

Welcome to E-XFL.COM

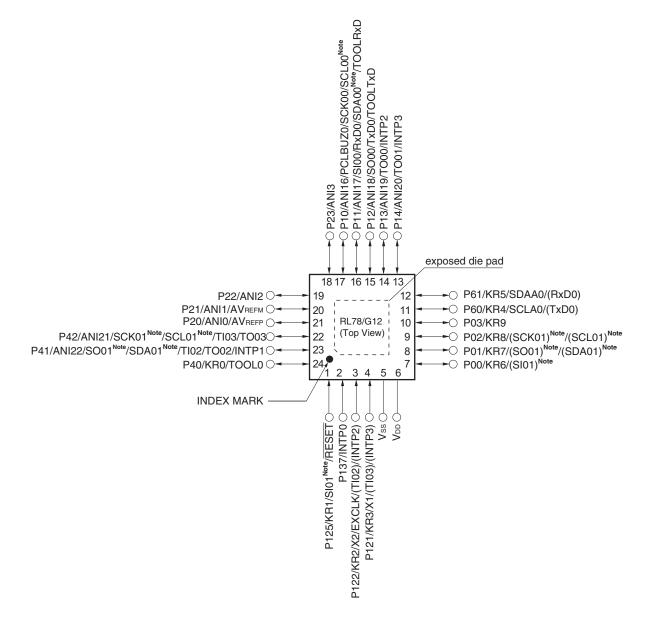
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

XFI


Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I²C, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-WFQFN Exposed Pad
Supplier Device Package	24-HWQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10379ana-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.4.2 24-pin products

<R> • 24-pin plastic HWQFN (4 × 4 mm, 0.5 mm pitch)

Note Provided only in the R5F102 products.

Remarks 1. For pin identification, see 1.5 Pin Identification.

- 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR).
- 3. It is recommended to connect an exposed die pad to Vss.

1.7 Outline of Functions

This outline describes the function at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

	Item	20-	-pin	24	-pin	30-	pin	
		R5F1026x	R5F1036x	R5F1027x	R5F1037x	R5F102Ax	R5F103Ax	
Code flas	h memory	2 to 16	KB ^{Note 1}		4 to 1	5 KB 2 KB – 512 B to 2KB t (EXCLK)		
Data flash	n memory	2 KB	-	2 KB	-	2 KB	-	
RAM		256 B to	o 1.5 KB	512 B to	o 1.5 KB	512 B	to 2KB	
Address s	space			11	MB			
Main system clock	High-speed system clock	HS (High-spee HS (High-spee	ed main) mode : ed main) mode :	n, external main s 1 to 20 MHz (Vc 1 to 16 MHz (Vc 1 to 8 MHz (Vc	D = 2.7 to 5.5 V D = 2.4 to 5.5 V	,		
	High-speed on-chip oscillator clock	HS (High-speed main) mode : 1 to 24 MHz ($V_{DD} = 2.7$ to 5.5 V), HS (High-speed main) mode : 1 to 16 MHz ($V_{DD} = 2.4$ to 5.5 V), LS (Low-speed main) mode : 1 to 8 MHz ($V_{DD} = 1.8$ to 5.5 V)						
Low-spee	d on-chip oscillator clock	chip oscillator clock 15 kHz (TYP)						
General-p	ourpose register	(8-bit register	\times 8) \times 4 banks					
Minimum	instruction execution time	0.04167 μ s (High-speed on-chip oscillator clock: f _{IH} = 24 MHz operation)						
		0.05 <i>μ</i> s (High-	speed system c	lock: f _{MX} = 20 MH	Iz operation)			
Instruction	n set	Data transfer (8/16 bits)						
		Adder and subtractor/logical operation (8/16 bits)						
		Multiplication (8 bits × 8 bits)						
	1	Rotate, barre	el shift, and bit n	nanipulation (set	, reset, test, and	Boolean operat	ion), etc.	
I/O port	Total	1	8	2	2	2	6	
	CMOS I/O	(N-ch C	2 D.D. I/O nd voltage]: 4)	(N-ch C	6 D.D. I/O id voltage]: 5)	(N-ch C	D.D. I/O	
	CMOS input		4		4	;	3	
	N-ch open-drain I/O (6 V tolerance)			:	2			
Timer	16-bit timer		4 cha	annels		8 cha	nnels	
	Watchdog timer			1 cha	annel			
	12-bit Interval timer			1 cha	annel			
	Timer output	4 channels (PWM outputs: 3 ^{Note 3})			8 cha (PWM outpu			

Notes 1. The self-programming function cannot be used in the R5F10266 and R5F10366.

