

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

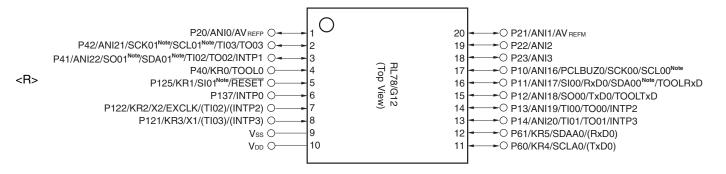
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

XF

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	8KB (8K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 × 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-WFQFN Exposed Pad
Supplier Device Package	24-HWQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10378ana-w0

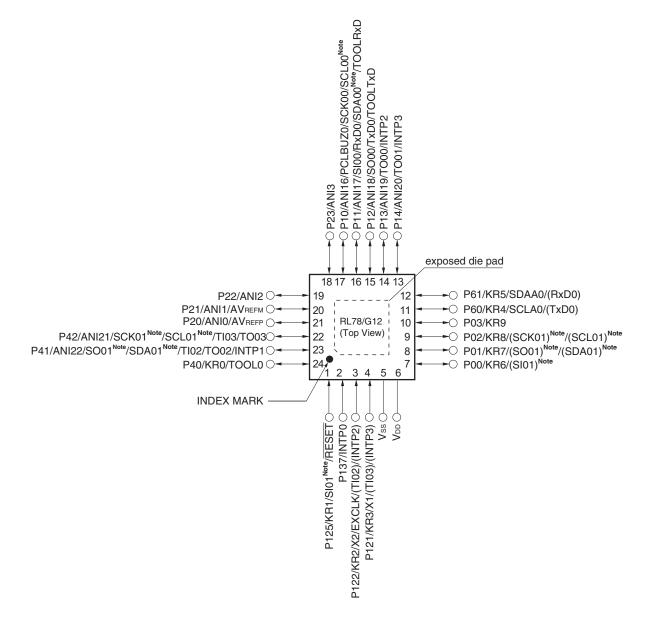

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.4 Pin Configuration (Top View)

1.4.1 20-pin products

• 20-pin plastic LSSOP (4.4 × 6.5 mm, 0.65 mm pitch)

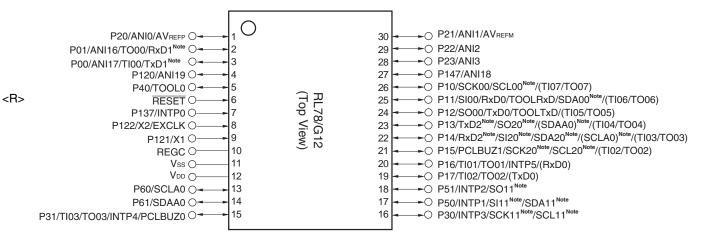

Note Provided only in the R5F102 products.

- Remarks 1. For pin identification, see 1.5 Pin Identification.
 - 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR).

1.4.2 24-pin products

<R> • 24-pin plastic HWQFN (4 × 4 mm, 0.5 mm pitch)

Note Provided only in the R5F102 products.

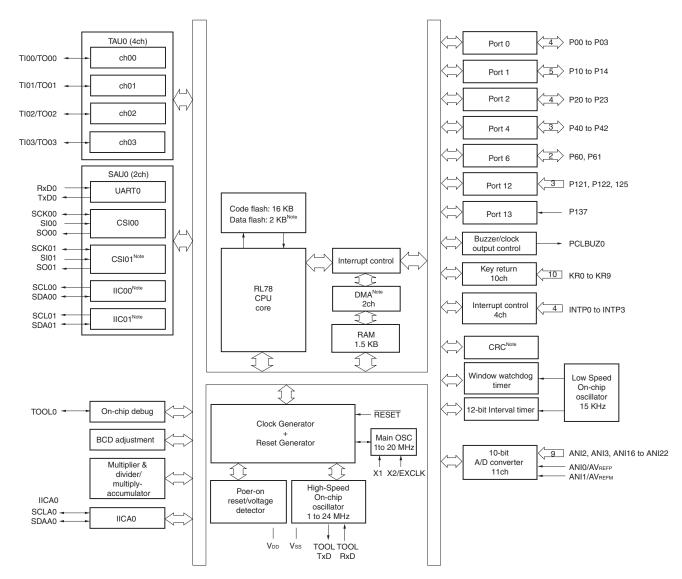

Remarks 1. For pin identification, see 1.5 Pin Identification.

