

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.5K x 8
/oltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-WFQFN Exposed Pad
Supplier Device Package	24-HWQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f1037aana-u0

RL78/G12 1. OUTLINE

1.3.2 On-chip oscillator characteristics

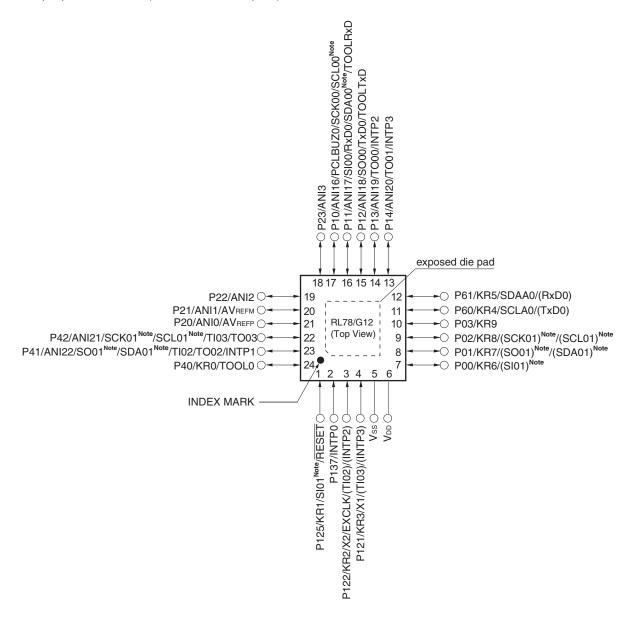
(1) High-speed on-chip oscillator oscillation frequency of the R5F102 products

Oscillator	Condition	MIN	MAX	Unit
High-speed on-chip	T _A = -20 to +85 °C	-1.0	+1.0	%
oscillator oscillation	T _A = -40 to -20 °C	-1.5	+1.5	
frequency accuracy	T _A = +85 to +105 °C	-2.0	+2.0	

(2) High-speed on-chip oscillator oscillation frequency of the R5F103 products

Oscillator	Condition	MIN	MAX	Unit
High-speed on-chip	$T_A = -40 \text{ to} + 85 ^{\circ}\text{C}$	-5.0	+5.0	%
oscillator oscillation				
frequency accuracy				

1.3.3 Peripheral Functions


The following are differences in peripheral functions between the R5F102 products and the R5F103 products.

		R5F102 product		R5F103 product		
RL78/G12	20, 24 pin	30 pin product	20, 24 pin	30 pin		
		product		product	product	
Serial interface	UART	1 channel	3 channels	1 channel		
	CSI	2 channels	3 channels	1 channel		
	Simplified I ² C	2 channels	3 channels	None		
DMA function		2 channels		None		
Safety function	CRC operation	Yes		None		
	RAM guard	Yes		None		
	SFR guard	Yes I		None		

RL78/G12 1. OUTLINE

1.4.2 24-pin products

<R> • 24-pin plastic HWQFN (4 × 4 mm, 0.5 mm pitch)

Note Provided only in the R5F102 products.

Remarks 1. For pin identification, see 1.5 Pin Identification.

- 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). See Figure 4-8 Format of Peripheral I/O Redirection Register (PIOR).
- 3. It is recommended to connect an exposed die pad to Vss.

RL78/G12 1. OUTLINE

1.7 Outline of Functions

<R>

This outline describes the function at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

