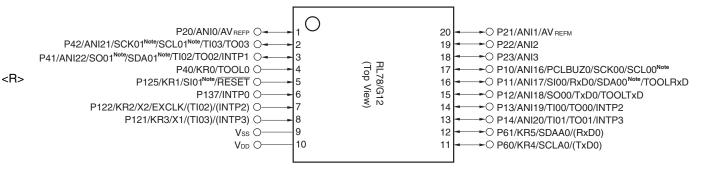


Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	12KB (12K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-WFQFN Exposed Pad
Supplier Device Package	24-HWQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10379ana-w5

RL78/G12 1. OUTLINE

- 1.4 Pin Configuration (Top View)
- 1.4.1 20-pin products

• 20-pin plastic LSSOP (4.4×6.5 mm, 0.65 mm pitch)

Note Provided only in the R5F102 products.

- Remarks 1. For pin identification, see 1.5 Pin Identification.
 - 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR).

(2/4)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	lol1	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42				20.0 Note 2	mA
		30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147					
		Per pin for P60, P61				15.0 Note 2	mA
		20-, 24-pin products:	$4.0~V \leq V_{DD} \leq 5.5~V$			60.0	mA
		Total of P40 to P42	$2.7~V \leq V_{DD} < 4.0~V$			9.0	mA
		30-pin products: Total of P00, P01, P40, P120 (When duty ≤ 70% Note 3)	1.8 V ≤ V _{DD} < 2.7 V			1.8	mA
		20-, 24-pin products:	$4.0~V \leq V_{DD} \leq 5.5~V$			80.0	mA
		Total of P00 to P03 ^{Note 4} ,	$2.7~V \leq V_{DD} < 4.0~V$			27.0	mA
		P10 to P14, P60, P61 30-pin products: Total of P10 to P17, P30, P31, P50, P51, P60, P61, P147 (When duty ≤ 70% Note 3)	1.8 V ≤ V _{DD} < 2.7 V			5.4	mA
		Total of all pins (When duty ≤ 70% Note 3)				140	mA
	lol2	Per pin for P20 to P23				0.4	mA
		Total of all pins				1.6	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.
 - 2. However, do not exceed the total current value.
 - 3. The output current value under conditions where the duty factor $\leq 70\%$.

If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).

- Total output current of pins = $(IoL \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

4. 24-pin products only.

 $(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le VDD \le 5.5 \text{ V}, Vss = 0 \text{ V})$

(3/4)

•		, ,					
Parameter	Symbol	Condition	s	MIN.	TYP.	MAX.	Unit
Input voltage, high	V _{IH1}	Normal input buffer		0.8V _{DD}		V _{DD}	٧
		20-, 24-pin products: P00 to P0 P40 to P42					
		30-pin products: P00, P01, P1 P40, P50, P51, P120, P147	0 to P17, P30, P31,				
	V _{IH2}	TTL input buffer	$4.0~V \leq V_{DD} \leq 5.5~V$	2.2		V _{DD}	٧
		20-, 24-pin products: P10, P11	$3.3~V \leq V_{DD} < 4.0~V$	2.0		V _{DD}	٧
		30-pin products: P01, P10, P11, P13 to P17	1.8 V ≤ V _{DD} < 3.3 V	1.5		V _{DD}	V
	VIH3	P20 to P23		0.7V _{DD}		V _{DD}	٧
	V _{IH4}	P60, P61		0.7V _{DD}		6.0	٧
	V _{IH5}	P121, P122, P125 ^{Note 1} , P137, I	EXCLK, RESET	0.8V _{DD}		V _{DD}	٧
Input voltage, low	VIL1	Normal input buffer	0		0.2V _{DD}	٧	
		20-, 24-pin products: P00 to P0 P40 to P42					
		30-pin products: P00, P01, P10 P40, P50, P51, P120, P147					
	V _{IL2}	TTL input buffer	$4.0~V \leq V_{DD} \leq 5.5~V$	0		0.8	>
		20-, 24-pin products: P10, P11	$3.3~V \leq V_{DD} < 4.0~V$	0		0.5	٧
		30-pin products: P01, P10, P11, P13 to P17	$1.8 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V}$	0		0.32	V
	V _{IL3}	P20 to P23		0		0.3V _{DD}	٧
	V _{IL4}	P60, P61		0		0.3V _{DD}	٧
	V _{IL5}	P121, P122, P125 ^{Note 1} , P137, I	EXCLK, RESET	0		0.2V _{DD}	٧
Output voltage, high	V _{OH1}	20-, 24-pin products: P00 to P03 ^{Note 2} , P10 to P14,	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -10.0 \text{ mA}$	V _{DD} -1.5			V
		P40 to P42 30-pin products:	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -3.0 \text{ mA}$	V _{DD} -0.7			V
	P31, P40, P50	P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120,	$2.7~V \leq V_{DD} \leq 5.5~V,$ $I_{OH1} = -2.0~mA$	V _{DD} -0.6			V
		P147	$1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -1.5 \text{ mA}$	V _{DD} -0.5			V
	V _{OH2}	P20 to P23	Iон₂ = −100 μA	V _{DD} -0.5			V