- 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR).
- 3. It is recommended to connect an exposed die pad to Vss.

1.4.3 30-pin products

• 30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)

Note Provided only in the R5F102 products.


Caution Connect the REGC pin to Vss via capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.5 Pin Identification.

2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR).

1.6.2 24-pin products

Note Provided only in the R5F102 products.

2.2 Oscillator Characteristics

2.2.1 X1 oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator /	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal oscillator	$1.8~V \leq V_{\text{DD}} < 2.7~V$	1.0		8.0	

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- **Remark** When using the X1 oscillator, refer to **5.4 System Clock Oscillator**.

2.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Oscillators	Parameters	Conditions		MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		24	MHz
High-speed on-chip oscillator		R5F102 products	$T_A = -20 \text{ to } +85^\circ \text{C}$	-1.0		+1.0	%
clock frequency accuracy			$T_A = -40$ to $-20^{\circ}C$	-1.5		+1.5	%
		R5F103 products		-5.0		+5.0	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H) and bits 0 to 2 of HOCODIV register.

2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

TA = -40 10 + 00 C,	1.0 V \(\sigma\)	/DD ≤ 5.5 V, Vss = 0 V)			1	1	(2/4
Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Dutput current, low ^{Note 1}	lol1	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42 30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147			20.0 Note 2	mA	
		Per pin for P60, P61				15.0 Note 2	mA
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			60.0	mA
		Total of P40 to P42	$2.7~V \leq V_{\text{DD}} < 4.0~V$			9.0	mA
		30-pin products: Total of P00, P01, P40, P120 (When duty $\leq 70\%^{\text{Note 3}}$)	$1.8~V \leq V_{\text{DD}} < 2.7~V$			1.8	mA
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			80.0	mA
		Total of P00 to P03 ^{Note 4} ,	$2.7~V \leq V_{\text{DD}} < 4.0~V$			27.0	mA
		P10 to P14, P60, P61 30-pin products: Total of P10 to P17, P30, P31, P50, P51, P60, P61, P147 (When duty $\leq 70\%^{\text{Note 3}}$)	$1.8~V \leq V_{\text{DD}} < 2.7~V$			5.4	mA
		Total of all pins (When duty $\leq 70\%^{Note 3}$)				140	mA
	IOL2	Per pin for P20 to P23				0.4	mA
		Total of all pins				1.6	mA

(a (A)

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.

2. However, do not exceed the total current value.

3. The output current value under conditions where the duty factor \leq 70%.

If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).

• Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and $I_{OL} = 10.0 \text{ mA}$

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \cong 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

- 4. 24-pin products only.
- Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(1) 20-, 24-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit	
Supply	DD2 Note 2	HALT	HS (High-speed	$f_{IH} = 24 \text{ MHz}^{Note 4}$	$V_{DD} = 5.0 V$		440	1210	μA	
current Note 1		mode	main) mode ^{Note 6}		$V_{DD} = 3.0 V$		440	1210		
				fıн = 16 MHz ^{№te 4}	$V_{DD} = 5.0 V$		400	950	μA	
					$V_{DD} = 3.0 V$		400	950		
			LS (Low-speed	$f_{IH} = 8 \text{ MHz}^{Note 4}$	$V_{DD} = 3.0 V$		270	542	μA	
			main) mode ^{Note 6}		V _{DD} = 2.0 V		270	542		
			HS (High-speed	$f_{MX} = 20 \text{ MHz}^{Note 3},$	Square wave input		280	1000	μA	
			main) mode ^{Note 6}	$V_{DD} = 5.0 V$	Resonator connection		450	1170		
				$f_{MX} = 20 \text{ MHz}^{Note 3},$	Square wave input		280	1000	μA	
			-	$V_{DD} = 3.0 V$	Resonator connection		450	1170		
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		190	590	μA	
				$V_{DD} = 5.0 V$	Resonator connection		260	660		
					$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		190	590	μA
				$V_{DD} = 3.0 V$	Resonator connection		260	660		
			LS (Low-speed	$f_{MX} = 8 \text{ MHz}^{Note 3},$	Square wave input		110	360	μA	
			main) mode ^{Note 6}	$V_{DD} = 3.0 V$	Resonator connection		150	416		
				$f_{MX} = 8 \text{ MHz}^{Note 3},$	Square wave input		110	360	μA	
				$V_{DD} = 2.0 V$	Resonator connection		150	416		
	DD3 Note 5	STOP	$T_A = -40^{\circ}C$				0.19	0.50	μA	
	mode $T_{A} = +25^{\circ}C$ $T_{A} = +50^{\circ}C$	$T_A = +25^{\circ}C$				0.24	0.50			
		$T_A = +50^{\circ}C$				0.32	0.80			
			$T_A = +70^{\circ}C$				0.48	1.20		
			T _A = +85°C				0.74	2.20		

Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. During HALT instruction execution by flash memory.
- 3. When high-speed on-chip oscillator clock is stopped.
- 4. When high-speed system clock is stopped.
- 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.
- 6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz VDD = 2.4 V to 5.5 V @1 MHz to 16 MHz

LS(Low speed main) mode: VDD = 1.8 V to 5.5 V @1 MHz to 8 MHz

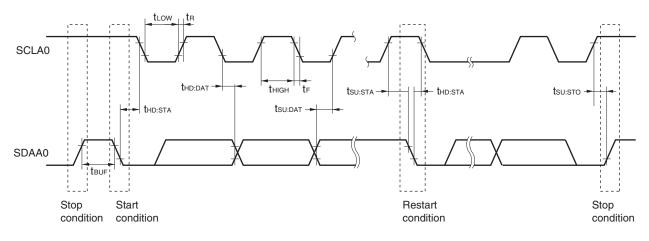
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except temperature condition of the TYP. value is $T_A = 25^{\circ}C$, other than STOP mode

2.5.2 Serial interface IICA

Parameter	Symbol	Conditions	HS	HS (high-speed main) mode			Unit
			LS	(low-spee	d main) m	ode	
			Standa	rd Mode	Fast	Mode	
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode: fclk≥ 3.5 MHz			0	400	kHz
		Normal mode: fcLK≥ 1 MHz	0	100			kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μS
Hold time ^{Note 1}	thd:sta		4.0		0.6		μS
Hold time when SCLA0 = "L"	tLOW		4.7		1.3		μs
Hold time when SCLA0 = "H"	tніgн		4.0		0.6		μs
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission) ^{Note 2}	thd:dat		0	3.45	0	0.9	μs
Setup time of stop condition	tsu:sto		4.0		0.6		μs
Bus-free time	t BUF		4.7		1.3		μs

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

<R>


The first clock pulse is generated after this period when the start/restart condition is detected. Notes 1.

2. The maximum value (MAX.) of thD:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution Only in the 30-pin products, the values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Normal mode:	$C_b = 400 \text{ pF}, \text{ Rb} = 2.7 \text{ k}\Omega$
Fast mode:	C_b = 320 pF, Rb = 1.1 k Ω

IICA serial transfer timing

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When AV_{REFP} < V_{DD}, the MAX. values are as follows. Overall error: Add ±1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.05%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.
- 4. Values when the conversion time is set to 57 μs (min.) and 95 μs (max.).
- 5. Refer to 28.6.2 Temperature sensor/internal reference voltage characteristics.
- (2) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI22

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{AV}_{REFP}, \text{ Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error Note 1	AINL	10-bit resolution			1.2	±5.0	LSB
		$AV_{REFP} = V_{DD}^{Note 3}$			1.2	$\pm 8.5^{\text{Note 4}}$	LSB
Conversion time	tCONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μS
		Target ANI pin: ANI16 to ANI22	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μS
			$1.8~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
				57		95	μS
Zero-scale error Notes 1, 2	EZS	10-bit resolution	0-bit resolution			±0.35	%FSR
		$AV_{REFP} = V_{DD}^{Note 3}$				$\pm 0.60^{\text{Note 4}}$	%FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution				±0.35	%FSR
		$AV_{REFP} = V_{DD}^{Note 3}$				$\pm 0.60^{\text{Note 4}}$	%FSR
Integral linearity error Note 1	ILE	10-bit resolution				±3.5	LSB
		$AV_{REFP} = V_{DD}^{Note 3}$				$\pm 6.0^{\text{Note 4}}$	LSB
Differential linearity	DLE	10-bit resolution				±2.0	LSB
error ^{Note 1}		$AV_{REFP} = V_{DD}^{Note 3}$				±2.5 ^{Note 4}	LSB
Analog input voltage	VAIN	ANI16 to ANI22		0		AVREFP	V
						and VDD	

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

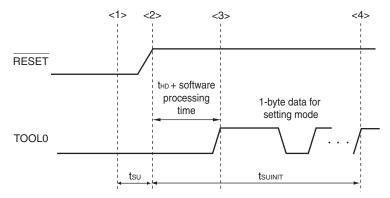
- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- **3.** When AV_{REFP} \leq V_{DD}, the MAX. values are as follows. Overall error: Add ±4.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.20%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.
- 4. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).

