

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	30-LSSOP (0.240", 6.10mm Width)
Supplier Device Package	30-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f103a8asp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RL78/G12 1. OUTLINE

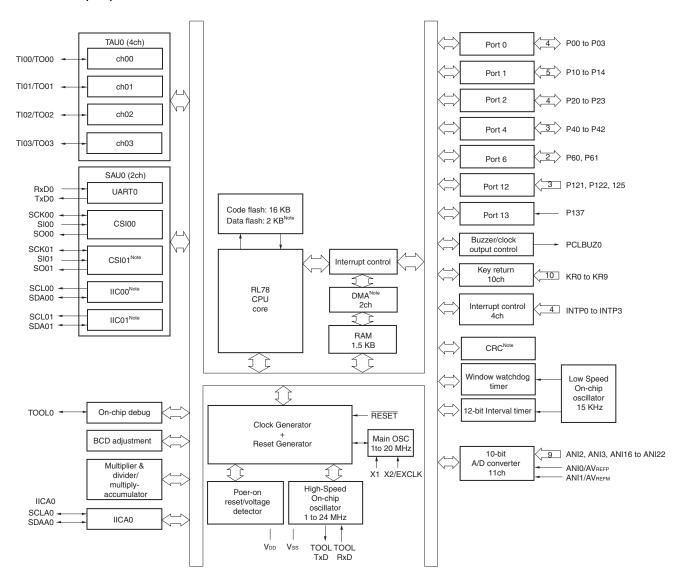
1.3.2 On-chip oscillator characteristics

(1) High-speed on-chip oscillator oscillation frequency of the R5F102 products

Oscillator	Condition	MIN	MAX	Unit
High-speed on-chip	T _A = -20 to +85 °C	-1.0	+1.0	%
oscillator oscillation	T _A = -40 to -20 °C	-1.5	+1.5	
frequency accuracy	T _A = +85 to +105 °C	-2.0	+2.0	

(2) High-speed on-chip oscillator oscillation frequency of the R5F103 products

Oscillator	Condition	MIN	MAX	Unit
High-speed on-chip	$T_A = -40 \text{ to} + 85 ^{\circ}\text{C}$	-5.0	+5.0	%
oscillator oscillation				
frequency accuracy				


1.3.3 Peripheral Functions

The following are differences in peripheral functions between the R5F102 products and the R5F103 products.

		R5F102	2 product	R5F103	product
RL78/G12	20, 24 pin	30 pin product	20, 24 pin	30 pin	
		product		product	product
Serial interface	UART	1 channel	3 channels	1 channel	
	CSI	2 channels	3 channels	1 channel	
	Simplified I ² C	2 channels	3 channels	None	
DMA function		2 channels		None	
Safety function	CRC operation	Yes		None	
	RAM guard	Yes		None	
	SFR guard	Yes		None	

RL78/G12 1. OUTLINE

1.6.2 24-pin products

Note Provided only in the R5F102 products.

RL78/G12 1. OUTLINE

1.7 Outline of Functions

<R>

This outline describes the function at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