2. The maximum number of channels when PIOR0 is set to 1.

3. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves). (See **6.9.3 Operation as multiple PWM output function**.)

Caution When the flash memory is rewritten via a user program, the code flash area and RAM area are used because each library is used. When using the library, refer to RL78 Family Flash Self Programming Library Type01 User's Manual and RL78 Family Data Flash Library Type04 User's Manual.

TA = -40 10 + 00 C,	1.0 V \(\sigma\)	/DD ≤ 5.5 V, Vss = 0 V)			1	1	(2/4
Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Dutput current, low ^{Note 1}	lol1	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42 30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147				20.0 Note 2	mA
		Per pin for P60, P61				15.0 Note 2	mA
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			60.0	mA
		Total of P40 to P42	$2.7~V \leq V_{\text{DD}} < 4.0~V$			9.0	mA
	30-pin products: Total of P00, P01, P40, P120 (When duty \leq 70% ^{Note 3})	$1.8~V \leq V_{\text{DD}} < 2.7~V$			1.8	mA	
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			80.0	mA
		Total of P00 to P03 ^{Note 4} ,	$2.7~V \leq V_{\text{DD}} < 4.0~V$			27.0	mA
		P10 to P14, P60, P61 30-pin products: Total of P10 to P17, P30, P31, P50, P51, P60, P61, P147 (When duty \leq 70% ^{Note 3})	$1.8~V \leq V_{\text{DD}} < 2.7~V$			5.4	mA
		Total of all pins (When duty $\leq 70\%^{Note 3}$)				140	mA
	IOL2	Per pin for P20 to P23				0.4	mA
		Total of all pins				1.6	mA

(0)

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.

2. However, do not exceed the total current value.

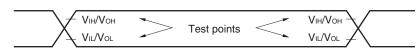
3. The output current value under conditions where the duty factor \leq 70%.

If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).

• Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and $I_{OL} = 10.0 \text{ mA}$

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \cong 8.7$ mA


However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

- 4. 24-pin products only.
- Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.5 Peripheral Functions Characteristics

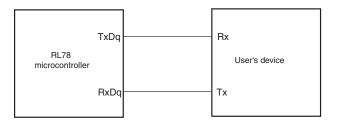
AC Timing Test Point

2.5.1 Serial array unit

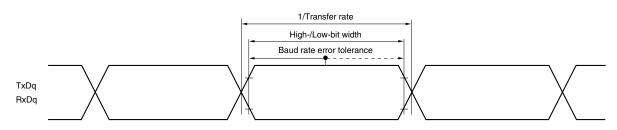
(1) During communication at same potential (UART mode) ($T_A = -40$ to $+85^{\circ}$ C, 1.8 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

(1A = 10.10	,						
Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	
Transfer rate				fмск/6		fмск/6	bps
Note 1		Theoretical value of the maximum transfer rate $f_{\text{CLK}} = f_{\text{MCK}}{}^{\text{Note2}}$		4.0		1.3	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.


2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are: HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 5.5 V)

16 MHz (2.4 V
$$\leq$$
 VDD \leq 5.5 V)


LS (low-speed main) mode: 8 MHz (1.8 V
$$\leq$$
 VDD \leq 5.5 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

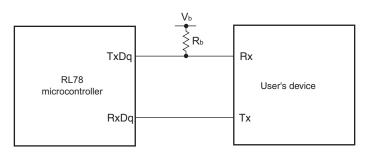
UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 2), g: PIM, POM number (g = 0, 1)

