	V
	VIL3	P20 to P23		0		0.3VDD	V
	VIL4	P60, P61		0		0.3VDD	V
	VIL5	P121, P122, P125 ^{Note 1} , P137, E	EXCLK, RESET	0		0.2V _{DD}	V
Output voltage, high	V _{OH1}	20-, 24-pin products: P00 to P03 ^{Note 2} , P10 to P14,	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -3.0 \ mA \end{array} \end{array} eq:delta_d$	VDD-0.7			V
		P40 to P42 30-pin products:	$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -2.0 \ \text{mA} \end{array}$	VDD-0.6			V
		P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147	$\begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -1.5 \ mA \end{array}$	VDD-0.5			V
	Vон2	P20 to P23	Іон2 = -100 <i>µ</i> А	VDD-0.5			V

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

(3/4)

Notes 1. 20, 24-pin products only.

2. 24-pin products only.

- CautionThe maximum value of VIH of pins P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24-
pin products, and P00, P10 to P15, P17, and P50 for 30-pin products is VDD even in N-ch open-drain mode.High level is not output in the N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

(4/4)

Parameter	Symbol		Conditio	ns	MIN.	TYP.	MAX.	Unit
Output voltage, low	V _{OL1}	20-, 24-pin products P00 to P03 ^{Note} , P10	s: to P14,	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ $I_{\text{OL1}} = 8.5 \text{ mA}$			0.7	V
		P40 to P42 30-pin products: P0	00, P01,	$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 3.0 \ mA \end{array} \label{eq:DD}$			0.6	V
		P10 to P17, P30, P31, P40, P50, P51, P120, P147		$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 1.5 \ mA \end{array} \end{array} \label{eq:DD}$			0.4	V
				$\begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 0.6 \ mA \end{array} \label{eq:DD}$			0.4	V
	V _{OL2}	P20 to P23		lol2 = 400 μA			0.4	V
	Vol3	P60, P61		$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 15.0 \ mA \end{array} \end{array} \label{eq:VDD}$			2.0	V
				$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 5.0 \ mA \end{array} \end{array} \label{eq:VDD}$			0.4	V
				$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 3.0 \ mA \end{array} \label{eq:DD}$			0.4	V
				$\begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 2.0 \ mA \end{array} \label{eq:DD}$			0.4	V
Input leakage current, high	Іцні	Other than P121, P122	VI = VDD				1	μA
	Ilih2	P121, P122 Vi = V _{DD} (X1, X2/EXCLK)		Input port or external clock input			1	μA
				When resonator connected			10	μA
Input leakage current, low	ILIL1	Other than P121, P122	VI = Vss				-1	μA
	Ilil2	P121, P122 (X1, X2/EXCLK)	VI = Vss	Input port or external clock input			-1	μA
				When resonator connected			-10	μA
On-chip pull-up resistance	Ru	20-, 24-pin products P00 to P03 ^{№™} , P10 P40 to P42, P125,	s: to P14, RESET	$V_I = V_{SS}$, input port	10	20	100	kΩ
		30-pin products: P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147						

Note 24-pin products only.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(2) 30-pin products

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS}$	s = 0 V)
---	----------

(T _A = -40 to	+105°C,	$2.4 V \leq V_D$	D ≤ 5.5 V, Vss =	= 0 V)						(1/2)
Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	Idd1	Operating	HS (High-speed	$f_{H} = 24 \text{ MHz}^{Note 3}$	Basic	V _{DD} = 5.0 V		1.5		mA
current ^{Note 1}		mode	ode main) mode ^{№004}	operation	V _{DD} = 3.0 V		1.5			
					Normal	V _{DD} = 5.0 V		3.7	5.8	mA
					operation	V _{DD} = 3.0 V		3.7	5.8	
	f _{IH} = 16 MHz ^{Note 3}		V _{DD} = 5.0 V		2.7	4.2	mA			
						V _{DD} = 3.0 V		2.7	4.2	
	f _{MX} = 20 MHz ^{Note} ,	$f_{MX} = 20 \text{ MHz}^{Note 2},$		Square wave input		3.0	4.9	mA		
				$V_{\text{DD}} = 5.0 \text{ V}$		Resonator connection		3.2	5.0	
				$f_{MX}=20\ MHz^{Note2},$		Square wave input		3.0	4.9	mA
				V _{DD} = 3.0 V		Resonator connection		3.2	5.0	
				$f_{MX}=10\ MHz^{Note2},$		Square wave input		1.9	2.9	mA
			V	$V_{DD} = 5.0 \text{ V}$		Resonator connection		1.9	2.9	
				$f_{MX}=10\ MHz^{Note2},$		Square wave input		1.9	2.9	mA
				$V_{DD} = 3.0 V$		Resonator connection		1.9	2.9	

Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. When high-speed on-chip oscillator clock is stopped.
- 3. When high-speed system clock is stopped
- 4. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz VDD = 2.4 V to 5.5 V @1 MHz to 16 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$.