	Item	20-	-pin	24-	pin	30-pin		
		R5F1026x	R5F1036x	R5F1027x	R5F1037x	R5F102Ax	R5F103Ax	
Code flas	h memory	2 to 16	KB Note 1		4 to 1	16 KB		
Data flasi	n memory	2 KB	-	2 KB	=	2 KB	-	
RAM		256 B to	o 1.5 KB	512 B to	1.5 KB	512 B to 2KB		
Address	space			1 N	МВ			
Main system clock	High-speed system clock	HS (High-spee	ramic) oscillation ed main) mode : ed main) mode : d main) mode : 1	1 to 20 MHz (V _D 1 to 16 MHz (V _D	D = 2.7 to 5.5 V, D = 2.4 to 5.5 V	,		
	High-speed on-chip oscillator clock	HS (High-spee	d main) mode : 1 d main) mode : 1 d main) mode : 1	to 16 MHz (VDD =	= 2.4 to 5.5 V),			
Low-spee	ed on-chip oscillator clock	15 kHz (TYP)						
General-	ourpose register	(8-bit register	× 8) × 4 banks					
Minimum	instruction execution time	0.04167 µs (High-speed on-chip oscillator clock: f _{IH} = 24 MHz operation)						
		0.05 μ s (High-speed system clock: f_{MX} = 20 MHz operation)						
Instructio	n set	Data transfer (8/16 bits)						
		Adder and s	ubtractor/logical	operation (8/16	bits)			
		Multiplication (8 bits × 8 bits)						
	1	Rotate, barre	el shift, and bit m	nanipulation (set	, reset, test, and	Boolean operat	tion), etc.	
I/O port	Total	1	8	2	2	2	26	
	CMOS I/O	(N-ch (2 D.D. I/O nd voltage]: 4)	(N-ch C	6 D.D. I/O nd voltage]: 5)	(N-ch (21 O.D. I/O nd voltage]: 9)	
	CMOS input	,	4	4	4	;	3	
	N-ch open-drain I/O (6 V tolerance)			2	2			
Timer	16-bit timer		4 cha	nnels		8 cha	nnels	
	Watchdog timer			1 cha	annel			
	12-bit Interval timer			1 cha	annel			
	Timer output		4 cha (PWM outp			8 cha (PWM outpu		

Notes 1. The self-programming function cannot be used in the R5F10266 and R5F10366.

- 2. The maximum number of channels when PIOR0 is set to 1.
- 3. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves). (See 6.9.3 Operation as multiple PWM output function.)

Caution When the flash memory is rewritten via a user program, the code flash area and RAM area are used because each library is used. When using the library, refer to RL78 Family Flash Self Programming Library Type01 User's Manual and RL78 Family Data Flash Library Type04 User's Manual.

(1) 20-, 24-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2 Note 2	HALT	HS (High-speed	fin = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		440	1210	μА
current Note 1		mode	main) mode ^{Note 6}		V _{DD} = 3.0 V		440	1210	
				fin = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		400	950	μА
				V _{DD} = 3.0 V		400	950		
			LS (Low-speed	fih = 8 MHz ^{Note 4}	V _{DD} = 3.0 V		270	542	μА
			main) mode ^{Note 6}		V _{DD} = 2.0 V		270	542	
		HS (High-speed	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		280	1000	μА	
		main) mode ^{Note 6}	$V_{DD} = 5.0 \text{ V}$	Resonator connection		450	1170		
			$f_{MX} = 20 \ MHz^{Note 3},$ $V_{DD} = 3.0 \ V$	Square wave input		280	1000	μА	
				Resonator connection		450	1170		
			$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		190	590	μ A	
				V _{DD} = 5.0 V	Resonator connection		260	660	
				$f_{MX} = 10 \text{ MHz}^{Note 3},$	Square wave input		190	590	μ A
				$V_{DD} = 3.0 \text{ V}$ $f_{MX} = 8 \text{ MHz}^{\text{Note 3}},$	Resonator connection		260	660	
			LS (Low-speed		Square wave input		110	360	μ A
			main) mode Note 6	V _{DD} = 3.0 V	Resonator connection		150	416	
				$f_{MX} = 8 MHz^{Note 3},$	Square wave input		110	360	μ A
				V _{DD} = 2.0 V	Resonator connection		150	416	
	IDD3 Note 5	STOP	T _A = -40°C				0.19	0.50	μА
		mode	T _A = +25°C				0.24	0.50	
			T _A = +50°C				0.32	0.80	
			T _A = +70°C	T _A = +70°C			0.48	1.20	
			T _A = +85°C				0.74	2.20	

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator clock is stopped.
 - 4. When high-speed system clock is stopped.
 - 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **6.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS(High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz

 V_{DD} = 2.4 V to 5.5 V @1 MHz to 16 MHz

LS(Low speed main) mode: VDD = 1.8 V to 5.5 V @1 MHz to 8 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except temperature condition of the TYP. value is $T_A = 25$ °C, other than STOP mode

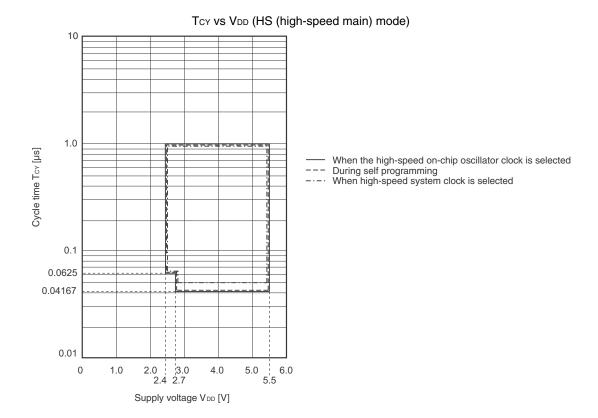
(2) 30-pin products

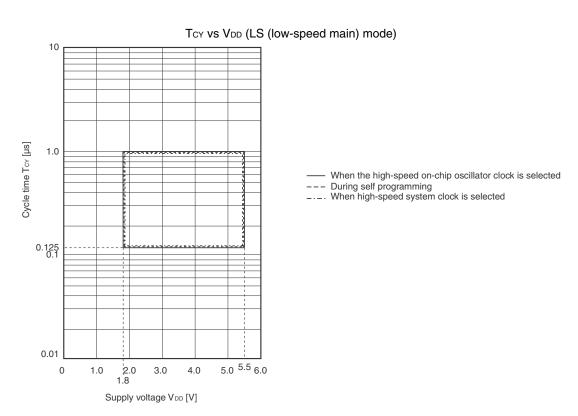
 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

(2/2)

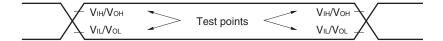
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2 Note 2	HALT	HS (High-speed	fin = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		440	1280	μА
current Note 1		mode	main) mode Note 6		V _{DD} = 3.0 V		440	1280	
				f _{IH} = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		400	1000	μА
					V _{DD} = 3.0 V		400	1000	
			LS (Low-speed	fin = 8 MHz ^{Note 4}	V _{DD} = 3.0 V		260	530	μA
			main) mode Note 6		V _{DD} = 2.0 V		260	530	
	,	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		280	1000	μА		
		main) mode Note 6	V _{DD} = 5.0 V	Resonator connection		450	1170		
			f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		280	1000	μA	
				V _{DD} = 3.0 V	Resonator connection		450	1170	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$ $V_{DD} = 5.0 \text{ V}$	Square wave input		190	600	μА
					Resonator connection		260	670	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		190	600	μΑ
				$V_{DD} = 3.0 \text{ V}$	Resonator connection		260	670	
			LS (Low-speed	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		95	330	μΑ
			main) mode Note 6	V _{DD} = 3.0 V	Resonator connection		145	380	
				fmx = 8 MHz ^{Note 3}	Square wave input		95	330	μΑ
				V _{DD} = 2.0 V	Resonator connection		145	380	
	IDD3 ^{Note 5}	STOP	$T_A = -40^{\circ}C$	T _A = -40°C			0.18	0.50	μΑ
		mode	T _A = +25°C				0.23	0.50	
			T _A = +50°C				0.30	1.10	
			T _A = +70°C				0.46	1.90	
			T _A = +85°C				0.75	3.30	

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator clock is stopped.
 - 4. When high-speed system clock is stopped.
 - 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **6.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