	Item	20-pin		24-pin		30-pin			
		R5F1026x	R5F1036x	R5F1027x	R5F1037x	R5F102Ax	R5F103Ax		
Code flas	h memory	2 to 16	KB Note 1		4 to 1	16 KB			
Data flasi	n memory	2 KB	-	2 KB	=	2 KB	-		
RAM		256 B to	o 1.5 KB	512 B to	1.5 KB	512 B	to 2KB		
Address	space			1 N	МВ				
Main system clock	High-speed system clock	HS (High-spee	ed main) mode :	1 to 20 MHz (V _D 1 to 16 MHz (V _D	system clock inp D = 2.7 to 5.5 V, D = 2.4 to 5.5 V, D = 1.8 to 5.5 V	,			
	High-speed on-chip oscillator clock	HS (High-spee	G (High-speed main) mode : 1 to 24 MHz (V_{DD} = 2.7 to 5.5 V), G (High-speed main) mode : 1 to 16 MHz (V_{DD} = 2.4 to 5.5 V), G (Low-speed main) mode : 1 to 8 MHz (V_{DD} = 1.8 to 5.5 V)						
Low-spee	ed on-chip oscillator clock	15 kHz (TYP)							
General-	ourpose register	(8-bit register × 8) × 4 banks							
Minimum	instruction execution time	0.04167 μs (High-speed on-chip oscillator clock: f _{IH} = 24 MHz operation)							
		$0.05 \mu s$ (High-speed system clock: f _{MX} = 20 MHz operation)							
Instructio	n set	Data transfer (8/16 bits)							
		Adder and subtractor/logical operation (8/16 bits)							
		Multiplication (8 bits × 8 bits)							
	1	Rotate, barrel shift, and bit manipulation (set, reset, test, and Boolean operation), etc.							
I/O port	Total	1	8	2	2	2	26		
	CMOS I/O	(N-ch (2 D.D. I/O nd voltage]: 4)	(N-ch C	6 D.D. I/O nd voltage]: 5)	(N-ch (21 O.D. I/O nd voltage]: 9)		
	CMOS input	,	4	4	4	;	3		
	N-ch open-drain I/O (6 V tolerance)			2	2				
Timer	16-bit timer		4 cha	nnels		8 cha	nnels		
	Watchdog timer			1 channel					
	12-bit Interval timer	1 channel							
	Timer output	4 channels (PWM outputs: 3 Note 3) (PWM				8 cha (PWM outpu			

Notes 1. The self-programming function cannot be used in the R5F10266 and R5F10366.

- 2. The maximum number of channels when PIOR0 is set to 1.
- 3. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves). (See 6.9.3 Operation as multiple PWM output function.)

Caution When the flash memory is rewritten via a user program, the code flash area and RAM area are used because each library is used. When using the library, refer to RL78 Family Flash Self Programming Library Type01 User's Manual and RL78 Family Data Flash Library Type04 User's Manual.

2.3 DC Characteristics

2.3.1 Pin characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/4)

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42				-10.0 Note 2	mA
		30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147					
		20-, 24-pin products:	$4.0~V \leq V_{DD} \leq 5.5~V$			-30.0	mA
		Total of P40 to P42	$2.7~V \leq V_{DD} < 4.0~V$			-6.0	mA
		30-pin products: Total of P00, P01, P40, P120 (When duty ≤ 70% Note 3)	1.8 V ≤ V _{DD} < 2.7 V			-4.5	mA
		20-, 24-pin products:	$4.0~V \leq V_{DD} \leq 5.5~V$			-80.0	mA
		Total of P00 to P03 ^{Note 4} , P10 to P14	$2.7~V \leq V_{DD} < 4.0~V$			-18.0	mA
		30-pin products: Total of P10 to P17, P30, P31, P50, P51, P147 (When duty ≤ 70% Note 3)	1.8 V ≤ V _{DD} < 2.7 V			-10.0	mA
		Total of all pins (When duty ≤ 70% Note 3)				-100	mA
	10н2	Per pin for P20 to P23				-0.1	mA
		Total of all pins				-0.4	mA

- **Notes 1**. value of current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin.
 - 2. However, do not exceed the total current value.
 - 3. The output current value under conditions where the duty factor ≤ 70%.
 If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).
 - Total output current of pins = $(loh \times 0.7)/(n \times 0.01)$
 - <Example> Where n = 80% and IoH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

4. 24-pin products only.

Caution P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24-pin products, and P00, P10 to P15, P17, and P50 for 30-pin products do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

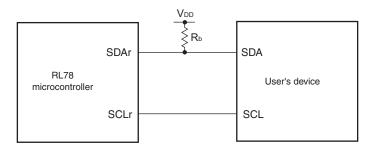
(2) 30-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

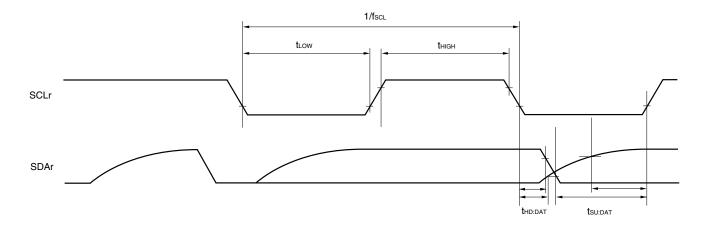
(1/2)