Notes 1. 20, 24-pin products only.

2. 24-pin products only.

Caution The maximum value of V_{IH} of pins P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24-pin products, and P00, P10 to P15, P17, and P50 for 30-pin products is V_{DD} even in N-ch open-drain mode. High level is not output in the N-ch open-drain mode.

2.3.2 Supply current characteristics

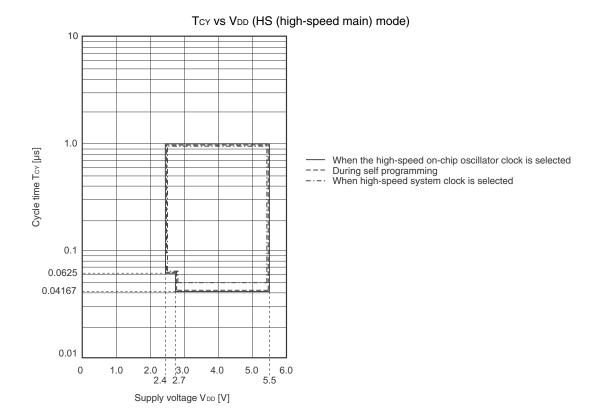
(1) 20-, 24-pin products

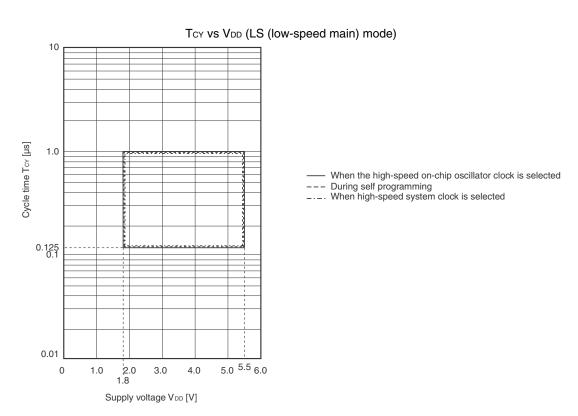
 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit								
Supply	I _{DD1}	Operating	HS(High-speed	f⊩ = 24 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		1.5		mA								
current ^{Note 1}		mode	main) mode Note 4	main) mode Note 4	operation	V _{DD} = 3.0 V		1.5										
	Normal	Normal	V _{DD} = 5.0 V		3.3	5.0	mA											
					operation	V _{DD} = 3.0 V		3.3	5.0									
			fiн = 16 MHz ^{Note 3}	V _{DD} = 5.0 V		2.5	3.7	mA										
						V _{DD} = 3.0 V		2.5	3.7									
			LS(Low-speed	f⊩ = 8 MHz ^{Note 3}		V _{DD} = 3.0 V		1.2	1.8	mA								
			main) mode Note 4	ode ^{Note 4}		V _{DD} = 2.0 V		1.2	1.8									
			HS(High-speed f _{MX} = 20 MHz ^{Note 2} ,		Square wave input		2.8	4.4	mA									
		main) mode [№]	main) mode Note4	$V_{DD} = 5.0 \text{ V}$	V _{DD} = 5.0 V	Resonator connection		3.0	4.6									
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$		Square wave input		2.8	4.4	mA								
				$V_{DD} = 3.0 \text{ V}$ $f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$ $V_{DD} = 5.0 \text{ V}$	$f_{MX} = 10 \text{ MHz}^{Note 2},$	$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	f _{MX} = 10 MHz ^{Note 2} ,	$V_{DD} = 3.0 \text{ V}$	$V_{DD} = 3.0 \text{ V}$		Resonator connection		3.0	4.6	
												Square wave input		1.8	2.6	mA		
							Resonator connection		1.8	2.6								
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$		Square wave input		1.8	2.6	mA								
				$V_{DD} = 3.0 \text{ V}$		Resonator connection		1.8	2.6									
			LS(Low-speed fi	$f_{MX} = 8 \text{ MHz}^{Note 2},$		Square wave input		1.1	1.7	mA								
			main) mode Note 4	V _{DD} = 3.0 V		Resonator connection		1.1	1.7									
				$f_{MX} = 8 \text{ MHz}^{\text{Note 2}},$	f _{MX} = 8 MHz ^{Note 2} ,	f _{MX} = 8 MHz ^{Note 2} ,	f _{MX} = 8 MHz ^{Note 2} ,	f _{MX} = 8 MHz ^{Note 2} ,		Square wave input		1.1	1.7	mA				
				$V_{DD} = 2.0 \text{ V}$		Resonator connection		1.1	1.7									