2.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode (TA = -40 to $+85^{\circ}$ C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection supply voltage	VLVDO	Power supply rise time	3.98	4.06	4.14	V
		Power supply fall time	3.90	3.98	4.06	V
	VLVD1	Power supply rise time	3.68	3.75	3.82	V
		Power supply fall time	3.60	3.67	3.74	V
	VLVD2	Power supply rise time	3.07	3.13	3.19	V
		Power supply fall time	3.00	3.06	3.12	V
	VLVD3	Power supply rise time	2.96	3.02	3.08	V
		Power supply fall time	2.90	2.96	3.02	V
	VLVD4	Power supply rise time	2.86	2.92	2.97	V
		Power supply fall time	2.80	2.86	2.91	V
	VLVD5	Power supply rise time	2.76	2.81	2.87	V
		Power supply fall time	2.70	2.75	2.81	V
	VLVD6	Power supply rise time	2.66	2.71	2.76	V
		Power supply fall time	2.60	2.65	2.70	V
	VLVD7	Power supply rise time	2.56	2.61	2.66	V
		Power supply fall time	2.50	2.55	2.60	V
	VLVD8	Power supply rise time	2.45	2.50	2.55	V
		Power supply fall time	2.40	2.45	2.50	V
	VLVD9	Power supply rise time	2.05	2.09	2.13	V
		Power supply fall time	2.00	2.04	2.08	V
	VLVD10	Power supply rise time	1.94	1.98	2.02	V
		Power supply fall time	1.90	1.94	1.98	V
	VLVD11	Power supply rise time	1.84	1.88	1.91	V
		Power supply fall time	1.80	1.84	1.87	V
Minimum pulse width	t∟w		300			μs
Detection delay time					300	μS

2.9 Dedicated Flash Memory Programmer Communication (UART)


(1x = 40.0000, 1.0003)		•,•33 – • •)				
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

2.10 Timing of Entry to Flash Memory Programming Modes

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset are released before external reset release			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	ts∪	POR and LVD reset are released before external reset release	10			μS
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset are released before external reset release	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.
 - t_{SU} : Time to release the external reset after the TOOL0 pin is set to the low level
 - the: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

Parameter	Symbol	Condition	s	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	Normal input buffer 20-, 24-pin products: P00 to P0)3 ^{№te 2} , P10 to P14,	0.8VDD		Vdd	V
		P40 to P42					
		30-pin products: P00, P01, P1 P40, P50, P51, P120, P147	0 to P17, P30, P31,				
	VIH2	TTL input buffer	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	2.2		VDD	V
		20-, 24-pin products: P10, P11	$3.3~V \leq V_{\text{DD}} < 4.0~V$	2.0		VDD	V
		30-pin products: P01, P10, P11, P13 to P17	$2.4~V \leq V_{\text{DD}} < 3.3~V$	1.5		VDD	V
	VIH3	Normal input buffer		0.7VDD		VDD	V
		P20 to P23	P20 to P23				
	VIH4	P60, P61		0.7VDD		6.0	V
	V _{IH5}	P121, P122, P125 ^{Note 1} , P137, I	EXCLK, RESET	0.8Vdd		VDD	V
Input voltage, low	VIL1	Normal input buffer		0		0.2V _{DD}	V
		20-, 24-pin products: P00 to P0 P40 to P42					
		30-pin products: P00, P01, P10 P40, P50, P51, P120, P147) to P17, P30, P31,				
	VIL2	TTL input buffer	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	0		0.8	V
		20-, 24-pin products: P10, P11	$3.3~V \leq V_{\text{DD}} < 4.0~V$	0		0.5	V
		30-pin products: P01, P10, P11, P13 to P17	$2.4~V \leq V_{\text{DD}} < 3.3~V$	0		0.32	V
	VIL3	P20 to P23		0		0.3V _{DD}	V
	VIL4	P60, P61		0		0.3V _{DD}	V
	VIL5	P121, P122, P125 ^{Note 1} , P137, B	EXCLK, RESET	0		0.2V _{DD}	V
Output voltage, high	V _{OH1}	20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	V _{DD} -0.7			V
		P00 to P03 ^{Note 2} , P10 to P14,	loн1 = -3.0 mA				
		P40 to P42 30-pin products:	$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -2.0 \ mA \end{array} \end{array} \label{eq:VDD}$	VDD-0.6			V
		P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147	$\begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -1.5 \ mA \end{array}$	VDD-0.5			V
	Vон2	P20 to P23	Іон2 = -100 <i>µ</i> А	Vdd-0.5			V