			3 0.0 V, V33 =	/						(1/2
Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	I _{DD1}	Operating	HS (High-speed	f _{IH} = 24 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		1.5		mA
current Note 1		mode main) mode ^{Note 4}		operation	V _{DD} = 3.0 V		1.5			
					Normal	V _{DD} = 5.0 V		3.7	5.5	mA
					operation	V _{DD} = 3.0 V		3.7	5.5	
				f _{IH} = 16 MHz ^{Note 3}		V _{DD} = 5.0 V		2.7	4.0	mA
						V _{DD} = 3.0 V		2.7	4.0	
			LS (Low-speed	f _{IH} = 8 MHz ^{Note 3}		V _{DD} = 3.0 V		1.2	1.8	mA
	main) mode Note 4			V _{DD} = 2.0 V		1.2	1.8			
		$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$		Square wave input		3.0	4.6	mA		
		main) mode Note 4	main) mode $V_{DD} = 5.0 \text{ V}$		Resonator connection		3.2	4.8		
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$		Square wave input		3.0	4.6	mA
				$V_{DD} = 3.0 \text{ V}$		Resonator connection		3.2	4.8	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$		Square wave input		1.9	2.7	mA
				V _{DD} = 5.0 V		Resonator connection		1.9	2.7	
				$f_{MX} = 10 \text{ MHz}^{Note 2}$		Square wave input		1.9	2.7	mA
				V _{DD} = 3.0 V		Resonator connection		1.9	2.7	
			LS (Low-speed	$f_{MX} = 8 MHz^{Note 2}$		Square wave input		1.1	1.7	mA
main)	main) mode Note 4	$V_{DD} = 3.0 \text{ V}$		Resonator connection		1.1	1.7			
		$f_{MX} = 8 MHz^{Note 2}$		Square wave input		1.1	1.7	mA		
				$V_{DD} = 2.0 \text{ V}$		Resonator connection		1.1	1.7	

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator clock is stopped.
 - 3. When high-speed system clock is stopped
 - **4.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.


HS(High speed main) mode: $V_{DD} = 2.7 \text{ V to } 5.5 \text{ V } @ 1 \text{ MHz to } 24 \text{ MHz}$

V_{DD} = 2.4 V to 5.5 V @1 MHz to 16 MHz


LS(Low speed main) mode: $V_{DD} = 1.8 \text{ V to } 5.5 \text{ V } @ 1 \text{ MHz to } 8 \text{ MHz}$

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25$ °C.

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

- Remarks 1. Rb $[\Omega]$:Communication line (SDAr) pull-up resistance Cb [F]: Communication line (SCLr, SDAr) load capacitance
 - 2. r: IIC number (r = 00, 01, 11, 20), h: = POM number (h = 0, 1, 4, 5)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (0, 1, 3))
 - 4. Simplified I²C mode is supported only by the R5F102 products.

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol		Conditions	,	nigh-speed in) Mode	LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
Transfer rate Note4		Reception	$\begin{aligned} 4.0 \ V &\leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_{b} \leq 4.0 \ V \end{aligned}$		fMCK/6 Note1		fMCK/6 Note1	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$		4.0		1.3	Mbps
		$\begin{split} 2.7 \ V &\leq V_{DD} < 4.0 \ V, \\ 2.3 \ V &\leq V_{b} \leq 2.7 \ V \end{split}$		fмск/6 Note1		fmck/6 Note1	bps	
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note3}$		4.0		1.3	Mbps	
		$\begin{aligned} 1.8 \ V &\leq V_{\text{DD}} < 3.3 \ V, \\ 1.6 \ V &\leq V_{\text{b}} \leq 2.0 \ V \end{aligned}$		fMCK/6 Notes1, 2		fMCK/6 Notes1, 2	bps	
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note3}$		4.0		1.3	Mbps	
		Transmission	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V}$		Note4		Note4	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, V_b = 2.7 \text{ V}$		2.8 Note5		2.8 Note5	Mbps
			$\begin{aligned} 2.7 \ V &\leq V_{DD} < 4.0 \ V, \\ 2.3 \ V &\leq V_{b} \leq 2.7 \ V, \end{aligned}$		Note6		Note6	bps
		Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$		1.2 Note7		1.2 Note7	Mbps	
			$1.8 \ V \le V_{DD} < 3.3 \ V,$ $1.6 \ V \le V_{b} \le 2.0 \ V$		Notes 2, 8		Notes 2, 8	bps
		Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$		0.43 Note9		0.43 Note9	Mbps	

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- 2. Use it with $V_{DD} \ge V_b$.
- 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq V_{DD} \leq 5.5 V)

16 MHz (2.4 V
$$\leq$$
 V_{DD} \leq 5.5 V)

LS (low-speed main) mode: $8 \text{ MHz} (1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V})$

4. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq V_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

$$\label{eq:maximum transfer rate} \text{Maximum transfer rate} = \frac{1}{\left\{-C_b \times R_b \times \text{ln } (1-\frac{2.2}{V_b})\right\} \times 3} \quad \text{[bps]}$$

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-\text{Cb} \times \text{Rb} \times \text{ln } (1 - \frac{2.2}{\text{Vb}})\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

^{*} This value is the theoretical value of the relative difference between the transmission and reception sides.