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator clock is stopped.
 - 3. When high-speed system clock is stopped
 - **4.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.


HS(High speed main) mode: $V_{DD} = 2.7 \text{ V to } 5.5 \text{ V } @ 1 \text{ MHz to } 24 \text{ MHz}$


 $V_{DD} = 2.4 \text{ V to } 5.5 \text{ V } @ 1 \text{ MHz to } 16 \text{ MHz}$

LS(Low speed main) mode: $V_{DD} = 1.8 \text{ V to } 5.5 \text{ V } @ 1 \text{ MHz to } 8 \text{ MHz}$

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fil: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25$ °C.

Minimum Instruction Execution Time during Main System Clock Operation

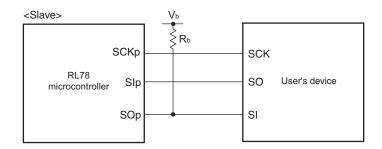
- Remarks 1. p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products.)
 - 2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products.))

(5) During communication at same potential (simplified I²C mode)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

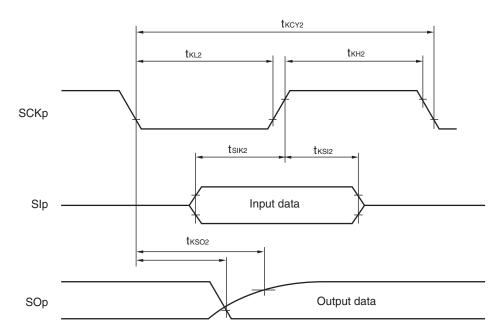
Parameter	Symbol	Conditions	HS (high-speed	main) Mode	Unit
			LS (low-speed	main) Mode	
			MIN.	MAX.	
SCLr clock frequency	fscL	$1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V},$		400 Note 1	kHz
		$C_b=100~pF,~R_b=3~k\Omega$			
		$1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V},$		300 Note 1	kHz
		$C_b=100~pF,~R_b=5~k\Omega$			
Hold time when SCLr = "L"	tLOW	$1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V},$	1150		ns
		$C_b=100~pF,~R_b=3~k\Omega$			
		$1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V},$	1550		ns
		$C_b=100~pF,~R_b=5~k\Omega$			
Hold time when SCLr = "H"	tніgн	$1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V},$	1150		ns
		$C_b=100~pF,~R_b=3~k\Omega$			
		$1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V},$	1550		ns
		$C_b=100~pF,~R_b=5~k\Omega$			
Data setup time (reception)	tsu:dat	$1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V},$	1/fмск + 145 Note 2		ns
		$C_b=100~pF,~R_b=3~k\Omega$			
		$1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V},$	1/fмск + 230 Note 2		ns
		$C_b=100~pF,~R_b=5~k\Omega$			
Data hold time (transmission)	thd:dat	$1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V},$	0	355	ns
		$C_b=100~pF,~R_b=3~k\Omega$			
		$1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V},$	0	405	ns
		$C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$			

- Notes 1. The value must also be equal to or less than fmck/4.
 - 2. Set tsu:DAT so that it will not exceed the hold time when SCLr = "L" or SCLr = "H".