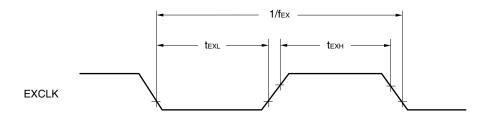

HS (High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz

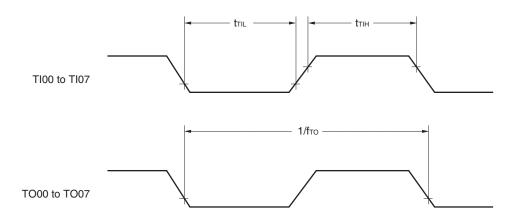

 $V_{DD} = 2.4 \text{ V to } 5.5 \text{ V } @ 1 \text{ MHz to } 16 \text{ MHz}$

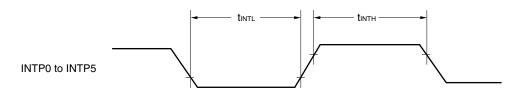
LS (Low speed main) mode: VDD = 1.8 V to 5.5 V @1 MHz to 8 MHz

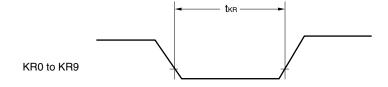

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except STOP mode, temperature condition of the TYP. value is $T_A = 25$ °C.

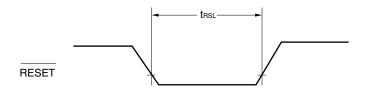
Minimum Instruction Execution Time during Main System Clock Operation




AC Timing Test Point

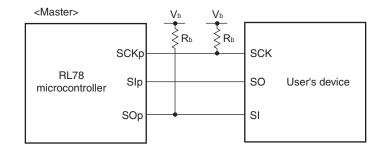

External Main System Clock Timing


TI/TO Timing

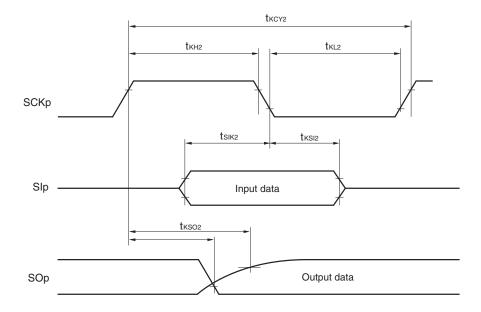

Interrupt Request Input Timing

Key Interrupt Input Timing

RESET Input Timing


(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$


Parameter	Symbol	Conditions HS (high-speed main) Mode		LS (lov main)	Unit		
			MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) Note 1	tsıĸı	$ 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, $ $ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega $	44		110		ns
		$ 2.7 \; V \leq V_{DD} < 4.0 \; V, 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega $	44		110		ns
		$ \begin{aligned} &1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V^{\text{Note 2}}, \\ &C_{b} = 30 \ pF, \ R_{b} = 5.5 \ k\Omega \end{aligned} $	110		110		ns
Slp hold time (from SCKp↓) Note 1	tksii	$ 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, $ $ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega $	19		19		ns
		$ 2.7 \; V \leq V_{DD} < 4.0 \; V, 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega $	19		19		ns
		$\begin{split} 1.8 \ V & \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ C_b & = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$	19		19		ns
Delay time from SCKp↑ to	tkso1	$ 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, $ $ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega $		25		25	ns
SOp output Note 1		$ 2.7 \; V \leq V_{DD} < 4.0 \; V, 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega $		25		25	ns
		$\begin{split} 1.8 \ V & \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ C_b & = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$		25		25	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. Use it with $V_{DD} \ge V_b$.
- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.
- **Remarks 1.** R_b [Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b [F]: Communication line (SCKp, SOp) load capacitance, V_b [V]: Communication line voltage
 - 2. p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

CSI mode connection diagram (during communication at different potential)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