(7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCK00... internal clock output, corresponding CSI00 only)

(Ta = -40 to +85°C, 2.7 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol		Conditions	HS (high		1	/-speed Mode	Unit
				MIN.	MAX.	MIN.	MAX.	
SCK00 cycle time	tkcy1	tkcy1 ≥ 2/fcLK	$\begin{aligned} 4.0 &\ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 &\ V \leq V_b \leq 4.0 \ V, \\ C_b = 20 &\ pF, \ R_b = 1.4 \ k\Omega \end{aligned}$	200		1150		ns
			$\begin{split} 2.7 \ V &\leq V_{DD} < 4.0 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 20 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	300		1150		ns
SCK00 high-level width	t _{KH1}		$4.0~V \leq V_{DD} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$ $C_b = 20~pF,~R_b = 1.4~k\Omega$			tkcy1/2-		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0$ $C_b = 20 \text{ pF}, R_b =$	0 V, 2.3 V \leq Vb \leq 2.7 V, $: 2.7 \; k\Omega$	tксу1/2 — 120		tксү1/2 – 120		ns
SCK00 low-level width	t _{KL1}	$4.0 \text{ V} \le V_{DD} \le 5.8$ $C_b = 20 \text{ pF}, R_b =$	5 V, 2.7 V \leq V _b \leq 4.0 V, : 1.4 k Ω	tксу1/2 — 7		tксү1/2 – 50		ns
		$\label{eq:continuous} \begin{array}{c} 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ \\ C_{b} = 20 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$		tксу1/2 — 10		tксү1/2 – 50		ns
SI00 setup time (to SCK00↑) Note 1	tsıĸ1	$4.0 \text{ V} \le \text{V}_{DD} \le 5.8$ $C_b = 20 \text{ pF}, R_b =$	58		479		ns	
		$2.7~V \leq V_{DD} < 4.0~V,~2.3~V \leq V_b \leq 2.7~V,$ $C_b = 20~pF,~R_b = 2.7~k\Omega$		121		479		ns
SI00 hold time (from SCK00↑) Note 1	tksii	$4.0 \text{ V} \le \text{V}_{DD} \le 5.9$ $C_b = 20 \text{ pF}, R_b = 10.0$	5 V, 2.7 V \leq V _b \leq 4.0 V, : 1.4 k Ω	10		10		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0$ $C_b = 20 \text{ pF}, R_b = 0.0$	0 V, 2.3 V \leq V _b \leq 2.7 V, 2.7 kΩ	10		10		ns
Delay time from SCK00↓ to SO00 output Note 1	tkso1	$4.0 \text{ V} \le \text{V}_{DD} \le 5.8$ $C_b = 20 \text{ pF}, R_b =$	5 V, 2.7 V \leq V _b \leq 4.0 V, : 1.4 kΩ		60		60	ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0$ $C_b = 20 \text{ pF}, R_b = 0.0$	0 V, 2.3 V \leq V _b \leq 2.7 V, : 2.7 k Ω		130		130	ns
SI00 setup time (to SCK00↓) Note 2	tsıĸı	$4.0 \text{ V} \le \text{V}_{DD} \le 5.8$ $C_b = 20 \text{ pF}, R_b =$	5 V, 2.7 V \leq V _b \leq 4.0 V, : 1.4 k Ω	23		110		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0$ $C_b = 20 \text{ pF}, R_b =$	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 k Ω	33		110		ns
SI00 hold time (from SCK00↓) Note 2	tksi1	$4.0~V \leq V_{DD} \leq 5.8$ $C_b = 20~pF,~R_b =$	5 V, 2.7 V \leq V _b \leq 4.0 V, : 1.4 k Ω	10		10		ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0$ $C_b = 20 \text{ pF}, R_b = 0.0$	0 V, 2.3 V \leq V _b \leq 2.7 V, $ = 2.7 \text{ k} \Omega $	10		10		ns
Delay time from SCK00↑ to SO00 output Note 2	t _{KSO1}	$4.0 \text{ V} \le \text{V}_{DD} \le 5.8$ $C_b = 20 \text{ pF}, R_b =$	5 V, 2.7 V \leq V _b \leq 4.0 V, : 1.4 k Ω		10		10	ns
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0$ $C_b = 20 \text{ pF}, R_b = 0.0$	0 V, 2.3 V \leq V _b \leq 2.7 V, : 2.7 kΩ		10		10	ns