Caution Select the N-ch open drain output (V_{DD} tolerance) mode for SDAr by using port output mode register h (POMh).

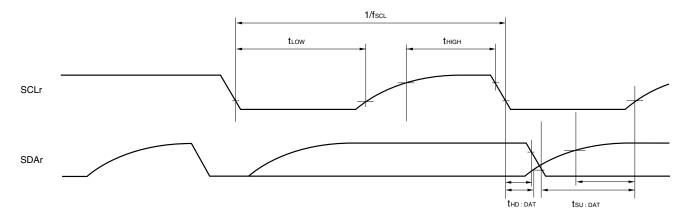
(Remarks are listed on the next page.)

- Notes 1. When DAP00 = 0 and CKP00 = 0, or DAP00 = 1 and CKP00 = 1
 - **2.** When DAP00 = 0 and CKP00 = 1, or DAP00 = 1 and CKP00 = 0.
- Caution Select the TTL input buffer for the SI00 pin and the N-ch open drain output (VDD tolerance) mode for the SO00 pin and SCK00 pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1).


 For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** Rb [Ω]:Communication line (SCK00, SO00) pull-up resistance, Cb [F]: Communication line (SCK00, SO00) load capacitance, Vb [V]: Communication line voltage
 - fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register 0 (SPS0) and the CKS00 bit of serial mode register 00 (SMR00).)

CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** Rb $[\Omega]$: Communication line (SOp) pull-up resistance, Cb [F]: Communication line (SOp) load capacitance, Vb [V]: Communication line voltage
 - 2. p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 10))


CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** Rb $[\Omega]$: Communication line (SDAr, SCLr) pull-up resistance, Cb [F]: Communication line (SDAr, SCLr) load capacitance, Vb [V]: Communication line voltage
 - **2.** r: IIC Number (r = 00, 20)
 - fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 - m: Unit number (m = 0,1), n: Channel number (n = 0)
 - 4. Simplified I²C mode is supported only by the R5F102 products.

3.1 Absolute Maximum Ratings

Absolute Maximum Ratings (TA = 25°C)

Parameter	Symbols		Conditions	Ratings	Unit
Supply Voltage	V _{DD}			-0.5 to + 6.5	V
REGC terminal input voltage Note1	Virego	REGC		-0.3 to +2.8 and -0.3 to V _{DD} + 0.3 _{Note 2}	V
Input Voltage	VII	Other than P60, F	² 61	-0.3 to V _{DD} + 0.3 ^{Note 3}	V
	Vı2	P60, P61 (N-ch o	pen drain)	-0.3 to 6.5	V
Output Voltage	Vo			-0.3 to V _{DD} + 0.3 ^{Note 3}	V
Analog input voltage	Val	20, 24-pin produc	ts: ANI0 to ANI3, ANI16 to ANI22	-0.3 to V _{DD} + 0.3	V
		30-pin products: A	ANIO to ANI3, ANI16 to ANI19	and -0.3 to AVREF(+)+0.3 Notes 3, 4	
Output current, high	І он1	Per pin	Other than P20 to P23	-40	mA
		Total of all pins	All the terminals other than P20 to P23	-170	mA
			20-, 24-pin products: P40 to P42	-70	mA
			30-pin products: P00, P01, P40, P120		
			20-, 24-pin products: P00 to P03 ^{Note 5} , P10 to P14 30-pin products: P10 to P17, P30, P31, P50, P51, P147	-100	mA
	Іон2	Per pin	P20 to P23	-0.5	mA
		Total of all pins		-2	mA
Output current, low	lo _{L1}	Per pin	Other than P20 to P23	40	mA
		Total of all pins	All the terminals other than P20 to P23	170	mA
			20-, 24-pin products: P40 to P42 30-pin products: P00, P01, P40, P120	70	mA
			20-, 24-pin products: P00 to P03 Note 5, P10 to P14, P60, P61 30-pin products: P10 to P17, P30, P31, P50, P51, P60, P61, P147	100	mA
	I _{OL2}	Per pin	P20 to P23	1	mA
		Total of all pins		5	mA
Operating ambient temperature	Та			-40 to +105	°C
Storage temperature	T _{stg}			-65 to +150	°C

Notes 1. 30-pin product only.