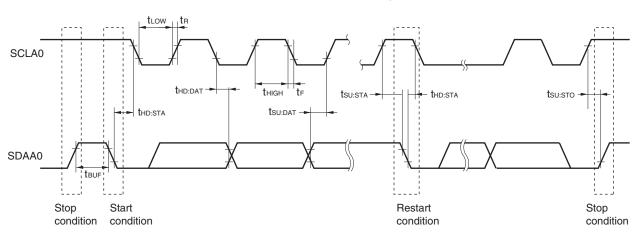
Remark p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

2.5.2 Serial interface IICA

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS	(high-spee	ed main) n	node	Unit
			LS	LS (low-speed main) mode			
			Standa	rd Mode	Fast	Mode	
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode: fclk≥ 3.5 MHz			0	400	kHz
		Normal mode: fclk≥ 1 MHz	0	100			kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μS
Hold time ^{Note 1}	thd:sta		4.0		0.6		μS
Hold time when SCLA0 = "L"	tLOW		4.7		1.3		μS
Hold time when SCLA0 = "H"	tніgн		4.0		0.6		μS
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission) ^{Note 2}	thd:dat		0	3.45	0	0.9	μS
Setup time of stop condition	tsu:sto		4.0		0.6		μS
Bus-free time	tBUF		4.7		1.3		μS

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.


2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution Only in the 30-pin products, the values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IoH1, IoL1, VoH1, VoL1) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Normal mode: C_b = 400 pF, Rb = 2.7 k Ω Fast mode: C_b = 320 pF, Rb = 1.1 k Ω

IICA serial transfer timing

<R>

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Input channel		Reference Voltage	
	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = VDD Reference voltage (-) = Vss	Reference voltage (+) = VBGR Reference voltage (-) = AVREFM
ANI0 to ANI3	Refer to 28.6.1 (1).	Refer to 28.6.1 (3).	Refer to 28.6.1 (4).
ANI16 to ANI22	Refer to 28.6.1 (2).		
Internal reference voltage	Refer to 28.6.1 (1).		-
Temperature sensor output voltage			

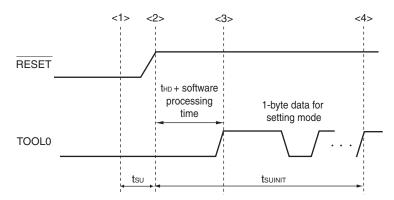
(1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI2, ANI3, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +85°C, 1.8 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution			1.2	±3.5	LSB
		AVREFP = VDD Note 3			1.2	±7.0 Note 4	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI2, ANI3	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
			$1.8~V \leq V_{DD} \leq 5.5~V$	17		39	μS
				57		95	Note 4 LSB 29
		10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: Internal	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μS
		reference voltage, and temperature sensor	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μS
		output voltage (HS (high-speed main) mode)					
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution				±0.25	%FSR
		AVREFP = VDD Note 3				$\pm 0.50^{\text{Note 4}}$	%FSR
Full-scale error ^{Notes 1, 2}	EFS	10-bit resolution				±0.25	%FSR
		AVREFP = VDD Note 3				$\pm 0.50^{\text{Note 4}}$	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution				±2.5	LSB
		AVREFP = VDD Note 3				±5.0 Note 4	LSB
Differential linearity error	DLE	10-bit resolution				±1.5	LSB
Note 1		AVREFP = VDD Note 3				±2.0 Note 4	LSB
Analog input voltage	VAIN	ANI2, ANI3		0		AVREFP	V
		Internal reference voltage (2.4 V ≤ V _{DD} ≤ 5.5 V, HS (high-speed main) mode)			VBGR Note 5		V
		'	Temperature sensor output voltage (2.4 V ≤ V _{DD} ≤ 5.5 V, HS (high-speed main) mode)			5	V

(Notes are listed on the next page.)

2.9 Dedicated Flash Memory Programmer Communication (UART)


 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

2.10 Timing of Entry to Flash Memory Programming Modes

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset are released before external reset release			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset are released before external reset release	10			μS
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tнo	POR and LVD reset are released before external reset release	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.