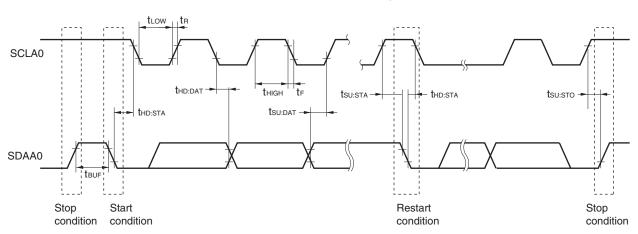
(Notes, Caution, and Remarks are listed on the next page.)

2.5.2 Serial interface IICA

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS	(high-spee	ed main) n	node	Unit
			LS	(low-spee	d main) m		
			Standa	Standard Mode		Fast Mode	
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode: fclk≥ 3.5 MHz			0	400	kHz
		Normal mode: fclk≥ 1 MHz	0	100			kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μS
Hold time ^{Note 1}	thd:sta		4.0		0.6		μS
Hold time when SCLA0 = "L"	tLOW		4.7		1.3		μS
Hold time when SCLA0 = "H"	tніgн		4.0		0.6		μS
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission) ^{Note 2}	thd:dat		0	3.45	0	0.9	μS
Setup time of stop condition	tsu:sto		4.0		0.6		μS
Bus-free time	tBUF		4.7		1.3		μS

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.


2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution Only in the 30-pin products, the values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IoH1, IoL1, VoH1, VoL1) must satisfy the values in the redirect destination.

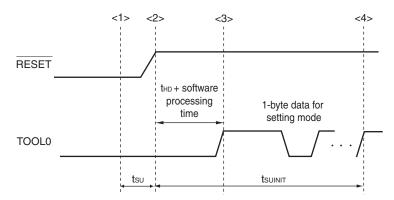
Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Normal mode: C_b = 400 pF, Rb = 2.7 k Ω Fast mode: C_b = 320 pF, Rb = 1.1 k Ω

IICA serial transfer timing

<R>

2.9 Dedicated Flash Memory Programmer Communication (UART)


 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

2.10 Timing of Entry to Flash Memory Programming Modes

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset are released before external reset release			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset are released before external reset release	10			μS
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tнo	POR and LVD reset are released before external reset release	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.

 t_{SU} : Time to release the external reset after the TOOL0 pin is set to the low level

thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

 $(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le VDD \le 5.5 \text{ V}, Vss = 0 \text{ V})$

(4/4)

Parameter	Symbol		Conditio	ns	MIN.	TYP.	MAX.	Unit
Output voltage, low	V _{OL1}	P00 to P03 ^{Note} , P10 to P14, P40 to P42 2. 30-pin products: P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147		$4.0~V \leq V_{DD} \leq 5.5~V,$ $I_{OL1} = 8.5~mA$			0.7	V
				$2.7~V \leq V_{DD} \leq 5.5~V,$ $I_{OL1} = 3.0~mA$			0.6	V
				$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ $\text{Io}_{\text{L}1} = 1.5 \text{ mA}$			0.4	V
				$2.4~V \leq V_{DD} \leq 5.5~V,$ $I_{OL1} = 0.6~mA$			0.4	٧
	V _{OL2}	P20 to P23		Ιοι2 = 400 μΑ			0.4	V
	Vol3	P60, P61		$4.0~V \leq V_{DD} \leq 5.5~V,$ $I_{OL1} = 15.0~mA$			2.0	V
		2		$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 5.0 \text{ mA}$			0.4	V
				$2.7~V \leq V_{DD} \leq 5.5~V,$ $I_{OL1} = 3.0~mA$			0.4	V
				$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OL1} = 2.0 \text{ mA}$			0.4	V
Input leakage current, high	Ішн1	Other than P121, V _I = V _{DD}					1	μА
	ILIH2	P121, P122 (X1, X2/EXCLK)	VI = VDD	Input port or external clock input			1	μА
				When resonator connected			10	μΑ
Input leakage current, low	ILIL1	Other than P121, P122	Vı = Vss				-1	μА
	ILIL2	P121, P122 (X1, X2/EXCLK)	Vı = Vss	Input port or external clock input			-1	μΑ
				When resonator connected			-10	μΑ
On-chip pull-up resistance	Rυ	20-, 24-pin products: P00 to P03 ^{Note} , P10 to P14, P40 to P42, P125, RESET		V _I = V _{SS} , input port	10	20	100	kΩ
		30-pin products: P0 P10 to P17, P30, F P50, P51, P120, P	P31, P40,					