- 2. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value determines the absolute maximum rating of the REGC pin. Do not use it with voltage applied.
- 3. Must be 6.5 V or lower.
- **4.** Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.
- 5. 24-pin products only.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

- **2.** AV_{REF}(+): + side reference voltage of the A/D converter.
- 3. Vss: Reference voltage

3.2 Oscillator Characteristics

3.2.1 X1 oscillator characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator /	$2.7~V \leq V_{DD} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal oscillator	2.4 V ≤ V _{DD} < 2.7 V	1.0		8.0	

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator, refer to **5.4 System Clock Oscillator**.

3.2.2 On-chip oscillator characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Oscillators	Parameters	Conc	litions	MIN.	TYP.	MAX.	Unit
Oscillators	Farameters	Conc	intions	IVIIIN.	HIF.	IVIAA.	Offic
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		24	MHz
High-speed on-chip oscillator		R5F102 products	T _A = -20 to +85°C	-1.0		+1.0	%
clock frequency accuracy			T _A = -40 to -20°C	-1.5		+1.5	%
			T _A = +85 to +105°C	-2.0		+2.0	%
Low-speed on-chip oscillator clock frequency	fiL				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H) and bits 0 to 2 of HOCODIV register.

2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

(2/4)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	lo _{L1}	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42 30-pin products:				8.5 Note 2	mA
		Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147					
		Per pin for P60, P61				15.0 Note 2	mA
		20-, 24-pin products:	$4.0~V \leq V_{DD} \leq 5.5~V$			25.5	mA
		20 pip producto:	$2.7~V \leq V_{DD} < 4.0~V$			9.0	mA
			2.4 V ≤ V _{DD} < 2.7 V			1.8	mA
		20-, 24-pin products:	$4.0~V \leq V_{DD} \leq 5.5~V$			40.0	mA
		Total of P00 to P03 ^{Note 4} ,	$2.7~V \leq V_{DD} < 4.0~V$			27.0	mA
		P10 to P14, P60, P61 30-pin products: Total of P10 to P17, P30, P31, P50, P51, P60, P61, P147 (When duty ≤ 70% Note 3)	2.4 V ≤ V _{DD} < 2.7 V			5.4	mA
		Total of all pins (When duty ≤ 70% Note 3)				65.5	mA
	lol2	Per pin for P20 to P23				0.4	mA
		Total of all pins				1.6	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.
 - 2. However, do not exceed the total current value.
 - 3. The output current value under conditions where the duty factor \leq 70%.

If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).

- Total output current of pins = $(IoL \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

4. 24-pin products only.

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(3/4)