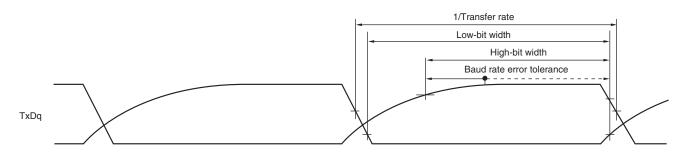
2. fMCK: Serial array unit operation clock frequency

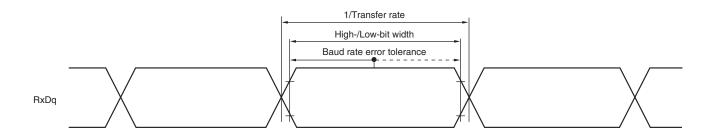
(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))


Parameter	Symbol	Conc	litions	HS (high main)		LS (low-sp Mo	eed main) de	Unit	
				MIN.	MAX.	MIN.	MAX.		
SCKp cycle time Note4	t ксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	20 MHz < fмск	8/f мск		-		ns	
			fмск ≤ 20 MHz	6/fмск		6/fмск		ns	
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	16 MHz < fмск	8/fмск		-		ns	
			fмск ≤ 16 MHz	6/fмск		6/fмск		ns	
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		6/fмск		6/fмск		ns	
				and 500		and 500			
		$1.8~V \le V_{\text{DD}} \le 5.5~V$		-		6/fмск		ns	
						and 750			
SCKp high-/low-level	tкн2,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2-7		tксү2/2-7		ns	
width	tĸ∟2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2-8		tксү2/2-8		ns	
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2–18		tксү2/2-18		ns	
		$1.8~V \leq V_{\text{DD}} \leq 5.5~V$		-		tксү2/2-18	8 n	ns	
SIp setup time (to SCKp↑) ^{Note 1}	tsık2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск + 20		1/fмск + 30		ns	
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск + 30		1/fмск + 30		ns	
		$1.8~V \le V_{\text{DD}} \le 5.5~V$		-		1/fмск + 30		ns	
SIp hold time (from SCKp↑) ^{Note 2}	tksi2			1/f _{мск} + 31		1/fмск + 31		ns	
Delay time from SCKp↓ to	tkso2	C = 30 pF ^{Note4}	$2.7~V \le V_{\text{DD}} \le 5.5~V$		2/fмск + 44		2/fмск + 110	ns	
SOp output Note 3				$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		2/fмск + 75		2/fмск + 110	ns
			$1.8~V \leq V_{\text{DD}} \leq 5.5~V$		-		2/fмск + 110	ns	

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (T_A = -40 to +85°C, 1.8 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)


- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- **Caution** Select the normal input buffer for the SIp and SCKp pins and the normal output mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).



UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- **Remarks 1.** R_b[Ω]: Communication line (TxDq) pull-up resistance, C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage
 - **2.** q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)
 - fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 - m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))
 - **4.** UART0 of the 20- and 24-pin products supports communication at different potential only when the peripheral I/O redirection function is not used.

(7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCK00... internal clock output, corresponding CSI00 only)