Note 24-pin products only.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(1) 20-, 24-pin products

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2 Note 2	HALT	HS (High-speed	f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		440	2230	μА
current ^{Note 1}		mode	main) mode Note 6		V _{DD} = 3.0 V		440	2230	
				fih = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		400	1650	μА
					V _{DD} = 3.0 V		400	1650	
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		280	1900	μA
				$V_{DD} = 5.0 \text{ V}$	Resonator connection		450	2000	
				$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$ $V_{DD} = 3.0 \text{ V}$	Square wave input		280	1900	μA
					Resonator connection		450	2000	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$ $V_{DD} = 5.0 \text{ V}$	Square wave input		190	1010	μА
					Resonator connection		260	1090	
				fmx = 10 MHz ^{Note 3} ,	Square wave input		190	1010	μA
				V _{DD} = 3.0 V	Resonator connection		260	1090	
	I _{DD3} Note 5	STOP	T _A = -40°C				0.19	0.50	μA
		mode	T _A = +25°C				0.24	0.50	
			T _A = +50°C				0.32	0.80	
			T _A = +70°C				0.48	1.20	
	T _A = +85°C				0.74	2.20			
			T _A = +105°C				1.50	10.20	

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator clock is stopped.
 - 4. When high-speed system clock is stopped.
 - 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **6.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS (High speed main) mode: $V_{DD} = 2.7 \text{ V to } 5.5 \text{ V}$ @1 MHz to 24 MHz $V_{DD} = 2.4 \text{ V to } 5.5 \text{ V}$ @1 MHz to 16 MHz

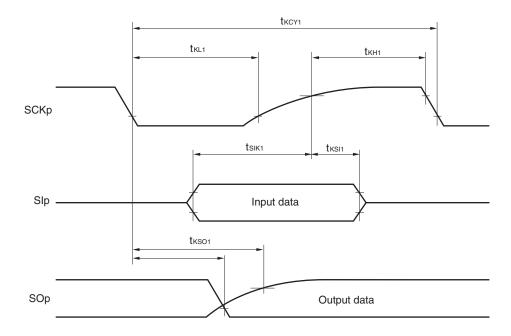
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except temperature condition of the TYP. value is $T_A = 25$ °C, other than STOP mode

(3) Peripheral functions (Common to all products)

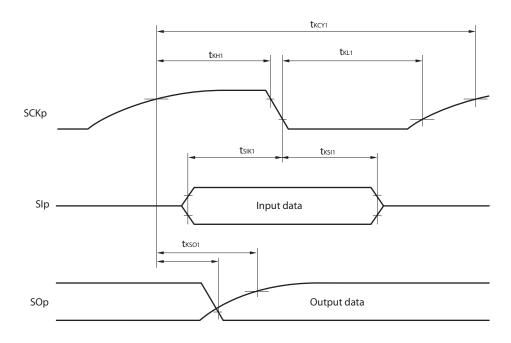
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed onchip oscillator operating current	IFIL Note 1				0.20		μΑ
12-bit interval timer operating current	ITMKA Notes 1, 2, 3				0.02		μΑ
Watchdog timer operating current	WDT Notes 1, 2, 4	fı∟ = 15 kHz			0.22		μΑ
A/D converter	lade When conversion		Normal mode, AVREFP = VDD = 5.0 V		1.30	1.70	mA
operating current	Notes 1, 5	at maximum speed	Low voltage mode, AV _{REFP} = V _{DD} = 3.0 V		0.50	0.70	mA
A/D converter reference voltage operating current	ADREF Note 1				75.0		μΑ
Temperature sensor operating current	ITMPS Note 1				75.0		μА
LVD operating current	ILVD Notes 1, 6				0.08		μА
Self-programming operating current	FSP Notes 1, 8				2.00	12.20	mA
BGO operating current	BGO Notes 1, 7				2.00	12.20	mA
SNOOZE operating	Isnoz	ADC operation	The mode is performed Note 9		0.50	1.10	mA
current	Note 1		The A/D conversion operations are performed, Low voltage mode, AVREFP = VDD = 3.0 V		1.20	2.04	mA
		CSI/UART operation	1		0.70	1.54	mA

Notes 1. Current flowing to the VDD.


- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3, and IFIL and ITMKA when the 12-bit interval timer operates.
- 4. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.
- **5.** Current flowing only to the A/D converter. The current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- **6.** Current flowing only to the LVD circuit. The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit operates.
- 7. Current flowing only during data flash rewrite.
- 8. Current flowing only during self programming.
- 9. For shift time to the SNOOZE mode, see 17.3.3 SNOOZE mode.

Remarks 1. fil: Low-speed on-chip oscillator clock frequency


2. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

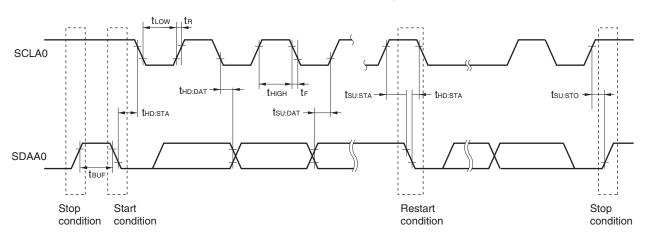
Remark p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

3.5.2 Serial interface IICA

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS	(high-spee	ed main) m	node	Unit	
			Standa	Standard Mode		Fast Mode		
			MIN.	MAX.	MIN.	MAX.		
SCLA0 clock frequency	fscL	Fast mode: fclk≥ 3.5 MHz			0	400	kHz	
		Normal mode: fclk≥ 1 MHz	0	100			kHz	
Setup time of restart condition	tsu:sta		4.7		0.6		μS	
Hold time ^{Note 1}	thd:STA		4.0		0.6		μS	
Hold time when SCLA0 = "L"	tLOW		4.7		1.3		μS	
Hold time when SCLA0 = "H"	thigh		4.0		0.6		μS	
Data setup time (reception)	tsu:dat		250		100		ns	
Data hold time (transmission) ^{Note 2}	thd:dat		0	3.45	0	0.9	μS	
Setup time of stop condition	tsu:sto		4.0		0.6		μS	
Bus-free time	t BUF		4.7		1.3		μS	

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.


2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution Only in the 30-pin products, the values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IoH1, IoL1, VoH1, VoL1) must satisfy the values in the redirect destination.

Remark The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Normal mode: $C_b = 400 \text{ pF}, \text{ Rb} = 2.7 \text{ k}\Omega$ Fast mode: $C_b = 320 \text{ pF}, \text{ Rb} = 1.1 \text{ k}\Omega$

IICA serial transfer timing

<R>

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Input channel		Reference Voltage	
	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = VDD Reference voltage (-) = Vss	Reference voltage (+) = VBGR Reference voltage (-) = AVREFM
ANI0 to ANI3	Refer to 29.6.1 (1) .	Refer to 29.6.1 (3).	Refer to 29.6.1 (4).
ANI16 to ANI22	Refer to 29.6.1 (2).		
Internal reference voltage	Refer to 29.6.1 (1) .		=
Temperature sensor output voltage			

(1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI2, ANI3, internal reference voltage, and temperature sensor output voltage

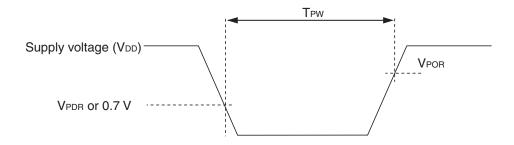
(TA = -40 to +105°C, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AVREFP = VDD Note 3			1.2	±3.5	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI2, ANI3	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μS
		10-bit resolution Target pin: Internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μS
			$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μS
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution AVREFP = VDD Note 3				±0.25	%FSR
Full-scale error ^{Notes 1, 2}	EFS	10-bit resolution AVREFP = VDD Note 3				±0.25	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AVREFP = VDD Note 3				±2.5	LSB
Differential linearity error	DLE	10-bit resolution AVREFP = VDD Note 3				±1.5	LSB
Analog input voltage	Vain	ANI2, ANI3		0		AVREFP	V
		Internal reference voltage (HS (high-speed main) m		V _{BGR} Note 4			V
		Temperature sensor output voltage (HS (high-speed main) mode)		V _{TMPS25} Note 4			V

(Notes are listed on the next page.)