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

(3/4)

Notes 1. 20, 24-pin products only.

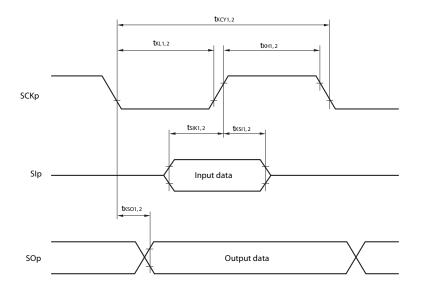
- **2.** 24-pin products only.
- CautionThe maximum value of VIH of pins P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24-
pin products, and P00, P10 to P15, P17, and P50 for 30-pin products is VDD even in N-ch open-drain mode.High level is not output in the N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

3.3.2 Supply current characteristics

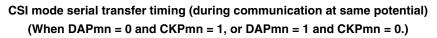
(1) 20-, 24-pin products

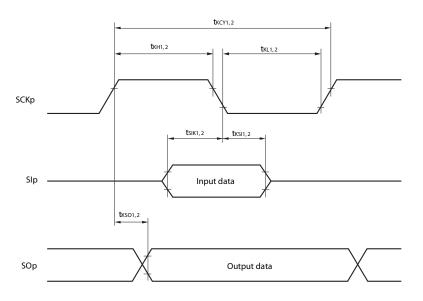
<u>(1A = 10 to</u>	1100 0,		<u> </u>	•••)						(""")
Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	DD1	Operating	HS (High-speed	$f_{\text{IH}} = 24 \text{ MHz}^{\text{Note 3}}$	Basic	$V_{DD} = 5.0 V$		1.5		mA
current ^{Note 1}		mode	main) mode ^{Note 4}		operation	VDD = 3.0 V		1.5		
					Normal	$V_{DD} = 5.0 V$		3.3	5.3	mA
					operation	$V_{DD} = 3.0 V$		3.3	5.3	
				$f_{\text{IH}} = 16 \; MHz^{\text{Note 3}}$		$V_{DD} = 5.0 V$		2.5	3.9	mA
						$V_{DD} = 3.0 V$		2.5	3.9	
				$f_{MX} = 20 \text{ MHz}^{Note 2},$		Square wave input		2.8	4.7	mA
				VDD = 5.0 V		Resonator connection		3.0	4.8	
				$f_{MX} = 20 \text{ MHz}^{Note 2},$		Square wave input		2.8	4.7	mA
				$V_{DD} = 3.0 V$		Resonator connection		3.0	4.8	
				$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		1.8	2.8	mA
				VDD = 5.0 V		Resonator connection		1.8	2.8	
				$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		1.8	2.8	mA
				$V_{DD} = 3.0 \text{ V}$		Resonator connection		1.8	2.8	

Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.


- 2. When high-speed on-chip oscillator clock is stopped.
- **3.** When high-speed system clock is stopped
- 4. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode: $V_{DD} = 2.7$ V to 5.5 V @1 MHz to 24 MHz V_{DD} = 2.4 V to 5.5 V @1 MHz to 16 MHz

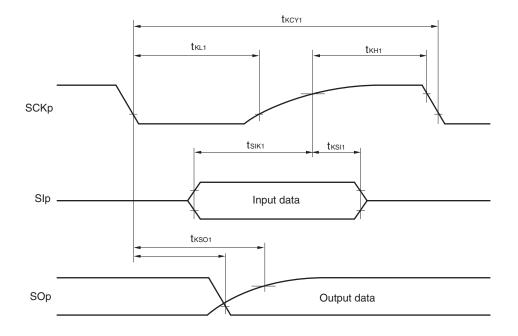

- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$.