Parameter	Symbol		Conditions	HS (hig main)	•	LS (low main)		Unit
				MIN.	MAX.	MIN.	MAX.	
SCK00 cycle time	tксү1	tксү1 ≥ 2/fc LК		200		1150		ns
			$\begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 20 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	300		1150		ns
SCK00 high-level width	tкнı	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V, \\ \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$		tксү1/2 – 50		tксү1/2– 50		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 100 \text{ pF}$	0 V, 2.3 V ≤ V _b ≤ 2.7 V, $.2.7$ kΩ	tксү1/2 – 120		tксү1/2 – 120		ns
SCK00 low-level width	tĸ∟ı	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.8 \\ C_{b} = 20 \ pF, \ R_{b} = \end{array}$	5 V, 2.7 V \leq Vb \leq 4.0 V, \approx 1.4 k\Omega	tксү1/2 – 7		tксү1/2 – 50		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		tксү1/2 – 10		tксү1/2 – 50		ns
SI00 setup time (to SCK00↑) ^{Note 1}	tsıĸı	$\label{eq:VDD} \begin{array}{l} 4.0 \mbox{ V} \leq V_{DD} \leq 5.5 \mbox{ V}, \mbox{ 2.7 } \mbox{ V} \leq V_b \leq 4.0 \mbox{ V}, \\ \\ C_b = 20 \mbox{ pF}, \mbox{ R}_b = 1.4 \mbox{ k} \Omega \end{array}$		58		479		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 100 \text{ F}$	0 V, 2.3 V ≤ V _b ≤ 2.7 V, \approx 2.7 kΩ	121		479		ns
SI00 hold time (from SCK00↑) ^{Note 1}	tksi1	$\label{eq:VD} \begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ \text{V}, \ 2.7 \ \text{V} \leq V_{b} \leq 4.0 \ \text{V}, \\ \\ C_{b} = 20 \ \text{pF}, \ R_{b} = 1.4 \ \text{k}\Omega \end{array}$		10		10		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 100 \text{ F}$	0 V, 2.3 V ≤ V _b ≤ 2.7 V, $.2.7$ kΩ	10		10		ns
Delay time from SCK00↓ to SO00 output ^{Note 1}	tkso1	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.8$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 100 \text{ F}$	5 V, 2.7 V \leq Vb \leq 4.0 V, \approx 1.4 k\Omega		60		60	ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 100 \text{ F}$	0 V, 2.3 V ≤ V _b ≤ 2.7 V, : 2.7 kΩ		130		130	ns
SI00 setup time (to SCK00↓) ^{Note 2}	tsıĸı	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.8$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 100 \text{ F}$	5 V, 2.7 V \leq Vb \leq 4.0 V, \approx 1.4 k\Omega	23		110		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 100 \text{ pF}$	0 V, 2.3 V \leq V _b \leq 2.7 V, : 2.7 kΩ	33		110		ns
SI00 hold time (from SCK00↓) ^{Note 2}	tksi1	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.8$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 100 \text{ F}$	5 V, 2.7 V \leq Vb \leq 4.0 V, : 1.4 k\Omega	10		10		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 100 \text{ F}$	0 V, 2.3 V \leq V _b \leq 2.7 V, : 2.7 kΩ	10		10		ns
Delay time from SCK00↑ to SO00 output ^{Note 2}	t _{KSO1}	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.8$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 10 \text{ pF}$	5 V, 2.7 V \leq V_b \leq 4.0 V, : 1.4 k\Omega		10		10	ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ C}_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 10 \text{ pF}$	$\label{eq:Vb} \begin{array}{l} V, \ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ \mathfrak{c}. \ 2.7 \ k\Omega \end{array}$		10		10	ns

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

(Notes, Caution, and Remarks are listed on the next page.)

- **Notes 1.** When DAP00 = 0 and CKP00 = 0, or DAP00 = 1 and CKP00 = 1
 - **2.** When DAP00 = 0 and CKP00 = 1, or DAP00 = 1 and CKP00 = 0.
- Caution Select the TTL input buffer for the SI00 pin and the N-ch open drain output (V_{DD} tolerance) mode for the SO00 pin and SCK00 pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b [Ω]:Communication line (SCK00, SO00) pull-up resistance, C_b [F]: Communication line (SCK00, SO00) load capacitance, V_b [V]: Communication line voltage
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register 0 (SPS0) and the CKS00 bit of serial mode register 00 (SMR00).)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3)