3.6.2 Temperature sensor/internal reference voltage characteristics

(T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, HS (high-speed main) mode


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	V _{TMPS25}	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	V _{BGR}	Setting ADS register = 81H	1.38	1.45	1.50	V
Temperature coefficient	Fvтмps	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μS

3.6.3 POR circuit characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.45	1.51	1.57	V
	V _{PDR}	Power supply fall time	1.44	1.50	1.56	V
Minimum pulse width Note	T _{PW}		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{PDR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

LVD detection voltage of interrupt & reset mode

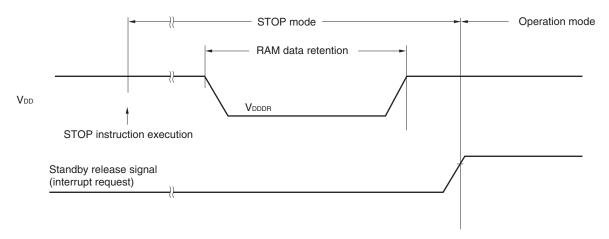
(Ta = -40 to +105°C, V_{PDR} \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol		Cond	itions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	V _{LVDD0}	VPOC2,	VPOC1, VPOC1 = 0, 1, 1, falli	ng reset voltage	2.64	2.75	2.86	V
mode	V _{LVDD1}		LVIS1, LVIS0 = 1, 0	Rising reset release voltage	2.81	2.92	3.03	V
				Falling interrupt voltage	2.75	2.86	2.97	V
	V _{LVDD2}		LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.90	3.02	3.14	V
				Falling interrupt voltage	2.85	2.96	3.07	V
	V _{LVDD3}		LVIS1, LVIS0 = 0, 0	Rising reset release voltage	3.90	4.06	4.22	V
				Falling interrupt voltage	3.83	3.98	4.13	V

3.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms


Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 29.4 AC Characteristics.

<R> 3.7 RAM Data Retention Characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	V _{DDDR}		1.44 Note		5.5	V

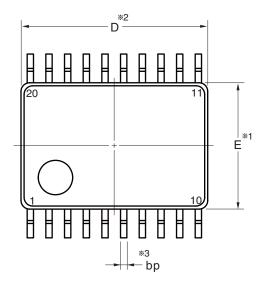
<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

3.8 Flash Memory Programming Characteristics

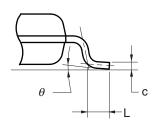
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}. 2.4 \text{ V} < V_{DD} < 5.5 \text{ V}. \text{ Vss} = 0 \text{ V})$

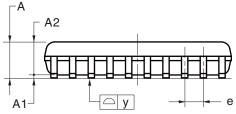
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclk		1		24	MHz
Code flash memory rewritable times	Cerwr	Retained for 20 years TA = 85°C Notes 4	1,000			Times
Data flash memory rewritable times		Retained for 1 year TA = 25°C Notes 4		1,000,000		
		Retained for 5 years TA = 85°C Notes 4	100,000			
		Retained for 20 years TA = 85°C Notes 4	10,000			

- **Notes 1.** 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
 - 2. When using flash memory programmer and Renesas Electronics self programming library
 - **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.
 - 4. This temperature is the average value at which data are retained.


<R>

4. PACKAGE DRAWINGS


4.1 20-pin products


R5F1026AASP, R5F10269ASP, R5F10268ASP, R5F10267ASP, R5F10266ASP R5F1036AASP, R5F10369ASP, R5F10368ASP, R5F10367ASP, R5F10366ASP R5F1026ADSP, R5F10269DSP, R5F10268DSP, R5F10267DSP, R5F10266DSP R5F1036ADSP, R5F10369DSP, R5F10368DSP, R5F10367DSP, R5F10366DSP R5F1026AGSP, R5F10269GSP, R5F10268GSP, R5F10267GSP, R5F10266GSP


JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP20-4.4x6.5-0.65	PLSP0020JB-A	P20MA-65-NAA-1	0.1

detail of lead end

NOTE

- 1.Dimensions "X1" and "X2" do not include mold flash.
- 2.Dimension "X3" does not include trim offset.

	(UNIT:mm)
ITEM	DIMENSIONS
D	6.50±0.10
E	4.40±0.10
HE	6.40±0.20
Α	1.45 MAX.
A1	0.10±0.10
A2	1.15
е	0.65±0.12
bp	$0.22 + 0.10 \\ -0.05$
С	$0.15 + 0.05 \\ -0.02$
L	0.50±0.20
У	0.10
θ	0° to 10°

©2012 Renesas Electronics Corporation. All rights reserved.