(1/2)

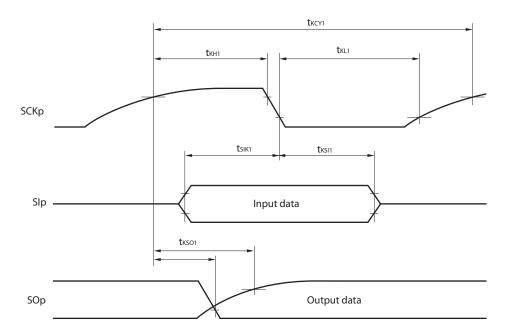
CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

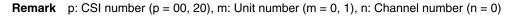
- Remarks 1. p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3)
 2. fMCK: Serial array unit operation clock frequency
 - (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3))


(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3)

Symbol		Conditions	HS (high-speed	Unit	
			MIN.	MAX.	
tксү1	$t_{KCY1} \geq 4/f_{CLK}$	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	600		ns
		$2.7~V \leq V_{b} \leq 4.0~V,$			
		C_b = 30 pF, R_b = 1.4 k Ω			
		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	1000		ns
		$2.3~V \leq V_{b} \leq 2.7~V,$			
		C_b = 30 pF, R_b = 2.7 k Ω			
		$2.4~V \leq V_{\text{DD}} < 3.3~V,$	2300		ns
		$1.6 V \le V_b \le 2.0 V$,			
		C_b = 30 pF, R_b = 5.5 k Ω			
tкнı	$4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V,$		tĸcy1/2-150		ns
	$C_b = 30 \text{ pF}, \text{R}_b = 1.4 \text{k}\Omega$				
	$2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V,$		tkcy1/2 -340		ns
	$C_b = 30 \text{ pF}, R_b = 2.7 k\Omega$				
	$2.4 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V,$		tkcy1/2 –916		ns
	C_b = 30 pF, R_b = 5.5 k Ω				
tĸ∟1	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$		tксү1/2 –24		ns
	$C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ k}\Omega$				
	$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$		tĸcy1/2 –36		ns
			tkcy1/2 -100		ns
		, , , , ,			
	tксy1	tkcy1 tkcy1 ≥ 4/fcLk tkH1 4.0 V ≤ VDD ≤ Cb = 30 pF, Ri 2.7 V ≤ VDD <	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{tabular}{ c c c c c } \hline trcy1 & trcy1 \geq 4/fc_{LK} & 4.0 \ V \leq V_{DD} \leq 5.5 \ V, & 600 \\ \hline trcy1 & trcy1 \geq 4/fc_{LK} & 4.0 \ V \leq V_{DD} \leq 5.5 \ V, & 600 \\ \hline 2.7 \ V \leq V_b \leq 4.0 \ V, & 2.7 \ V \leq V_b \leq 4.0 \ V, & 2.7 \ V \leq V_{DD} < 4.0 \ V, & 1000 \\ \hline 2.3 \ V \leq V_{DD} < 4.0 \ V, & 1000 \\ \hline 2.3 \ V \leq V_{DD} < 4.0 \ V, & 1000 \\ \hline 2.3 \ V \leq V_{DD} < 4.0 \ V, & 1000 \\ \hline 2.3 \ V \leq V_{DD} < 3.3 \ V, & 1.6 \ V \leq 2.7 \ V, & 2300 \\ \hline 1.6 \ V \leq V_{DD} \leq 5.5 \ V, 2.7 \ V \leq V_b \leq 4.0 \ V, & trcy1/2 - 150 \\ \hline C_b = 30 \ pF, \ R_b = 1.4 \ R\Omega & 1000 \\ \hline tct1 & 4.0 \ V \leq V_{DD} \leq 5.5 \ V, 2.7 \ V \leq V_b \leq 4.0 \ V, & trcy1/2 - 150 \\ \hline C_b = 30 \ pF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline tct1 & 4.0 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, & trcy1/2 - 340 \\ \hline C_b = 30 \ pF, \ R_b = 5.5 \ R\Omega & 1000 \\ \hline tct1 & 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, & trcy1/2 - 916 \\ \hline C_b = 30 \ pF, \ R_b = 5.5 \ R\Omega & 1000 \\ \hline tct1 & 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, & trcy1/2 - 24t \\ \hline C_b = 30 \ pF, \ R_b = 1.4 \ R\Omega & 1000 \\ \hline tct1 & 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, & trcy1/2 - 24t \\ \hline C_b = 30 \ pF, \ R_b = 1.4 \ R\Omega & 1000 \\ \hline tct1 & 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, & trcy1/2 - 24t \\ \hline C_b = 30 \ pF, \ R_b = 1.4 \ R\Omega & 1000 \\ \hline tcy1/2 \ -24t \ C_b = 30 \ pF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline tcy1/2 \ -24t \ C_b = 30 \ pF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline tcy1/2 \ -24t \ C_b = 30 \ pF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline tcy1/2 \ -24t \ C_b = 30 \ pF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline tcy1/2 \ -24t \ C_b = 30 \ pF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline tcy1/2 \ -24t \ C_b = 30 \ pF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline tcy1/2 \ -24t \ C_b = 30 \ pF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline tcy1/2 \ -24t \ C_b = 30 \ pF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline tcy1/2 \ -24t \ C_b = 30 \ PF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline tcy1/2 \ -24t \ C_b = 30 \ PF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline tcy1/2 \ -24t \ C_b = 300 \ PF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline tcy1/2 \ -24t \ C_b = 300 \ PF, \ R_b = 2.7 \ R\Omega & 1000 \\ \hline tcy1/2 \ -24t \ C_b = 300 \ PF, \ R_b$	$\begin{tabular}{ c c c c c c } \hline WIN. & MAX. \\ \hline WIN. & WAX. \\ \hline WIN. & WIN. \\ \hline WIN. & WIN.$