(2) 30-pin products

$(T_A = -40 \text{ to } +105^{\circ}\text{C}.$	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$. $\text{V}_{\text{SS}} = 0 \text{ V}$
(17 - 40.0 + 100 0)	, 2.4 • 3 • 66 3 6.6 • , • 66 = 6 • 7

(T _A = -40 to	+105°C,	2.4 V ≤ V	DD \leq 5.5 V, Vss =	= 0 V)					(2/2)
Parameter	Symbol		Conditions M					MAX.	Unit
Supply IDD2 Note current Note 1	DD2 Note 2	HALT mode	HS (High-speed	$f_{IH} = 24 \text{ MHz}^{Note 4}$	V _{DD} = 5.0 V		440	2300	μA
			main) mode ^{Note 6}		V _{DD} = 3.0 V		440	2300	
				$f_{IH} = 16 \ MHz^{Note 4}$	V _{DD} = 5.0 V		400	1700	μA
					V _{DD} = 3.0 V		400	1700	
				$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$ $V_{DD} = 5.0 \text{ V}$	Square wave input		280	1900	μA
					Resonator connection		450	2000	
				$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$ $V_{DD} = 3.0 \text{ V}$	Square wave input		280	1900	μA
					Resonator connection		450	2000	
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		190	1020	μA
			$V_{DD} = 5.0 V$	Resonator connection		260	1100		
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$ $V_{\text{DD}} = 3.0 \text{ V}$	Square wave input		190	1020	μA
					Resonator connection		260	1100	
	DD3 Note 5	STOP mode	$T_A = -40^{\circ}C$				0.18	0.50	μA
			T _A = +25°C	$T_A = +25^{\circ}C$			0.23	0.50	
			$T_{A} = +50^{\circ}C$ $T_{A} = +70^{\circ}C$				0.30	1.10	
							0.46	1.90	
			$T_A = +85^{\circ}C$				0.75	3.30	
			T _A = +105°C				2.94	15.30	

Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. During HALT instruction execution by flash memory.
- 3. When high-speed on-chip oscillator clock is stopped.
- 4. When high-speed system clock is stopped.
- Not including the current flowing into the 12-bit interval timer and watchdog timer. 5.
- 6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS (High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz VDD = 2.4 V to 5.5 V @1 MHz to 16 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except STOP mode, temperature condition of the TYP. value is TA = 25°C.

(3) Peripheral functions (Common to all products)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed onchip oscillator operating current	IFIL Note 1				0.20		μA
12-bit interval timer operating current	ITMKA Notes 1, 2, 3				0.02		μA
Watchdog timer operating current	WDT Notes 1, 2, 4	fı∟ = 15 kHz	fı∟ = 15 kHz		0.22		μA
A/D converter		When conversion	Normal mode, $AV_{REFP} = V_{DD} = 5.0 V$		1.30	1.70	mA
operating current	Notes 1, 5 at maximum speed	at maximum speed	Low voltage mode, AV _{REFP} = V _{DD} = 3.0 V		0.50	0.70	mA
A/D converter reference voltage operating current	IADREF Note 1				75.0		μA
Temperature sensor operating current	ITMPS Note 1				75.0		μA
LVD operating current	LVD Notes 1, 6				0.08		μA
Self-programming operating current	FSP Notes 1, 8				2.00	12.20	mA
BGO operating current	BGO Notes 1, 7				2.00	12.20	mA
SNOOZE operating	Isnoz	ADC operation	The mode is performed Note 9		0.50	1.10	mA
current	Note 1		The A/D conversion operations are performed, Low voltage mode, AV _{REFP} = $V_{DD} = 3.0 \text{ V}$		1.20	2.04	mA
		CSI/UART operation	1		0.70	1.54	mA

Notes 1. Current flowing to the VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and IFIL and ITMKA when the 12-bit interval timer operates.
- 4. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.
- 5. Current flowing only to the A/D converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 6. Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit operates.
- 7. Current flowing only during data flash rewrite.
- 8. Current flowing only during self programming.
- 9. For shift time to the SNOOZE mode, see 17.3.3 SNOOZE mode.