Parameter	Symbol		Conditions	HS (high-spe Mode	,	LS (low-spee Mode	,	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkCY1	$t_{KCY1} \geq 4/f_{CLK}$	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	300		1150		ns
			$2.7~V \leq V_b \leq 4.0~V,$					
			$C_{b}=30 \text{ pF}, \text{R}_{b}=1.4 \text{k}\Omega$					
			$2.7~V \leq V_{\text{DD}} < 4.0~V,$	500		1150		ns
			$2.3~V \leq V_b \leq 2.7~V,$					
			$C_{b}=30 \text{ pF}, \text{R}_{b}=2.7 \text{k}\Omega$					
			$1.8~V \leq V_{\text{DD}} < 3.3~V,$	1150		1150		ns
			1.6 V \leq V_b \leq 2.0 V $^{\text{Note}}$,					
			C_b = 30 pF, R_b = 5.5 k Ω					
SCKp high-level width	tкнı	$\label{eq:VDD} \begin{array}{l} 4.0 \mbox{ V} \leq V_{DD} \leq 5.5 \mbox{ V}, \mbox{ 2.7 } \mbox{ V} \leq V_b \leq 4.0 \mbox{ V}, \\ \\ C_b = 30 \mbox{ pF}, \mbox{ R}_b = 1.4 \mbox{ k} \Omega \end{array}$		tксү1/2 –75		tксү1/2-75		ns
		$2.7 \text{ V} \leq V_{\text{DD}} <$	$4.0~V,~2.3~V \le V_{b} \le 2.7~V,$	tkcy1/2-170		tксү1/2–170		ns
		$C_b = 30 \text{ pF}, \text{ R}$	b = 2.7 kΩ					
		$1.8 \text{ V} \leq \text{V}_{\text{DD}}$ <	3.3 V, 1.6 V \leq V_b \leq 2.0 V $^{\text{Note}}$,	tксү1/2 –458		tксү1/2-458		ns
		$C_b = 30 \text{ pF}, \text{ R}$	$h_{b} = 5.5 \text{ k}\Omega$					
SCKp low-level width	tĸ∟1	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V, 2.7 V \leq V_b \leq 4.0 V,	tксү1/2 −12		tксү1/2–50		ns
		$C_b = 30 \text{ pF}, \text{ R}$	b = 1.4 kΩ					
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} <$	$4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$	tксү1/2-18		tксү1/2–50		ns
		$C_b=30 \text{ pF}, \text{R}_b=2.7 \text{k} \Omega$						
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} <$	3.3 V, 1.6 V \leq V_b \leq 2.0 V $^{\text{Note}},$	tксү1/2 –50		tксү1/2–50		ns
		$C_{b} = 30 \text{ pF}, \text{ R}$	$h_{\rm b} = 5.5 \ {\rm k}\Omega$					

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

 $\label{eq:Note} \textbf{Note} \quad \textbf{Use it with } V_{\text{DD}} \geq V_{\text{b}}.$

- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.
- **Remarks 1.** R_b [Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b [F]: Communication line (SCKp, SOp) load capacitance, V_b [V]: Communication line voltage
 - **2.** p: CSI number (p = 00, 20)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3)

Parameter	Symbol	Conditions	、 、	HS (high-speed main) Mode		v-speed Mode	Unit
			MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) ^{Note 1}	tsıkı	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$	81		479		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	177		479		ns
			479		479		ns
SIp hold time (from SCKp↑) ^{Note 1}	tksii		19		19		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	19		19		ns
		$\label{eq:VD} \begin{split} 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V^{\text{Note 2}}, \\ C_{b} = 30 \ \text{pF}, \ R_{b} = 5.5 \ \text{k}\Omega \end{split}$	19		19		ns
Delay time from SCKp↓ to	tkso1	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$		100		100	ns
SOp output Note 1		$\label{eq:VDD} \begin{split} 2.7 \ V &\leq V_{DD} < 4.0 \ V, \ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 30 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$		195		195	ns
		$\label{eq:VDD} \begin{split} 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V^{\text{Note 2}}, \\ C_{b} = 30 \ \text{pF}, \ R_{b} = 5.5 \ \text{k}\Omega \end{split}$		483		483	ns

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

2. Use it with $V_{DD} \ge V_b$.

(Cautions and Remarks are listed on the next page.)