Parameter	Symbol	Symbol Conditions			TYP.	MAX.	Unit
Input voltage, high	V _{IH1}	Normal input buffer	MIN. 0.8V _{DD}		V _{DD}	V	
		20-, 24-pin products: P00 to P0 P40 to P42					
		30-pin products: P00, P01, P1 P40, P50, P51, P120, P147					
	V _{IH2}	TTL input buffer	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	2.2		V _{DD}	٧
		20-, 24-pin products: P10, P11	$3.3 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	2.0		V _{DD}	٧
		30-pin products: P01, P10, P11, P13 to P17	2.4 V ≤ V _{DD} < 3.3 V	1.5		V _{DD}	V
	V _{IH3}	Normal input buffer P20 to P23		0.7V _{DD}		V _{DD}	V
	V _{IH4}	P60, P61				6.0	V
	V _{IH5}	P121, P122, P125 ^{Note 1} , P137, EXCLK, RESET		0.8V _{DD}		V _{DD}	V
Input voltage, low	V _{IL1}	Normal input buffer		0		0.2V _{DD}	V
		20-, 24-pin products: P00 to P0 P40 to P42					
		30-pin products: P00, P01, P10 P40, P50, P51, P120, P147					
	V _{IL2}	TTL input buffer	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	0		0.8	٧
		20-, 24-pin products: P10, P11	$3.3 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	0		0.5	٧
		30-pin products: P01, P10, P11, P13 to P17	2.4 V ≤ V _{DD} < 3.3 V	0		0.32	V
	V _{IL3}	P20 to P23		0		0.3V _{DD}	٧
	V _{IL4}	P60, P61		0		0.3V _{DD}	٧
	V _{IL5}	P121, P122, P125 ^{Note 1} , P137, I	EXCLK, RESET	0		0.2V _{DD}	V
Output voltage, high	V _{OH1}	20-, 24-pin products: P00 to P03 ^{Note 2} , P10 to P14,	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ Iон1 = -3.0 mA	V _{DD} -0.7			V
		P40 to P42	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -2.0 \text{ mA}$	V _{DD} -0.6			V
		P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147	$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -1.5 \text{ mA}$	V _{DD} -0.5			V
	V _{OH2}	P20 to P23	Іон2 = -100 μΑ	V _{DD} -0.5			V

Notes 1. 20, 24-pin products only.

2. 24-pin products only.

Caution The maximum value of V_{IH} of pins P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24-pin products, and P00, P10 to P15, P17, and P50 for 30-pin products is V_{DD} even in N-ch open-drain mode. High level is not output in the N-ch open-drain mode.

(1) 20-, 24-pin products

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply current ^{Note 1}	IDD2 Note 2	HALT	HS (High-speed main) mode Note 6		V _{DD} = 5.0 V		440	2230	μА
		mode			V _{DD} = 3.0 V		440	2230	
				$f_{IH} = 16 \text{ MHz}^{\text{Note 4}}$ $V_{DD} = 5.0 \text{ V}$ $V_{DD} = 3.0 \text{ V}$	V _{DD} = 5.0 V		400	1650	μА
						400	1650	0	
				f _{MX} = 20 MHz ^{Note 3} , Square wave input V _{DD} = 5.0 V Resonator connection	Square wave input		280	1900	μA
						450	2000		
				$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		280	1900	μA
				V _{DD} = 3.0 V	Resonator connection		450	2000	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$ $V_{DD} = 5.0 \text{ V}$	Square wave input		190	1010	μА
					Resonator connection		260	1090	
				\\\\-2.0\\\	Square wave input		190	1010	μA
	IDD3 Note 5				Resonator connection		260	1090	
		3 Note 5 STOP mode	T _A = -40°C				0.19	0.50	μA
			T _A = +25°C	T _A = +50°C T _A = +70°C			0.24	0.50	
			T _A = +50°C				0.32	0.80	
			T _A = +70°C T _A = +85°C				0.48	1.20	
							0.74	2.20	
			T _A = +105°C				1.50	10.20	

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator clock is stopped.
 - 4. When high-speed system clock is stopped.
 - 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **6.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

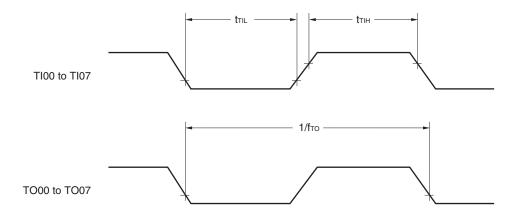
HS (High speed main) mode: $V_{DD} = 2.7 \text{ V to } 5.5 \text{ V}$ @1 MHz to 24 MHz $V_{DD} = 2.4 \text{ V to } 5.5 \text{ V}$ @1 MHz to 16 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except temperature condition of the TYP. value is $T_A = 25$ °C, other than STOP mode

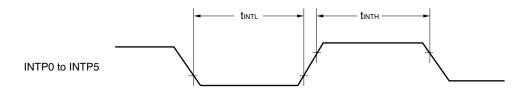
(2) 30-pin products

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

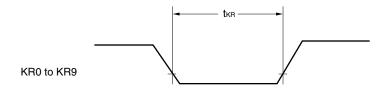
(1/2)