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$


- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.
- **Remarks 1.** R_b [Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b [F]: Communication line (SCKp, SOp) load capacitance, V_b [V]: Communication line voltage
 - **2.** p: CSI number (p = 00, 20)



CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp external clock input)
(T _A = −40 to +105°C, 2.4 V ≤ V _{DD} ≤ 5.5 V, V _{SS} = 0 V)

Parameter	Symbol		HS (high-spe Mod	Unit		
				MIN.	MAX.	
SCKp cycle time Note 1	tксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	20 MHz < fmck \leq 24 MHz	24/f мск		ns
		$2.7~V \leq V_b \leq 4.0~V$	8 MHz < fмск ≤ 20 MHz	20/f мск		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	16/f мск		ns
			fмск \leq 4 MHz	12/ fмск		ns
		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	20 MHz < fmck \leq 24 MHz	32/ fмск		ns
		$2.3~V \leq V_b \leq 2.7~V$	16 MHz < fмск \leq 20 MHz	28/ fмск		ns
			8 MHz < fмск \leq 16 MHz	24/fмск		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	16/ fмск		ns
			fмск \leq 4 MHz	12/fмск		ns
		$2.4~V \leq V_{\text{DD}} < 3.3~V,$	20 MHz < fмск \leq 24 MHz	72/fмск		ns
		$1.6~V \leq V_b \leq 2.0~V$	16 MHz < fмск \leq 20 MHz	6 4/fмск		ns
			8 MHz < fмск \leq 16 MHz	52/ fмск		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	32/fмск		ns
			fмск \leq 4 MHz	20/fмск		ns
SCKp high-/low-level	tкн2, tкL2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,~2.7$	$7~V \leq V_{b} \leq 4.0~V$	tkcy2/2 – 24		ns
width		$2.7~V \leq V_{\text{DD}} < 4.0~V,~2.3~V \leq V_{\text{b}} \leq 2.7~V$		tkcy2/2 – 36		ns
		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V}, 1.0 \text{ V}$	$6~V \leq V_{b} \leq 2.0~V$	tkcy2/2 - 100		ns
SIp setup time	tsık2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,~2.7~V \leq V_{\text{DD}} \leq 4.0~V$		1/fмск + 40		ns
(to SCKp↑) Note 2		$2.7 \; V \leq V_{\text{DD}} < 4.0 \; V, \; 2.3 \; V \leq V_{b} \leq 2.7 \; V$		1/fмск + 40		ns
		$2.4~V \leq V_{\text{DD}} < 3.3~V,~1.6~V \leq V_{\text{DD}} \leq 2.0~V$		1/fмск + 60		ns
SIp hold time (from SCKp↑) ^{№ote 3}	tksi2			1/fмск + 62		ns
Delay time from SCKp \downarrow to	√ to tksoz	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,~2.7$	$7~V \leq V_b \leq 4.0~V,$		2/fмск +	ns
SOp output Note 4		$C_b = 30 \text{ pF}, \text{ R}_b = 1.4 \text{ km}$		240		
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V}$		2/fмск +	ns	
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ ks}$		428		
		$2.4 \text{ V} \le \text{V}_{\text{DD}}$ < 3.3 V , 1.0 C		2/fмск +	ns	
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ kg}$	2		1146	