Parameter	Symbol	C	onditions	HS (high-spo Mod	,	LS (low-spe Mod		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	t ксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	20 MHz < fmck \leq 24 MHz	12/fмск		-		ns
		$2.7~V \leq V_b \leq 4.0~V$	8 MHz < fмск ≤ 20 MHz	10/fмск		-		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	8/fмск		16/fмск		ns
			fмск \leq 4 MHz	6/fмск		10/f мск		ns
		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	20 MHz < fмск \leq 24 MHz	16/fмск		I		ns
		$2.3~V \leq V_b \leq 2.7~V$	16 MHz < fмск \leq 20 MHz	14/fмск		ļ		ns
			8 MHz < fmck \leq 16 MHz	12/fмск		I		ns
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	8/fмск		16/f мск		ns
			fмск ≤ 4 MHz	6/fмск		10/f мск		ns
		$1.8~V \leq V_{\text{DD}} < 3.3~V,$	20 MHz < fмск \leq 24 MHz	36/fмск		I		ns
		$\begin{array}{l} 1.6 \ V \leq V_b \leq 2.0 \ V \\ _{Note \ 2} \end{array}$	16 MHz < fмск \leq 20 MHz	32/fмск		ļ		ns
			8 MHz < fmck \leq 16 MHz	26/f мск		ļ		ns
			4 MHz < fмск ≤ 8 MHz	16/fмск		16/fмск		ns
			fмск \leq 4 MHz	10/fмск		10/f мск		ns
SCKp high-/low-level	tкн2,	$4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; V, \; 2.7 \; V \leq V_{\text{b}} \leq 4.0 \; V$		tксү2/2 – 12		tксү2/2 – 50		ns
width	tĸl2	$2.7~V \leq V_{\text{DD}} < 4.0~V,$	$2.3~V \leq V_{b} \leq 2.7~V$	tkcy2/2 - 18		tксү2/2 – 50		ns
		$1.8~V \leq V_{\text{DD}} < 3.3~V,$	$1.6~V \leq V_{b} \leq 2.0~V^{\text{Note 2}}$	tkcy2/2 - 50		tксү2/2 – 50	МАХ. МАХ. МАХ.	ns
SIp setup time	tsik2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	$2.7~V \leq V_{\text{DD}} \leq 4.0~V$	1/fмск + 20		1/fмск + 30		ns
(to SCKp↑) ^{Note 3}		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	$2.3~V \leq V_{\text{b}} \leq 2.7~V$	1/fмск + 20		1/fмск + 30		ns
		$1.8~V \leq V_{\text{DD}} < 3.3~V,$	$1.6~V \leq V_{\text{DD}} \leq 2.0~V^{\text{Note 2}}$	1/fмск + 30		1/fмск + 30	2/fмск + 573 2/fмск + 573 2/fмск +	ns
SIp hold time (from SCKp↑) ^{Note 4}	tksi2			1/fмск + 31		1/fмск + 31		ns
Delay time from	tĸso2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	$2.7~V \leq V_b \leq 4.0~V,$		2/fмск +		2/fмск +	ns
SCKp↓ to SOp		$C_b = 30 \text{ pF}, \text{ R}_b = 1.4$	kΩ		120		573	
output Note 5		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	$2.3~V \leq V_{b} \leq 2.7~V,$		2/fмск +		2/fмск +	ns
		$C_b = 30 \text{ pF}, \text{ R}_b = 2.7$	kΩ		214		573	
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V},$	$1.6~V \leq V_{b} \leq 2.0~V^{\text{Note 2}},$		2/fмск +		2/fмск +	ns
		C _b = 30 pF, R _b = 5.5	kΩ		573		573	

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) ($T_A = -40$ to $+85^{\circ}$ C, 1.8 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

 $\textbf{2.} \quad \textbf{Use it with } V_{\text{DD}} \geq V_{\text{b}}.$

- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Cautions 1. Select the TTL input buffer for the SIp and SCKp pins and the N-ch open drain output (Vbb tolerance) mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For ViH and ViL, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.

(3) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V_{ss} (ADREFM = 0), target pin: ANI0 to ANI3, ANI16 to ANI22, internal reference voltage, and temperature sensor output voltage