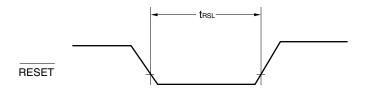

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply current ^{Note 1}	I _{DD1}	Operating	HS (High-speed	f⊪ = 24 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		1.5		mA
		mode	,	V _{DD} = 3.0 V		1.5				
					Normal $V_{DD} = 5.0 \text{ V}$ operation $V_{DD} = 3.0 \text{ V}$	V _{DD} = 5.0 V		3.7	5.8	mA
							3.7	5.8		
				$f_{IH} = 16 \; MHz^{Note 3}$ $f_{MX} = 20 \; MHz^{Note 2},$ $V_{DD} = 5.0 \; V$		V _{DD} = 5.0 V		2.7	4.2	mA
					 - -	V _{DD} = 3.0 V		2.7	4.2	
						Square wave input		3.0	4.9	mA
						Resonator connection		3.2	5.0	
		$f_{MX}=20\;MHz^{\text{Note}2},$	_	Square wave input		3.0	4.9	mA		
		V	$V_{DD} = 3.0 \text{ V}$	$V_{DD} = 3.0 \text{ V}$	Resonator connection		3.2	5.0		
	f _{MX} =				$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		1.9	2.9
				$V_{DD} = 5.0 \text{ V}$		Resonator connection		1.9	2.9	
	$f_{MX} = 10 \text{ MHz}^{Note 2},$	Square wave input		1.9	2.9	mA				
				$V_{DD} = 3.0 \text{ V}$		Resonator connection		1.9	2.9	

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator clock is stopped.
 - 3. When high-speed system clock is stopped
 - **4.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.


HS(High speed main) mode: $V_{DD} = 2.7 \text{ V to } 5.5 \text{ V} @ 1 \text{ MHz to } 24 \text{ MHz}$ $V_{DD} = 2.4 \text{ V to } 5.5 \text{ V} @ 1 \text{ MHz to } 16 \text{ MHz}$

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$.

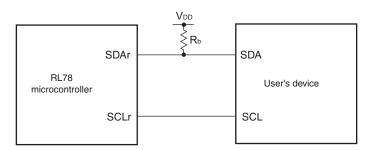

TI/TO Timing


Interrupt Request Input Timing

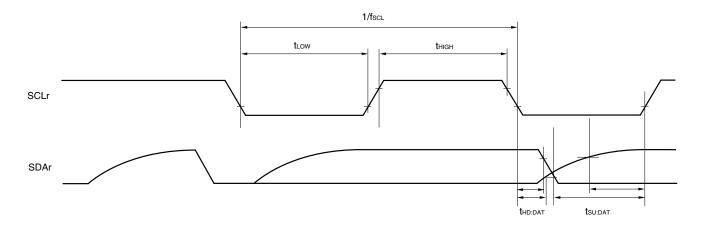
Key Interrupt Input Timing

RESET Input Timing

(4) During communication at same potential (simplified I²C mode)


 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-speed	main) Mode	Unit
			MIN.	MAX.	
SCLr clock frequency	fscL	$C_b=100~pF,~R_b=3~k\Omega$		100 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$C_b=100~pF,~R_b=3~k\Omega$	4600		ns
Hold time when SCLr = "H"	thigh	$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	4600		ns
Data setup time (reception)	tsu:dat	$C_b=100~pF,~R_b=3~k\Omega$	1/f _{MCK} + 580 Note 2		ns
Data hold time (transmission)	thd:dat	$C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	0	1420	ns


- Notes 1. The value must also be equal to or less than fmck/4.
 - 2. Set tsu:DAT so that it will not exceed the hold time when SCLr = "L" or SCLr = "H".

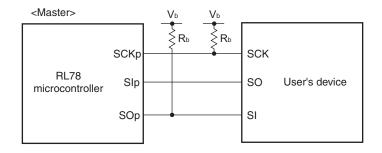
Caution Select the N-ch open drain output (V_{DD} tolerance) mode for SDAr by using port output mode register h (POMh).