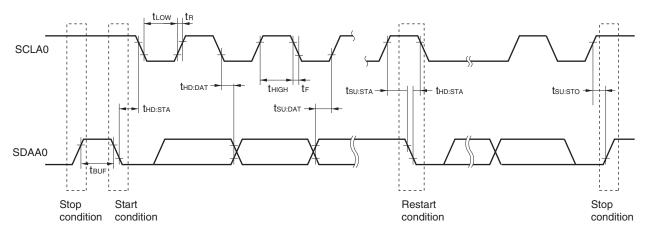
Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Cautions 1. Select the TTL input buffer for the SIp and SCKp pins and the N-ch open drain output (Vbb tolerance) mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.

3.5.2 Serial interface IICA

Parameter	Symbol	Conditions	HS (high-speed main) mode			Unit	
			Standa	rd Mode	Fast	Mode	
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode: fclk≥ 3.5 MHz			0	400	kHz
		Normal mode: fcLK≥ 1 MHz	0	100			kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μS
Hold time ^{Note 1}	thd:sta		4.0		0.6		μS
Hold time when SCLA0 = "L"	t∟ow		4.7		1.3		μS
Hold time when SCLA0 = "H"	tніgн		4.0		0.6		μS
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission)Note 2	thd:dat		0	3.45	0	0.9	μS
Setup time of stop condition	tsu:sto		4.0		0.6		μS
Bus-free time	t BUF		4.7		1.3		μS


$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- **Caution** Only in the 30-pin products, the values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

 $\label{eq:cb} \begin{array}{ll} \mbox{Normal mode:} & C_b = 400 \mbox{ pF}, \mbox{ Rb} = 2.7 \mbox{ } k\Omega \\ \mbox{Fast mode:} & C_b = 320 \mbox{ pF}, \mbox{ Rb} = 1.1 \mbox{ } k\Omega \end{array}$

IICA serial transfer timing

<R>

			Description			
Rev. Date		Page Summary				
2.00	Sep 06, 2013	55	Modification of description and Notes 3 and 4 in 2.6.1 (3)			
		56	Modification of description and Notes 3 and 4 in 2.6.1 (4)			
		57	Modification of table in 2.6.2 Temperature sensor/internal reference voltage characteristics			
		57	Modification of table and Note in 2.6.3 POR circuit characteristics			
		58	Modification of table in 2.6.4 LVD circuit characteristics			
		59	Modification of table of LVD detection voltage of interrupt & reset mode			
		59	Modification of number and title to 2.6.5 Power supply voltage rising slope characteristics			
		61	Modification of table, figure, and Remark in 2.10 Timing of Entry to Flash Memory			
			Programming Modes			
		62 to 103	Addition of products of industrial applications (G: $T_A = -40$ to $+105^{\circ}C$)			
		104 to 106	Addition of products of industrial applications (G: $T_A = -40$ to $+105^{\circ}C$)			
2.10	Mar 25, 2016	6	Modification of Figure 1-1 Part Number, Memory Size, and Package of RL78/G12			
		7	Modification of Table 1-1 List of Ordering Part Numbers			
		8	Addition of product name (RL78/G12) and description (Top View) in 1.4.1 20-pin products			
		9	Addition of product name (RL78/G12) and description (Top View) in 1.4.2 24-pin products			
		10	Addition of product name (RL78/G12) and description (Top View) in 1.4.3 30-pin products			
		15	Modification of description in 1.7 Outline of Functions			
		16	Modification of description, and addition of target products			
		52	Modification of note 2 in 2.5.2 Serial interface IICA			
		60	Modification of title and note, and addition of caution in 2.7 RAM Data Retention Characteristics			
		60	Modification of conditions in 2.8 Flash Memory Programming Characteristics			
		62	Modification of description, and addition of target products and remark			
		94	Modification of note 2 in 3.5.2 Serial interface IICA			
		102	Modification of title and note in 3.7 RAM Data Retention Characteristics			
		102	Modification of conditions in 3.8 Flash Memory Programming Characteristics			
		104 to 106	Addition of package name			

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.