Parameter	Symbol	Condition	าร	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution			1.2	±7.0	LSB
					1.2	$\pm 10.5^{\text{Note 3}}$	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V\text{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI0 to ANI3, ANI16 to ANI22	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μS
		ANIT6 to ANI22	$1.8~V \leq V \text{DD} \leq 5.5~V$	17		39	μS
				57		95	μS
Conversion time	tconv	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: internal reference	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.5625		39	μS
		voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μS
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution				±0.60	%FSR
						±0.85 Note 3	%FSR
Full-scale error ^{Notes 1, 2}	EFS	10-bit resolution				±0.60	%FSR
						±0.85 Note 3	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution				±4.0	LSB
						±6.5 Note 3	LSB
Differential linearity error Note 1	DLE	10-bit resolution				±2.0	LSB
						±2.5 Note 3	LSB
Analog input voltage	VAIN	ANI0 to ANI3, ANI16 to ANI2	2	0		VDD	V
		Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, HS (high	Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)				V
		Temperature sensor output v (2.4 V \leq VDD \leq 5.5 V, HS (high	VTMPS25 Note 4			V	

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{DD}, \text{ Reference voltage (-)} = \text{V}_{SS})$

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

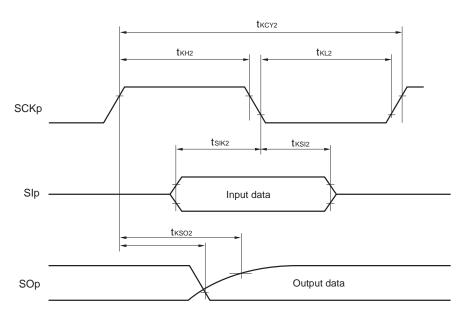
- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When the conversion time is set to 57 μs (min.) and 95 μs (max.).
- 4. Refer to 28.6.2 Temperature sensor/internal reference voltage characteristics.

3.3.2 Supply current characteristics

(1) 20-, 24-pin products

<u>(1A = 10 to</u>	1100 0,		<u> </u>	•••)						(""")
Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply		Operating	HS (High-speed	$f_{\text{IH}} = 24 \text{ MHz}^{\text{Note 3}}$	Basic	$V_{DD} = 5.0 V$		1.5		mA
current ^{Note 1}		mode	main) mode ^{Note 4}		operation	VDD = 3.0 V		1.5		
					Normal	$V_{DD} = 5.0 V$		3.3	5.3	mA
					operation	$V_{DD} = 3.0 V$		3.3	5.3	
				$f_{\text{IH}} = 16 \text{ MHz}^{\text{Note 3}}$		$V_{DD} = 5.0 V$		2.5	3.9	mA
	f _{MX} = 20 MHz ^{Note 2} ,		$V_{DD} = 3.0 V$		2.5	3.9				
			Square wave input		2.8	4.7	mA			
				$V_{DD} = 5.0 V$		Resonator connection		3.0	4.8	
				$f_{MX} = 20 \text{ MHz}^{Note 2},$		Square wave input		2.8	4.7	mA
				VDD = 3.0 V		Resonator connection		3.0	4.8	
	$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		1.8	2.8	mA			
		,	Vdd = 5.0 V		Resonator connection		1.8	2.8		
				$f_{MX} = 10 \text{ MHz}^{Note 2}$,		Square wave input		1.8	2.8	mA
				$V_{DD} = 3.0 V$		Resonator connection		1.8	2.8	

Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.


- 2. When high-speed on-chip oscillator clock is stopped.
- **3.** When high-speed system clock is stopped
- 4. Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode: $V_{DD} = 2.7$ V to 5.5 V @1 MHz to 24 MHz V_{DD} = 2.4 V to 5.5 V @1 MHz to 16 MHz

- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$.

(1/2)

CSI mode serial transfer timi ng (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

3.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

 $(T_A = 40 \text{ to } +105 \text{ G}, \text{VPDR } \text{ dVDD } \text{ d5.5 V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection supply voltage	VLVD0	Power supply rise time	3.90	4.06	4.22	V
		Power supply fall time	3.83	3.98	4.13	V
	VLVD1	Power supply rise time	3.60	3.75	3.90	V
		Power supply fall time	3.53	3.67	3.81	V
	VLVD2	Power supply rise time	3.01	3.13	3.25	V
		Power supply fall time	2.94	3.06	3.18	V
	VLVD3	Power supply rise time	2.90	3.02	3.14	V
		Power supply fall time	2.85	2.96	3.07	V
	VLVD4	Power supply rise time	2.81	2.92	3.03	V
		Power supply fall time	2.75	2.86	2.97	V
	VLVD5	Power supply rise time	2.70	2.81	2.92	V
		Power supply fall time	2.64	2.75	2.86	V
	VLVD6	Power supply rise time	2.61	2.71	2.81	V
		Power supply fall time	2.55	2.65	2.75	V
	VLVD7	Power supply rise time	2.51	2.61	2.71	V
		Power supply fall time	2.45	2.55	2.65	V
Minimum pulse width	tLw		300			ß
Detection delay time					300	ß