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- **Remarks 1.** R_b [Ω]:Communication line (SDAr) pull-up resistance
 - Cb [F]: Communication line (SCLr, SDAr) load capacitance
 - 2. r: IIC number (r = 00, 01, 11, 20), h: = POM number (h = 0, 1, 4, 5)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).
 - m: Unit number (m = 0, 1), n: Channel number (0, 1, 3))

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)


 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-speed	HS (high-speed main) Mode		
			MIN.	MIN. MAX.		
SIp setup time (to SCKp↓)	tsıkı	$ 4.0~V \leq V_{DD} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V, $ $C_b = 30~pF,~R_b = 1.4~k\Omega $	88		ns	
		$ \label{eq:continuous} $	88		ns	
		$ \label{eq:continuous} $	220		ns	
SIp hold time (from SCKp↓) Note	tksii	$ \begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $	38		ns	
		$ 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, $ $C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega $	38		ns	
		$ \label{eq:continuous} $	38		ns	
Delay time from SCKp↑ to SOp output Note		$ \begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $		50	ns	
		$ 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, $ $C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega $		50	ns	
		$ 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, $ $C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega $		50	ns	

Note When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.
- **Remarks 1.** Rb $[\Omega]$: Communication line (SCKp, SOp) pull-up resistance, Cb [F]: Communication line (SCKp, SOp) load capacitance, Vb [V]: Communication line voltage
 - 2. p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

CSI mode connection diagram (during communication at different potential)

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - **3.** When $AV_{REFP} < V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.05\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.

4. Refer to 29.6.2 Temperature sensor/internal reference voltage characteristics.

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI22

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution AV _{REFP} = V _{DD} Note 3			1.2	±5.0	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μS
		Target ANI pin: ANI16 to ANI22	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μS
Zero-scale error Notes 1, 2	EZS	10-bit resolution AVREFP = VDD Note 3				±0.35	%FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution AVREFP = VDD Note 3				±0.35	%FSR
Integral linearity error Note 1	ILE	10-bit resolution AVREFP = VDD Note 3				±3.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution AVREFP = VDD Note 3				±2.0	LSB
Analog input voltage	Vain	ANI16 to ANI22		0		AV _{REFP}	V

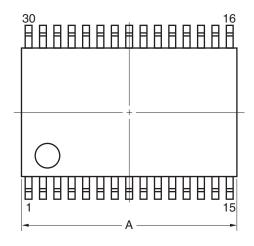
Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

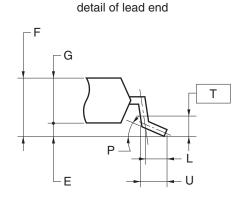
- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- **3.** When $AV_{REFP} \leq V_{DD}$, the MAX. values are as follows.

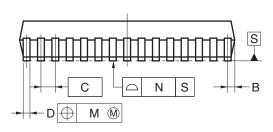
Overall error: Add ± 4.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.20\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AVREFP = VDD.

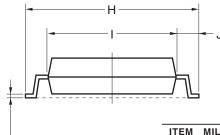



<R>


4.3 30-pin products

R5F102AAASP, R5F102A9ASP, R5F102A8ASP, R5F102A7ASP R5F103AAASP, R5F103A9ASP, R5F103A8ASP, R5F103A7ASP R5F102AADSP, R5F102A9DSP, R5F102A8DSP, R5F102A7DSP R5F103AADSP, R5F103A9DSP, R5F103A8DSP, R5F103A7DSP R5F102AAGSP, R5F102A9GSP, R5F102A8GSP, R5F102A7GSP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP30-0300-0.65	PLSP0030JB-B	S30MC-65-5A4-3	0.18



NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

Κ

ITEM	MILLIMETERS
Α	9.85±0.15
В	0.45 MAX.
С	0.65 (T.P.)
D	$0.24^{+0.08}_{-0.07}$
Е	0.1±0.05
F	1.3±0.1
G	1.2
Н	8.1±0.2
I	6.1±0.2
J	1.0±0.2
K	0.17±0.03
L	0.5
М	0.13
N	0.10
Р	3°+5°
Т	0.25
U	0.6±0.15

©2012 Renesas Electronics Corporation. All rights reserved.