Remarks 1. fil: Low-speed on-chip oscillator clock frequency

2. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

Minimum Instruction Execution Time during Main System Clock Operation

AC Timing Test Point

External Main System Clock Timing

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
				MIN.	MAX.	
SCKp cycle time Note4	t ксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	20 MHz < fмск	16/f мск		ns
			fмск ≤ 20 MHz	12/fмск		ns
		$2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V \qquad \qquad 16 \ MHz < f_{\text{MCK}}$		16/f мск		ns
			fмск ≤ 16 MHz	12/fмск		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		12/fмск		ns
				and 1000		
SCKp high-/low-level width	tкн2,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2–14		ns
	tĸl2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	$\leq V_{DD} \leq 5.5 V$			ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2–36		ns
SIp setup time (to SCKp↑)	tsik2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск + 40		ns
Note 1		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск + 60		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi2			1/fмск + 62		ns
Delay time from SCKp \downarrow to	tkso2	C = 30 pF ^{Note4}	$2.7~V \le V_{\text{DD}} \le 5.5~V$		2/fмск + 66	ns
SOp output Note 3			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		2/fмск + 113	ns

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **2.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- **Caution** Select the normal input buffer for the SIp and SCKp pins and the normal output mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).

CSI mode connection diagram (during communication at same potential)

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- **Remarks 1.** R_b[Ω]: Communication line (TxDq) pull-up resistance, C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)
 - fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

4. UART0 of the 20- and 24-pin products supports communication at different potential only when the peripheral I/O redirection function is not used.

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
SIp setup time (to SCKp \downarrow)	tsıkı	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 1.4 \ k\Omega \end{array}$	88		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$	88		ns
		$\begin{array}{l} 2.4 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 5.5 \ k\Omega \end{array}$	220		ns
Slp hold time (from SCKp↓) ^{№te}	tksii	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 1.4 \ k\Omega \end{array}$	38		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	38		ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 5.5 \ k\Omega \end{array}$	38		ns
Delay time from SCKp↑ to SOp output ^{Note}	tkso1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 1.4 \ k\Omega \end{array}$		50	ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$		50	ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 5.5 \ k\Omega \end{array}$		50	ns

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Note When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.
- **Remarks 1.** R_b [Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b [F]: Communication line (SCKp, SOp) load capacitance, V_b [V]: Communication line voltage
 - **2.** p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

CSI mode connection diagram (during communication at different potential)

(3) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V_{ss} (ADREFM = 0), target pin: ANI0 to ANI3, ANI16 to ANI22, internal reference voltage, and temperature sensor output voltage

Parameter	Symbol	Condition	ns	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	10-bit resolution		1.2	±7.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI0 to ANI3,	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μS
		ANI16 to ANI22	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
Conversion time	ne tconv 10-bit re	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: internal reference voltage, and temperature sensor output voltage (HS	$2.7 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	3.5625		39	μs
			$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μS
	(high-speed main) mo	(high-speed main) mode)					
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution				±0.60	%FSR
Full-scale error ^{Notes 1, 2}	EFS	10-bit resolution				±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution				±4.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution				±2.0	LSB
Analog input voltage	VAIN	ANI0 to ANI3, ANI16 to ANI2	2	0		VDD	V
		Internal reference voltage		VBGR Note 3			V
		(HS (high-speed main) mode)					
	Temperature sensor output voltage (HS (high-speed main) mode)		roltage		VTMPS25 Note 3	1	V

(T 40 to 105%)	$24V \leq V_{\rm PR} \leq 55V$	Vec - 0 V Deference	$voltogo(v) - V_{pp}$	Peterspec voltage () =	100)
(1A = -40 10 + 105 C	$, \mathbf{Z.4} \mathbf{V} \leq \mathbf{V} \mathbf{D} \mathbf{D} \leq 5.5 \mathbf{V},$	vss = 0 v, neierence	vonage(+) = voo,	reference voltage (-) = v	rssj

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. Refer to 29.6.2 Temperature sensor/internal reference voltage characteristics.