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3)

Parameter	Symbol	Conditions	HS (high-spee	Unit	
			MIN.	MAX.	
SIp setup time (to SCKp↑) _{Note}	tsiki	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 1.4 \ k\Omega \end{array}$	162		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$	354		ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 5.5 \ k\Omega \end{array}$	958		ns
Slp hold time (from SCKp↑) ^{Note}	tksii	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$	38		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$	38		ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	38		ns
Delay time from SCKp↓ to SOp output ^{Note}	tkso1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$		200	ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$		390	ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 5.5 \ k\Omega \end{array}$		966	ns

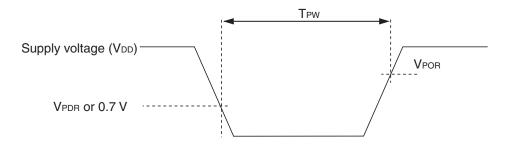
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

Note When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

(Cautions and Remarks are listed on the next page.)

3.6.2 Temperature sensor/internal reference voltage characteristics

		/ \ 				
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.50	V
Temperature coefficient	Fvtmps	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tамр		5			μs


(T_A = -40 to $+105^{\circ}$ C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, HS (high-speed main) mode

3.6.3 POR circuit characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.45	1.51	1.57	V
	VPDR	Power supply fall time	1.44	1.50	1.56	V
Minimum pulse width Note	TPW		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

		Description			
Rev.	Date	Page	Summary		
2.00 Sep 06, 2013		55	Modification of description and Notes 3 and 4 in 2.6.1 (3)		
		56	Modification of description and Notes 3 and 4 in 2.6.1 (4)		
		57	Modification of table in 2.6.2 Temperature sensor/internal reference voltage characteristics		
		57	Modification of table and Note in 2.6.3 POR circuit characteristics		
		58	Modification of table in 2.6.4 LVD circuit characteristics		
		59	Modification of table of LVD detection voltage of interrupt & reset mode		
		59	Modification of number and title to 2.6.5 Power supply voltage rising slope characteristics		
		61	Modification of table, figure, and Remark in 2.10 Timing of Entry to Flash Memory		
			Programming Modes		
		62 to 103	Addition of products of industrial applications (G: $T_A = -40$ to $+105^{\circ}C$)		
		104 to 106	Addition of products of industrial applications (G: $T_A = -40$ to $+105^{\circ}C$)		
2.10	Mar 25, 2016	6	Modification of Figure 1-1 Part Number, Memory Size, and Package of RL78/G12		
		7	Modification of Table 1-1 List of Ordering Part Numbers		
		8	Addition of product name (RL78/G12) and description (Top View) in 1.4.1 20-pin products		
		9	Addition of product name (RL78/G12) and description (Top View) in 1.4.2 24-pin products		
		10	Addition of product name (RL78/G12) and description (Top View) in 1.4.3 30-pin products		
		15	Modification of description in 1.7 Outline of Functions		
		16	Modification of description, and addition of target products		
		52	Modification of note 2 in 2.5.2 Serial interface IICA		
		60	Modification of title and note, and addition of caution in 2.7 RAM Data Retention Characteristics		
		60	Modification of conditions in 2.8 Flash Memory Programming Characteristics		
		62	Modification of description, and addition of target products and remark		
		94	Modification of note 2 in 3.5.2 Serial interface IICA		
		102	Modification of title and note in 3.7 RAM Data Retention Characteristics		
		102	Modification of conditions in 3.8 Flash Memory Programming Characteristics		
		104 to 106	Addition of package name		

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.