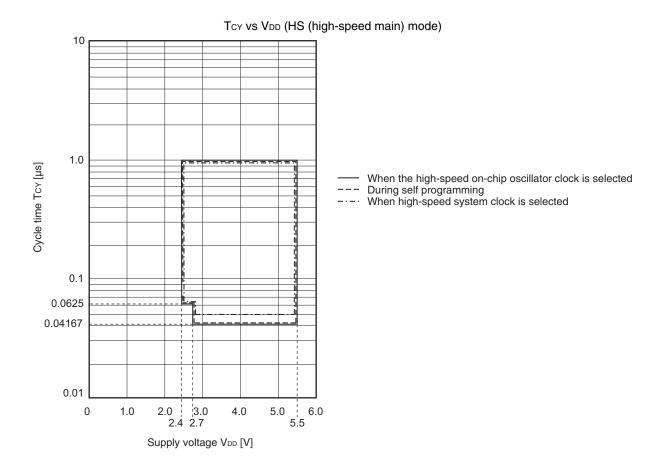
 t_{SU} : Time to release the external reset after the TOOL0 pin is set to the low level

thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

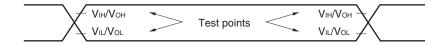
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(3/4)

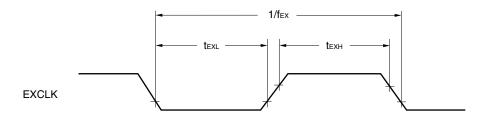
Parameter	Symbol	Condition	S	MIN.	TYP.	MAX.	Unit
Input voltage, high	V _{IH1}	Normal input buffer	0.8V _{DD}		V_{DD}	V	
		20-, 24-pin products: P00 to P03 ^{Note 2} , P10 to P14, P40 to P42					
		30-pin products: P00, P01, P1 P40, P50, P51, P120, P147	0 to P17, P30, P31,				
	V _{IH2}	TTL input buffer	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	2.2		V _{DD}	٧
		20-, 24-pin products: P10, P11	$3.3 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	2.0		V _{DD}	٧
		30-pin products: P01, P10, P11, P13 to P17	2.4 V ≤ V _{DD} < 3.3 V	1.5		V _{DD}	V
	VIH3	Normal input buffer P20 to P23		0.7V _{DD}		V _{DD}	V
	V _{IH4}	P60, P61	0.7V _{DD}		6.0	V	
	V _{IH5}	P121, P122, P125 ^{Note 1} , P137, I	0.8V _{DD}		V_{DD}	٧	
Input voltage, low	V _{IL1}	Normal input buffer		0		0.2V _{DD}	V
		20-, 24-pin products: P00 to P03 ^{Note 2} , P10 to P14, P40 to P42					
		30-pin products: P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147					
	V _{IL2}	TTL input buffer	$4.0~V \leq V_{DD} \leq 5.5~V$	0		0.8	V
		20-, 24-pin products: P10, P11	$3.3 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	0		0.5	٧
		30-pin products: P01, P10, P11, P13 to P17	2.4 V ≤ V _{DD} < 3.3 V	0		0.32	V
	V _{IL3}	P20 to P23		0		0.3V _{DD}	٧
	V _{IL4}	P60, P61		0		0.3V _{DD}	٧
	V _{IL5}	P121, P122, P125 ^{Note 1} , P137, I	EXCLK, RESET	0		0.2V _{DD}	V
Output voltage, high	V _{OH1}	20-, 24-pin products: P00 to P03 ^{Note 2} , P10 to P14,	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ Iон1 = -3.0 mA	V _{DD} -0.7			V
		P40 to P42 30-pin products:	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -2.0 \text{ mA}$	V _{DD} -0.6			V
		P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147	$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $I_{OH1} = -1.5 \text{ mA}$	V _{DD} -0.5			V
	V _{OH2}	P20 to P23	Іон2 = -100 μΑ	V _{DD} -0.5			V


Notes 1. 20, 24-pin products only.

2. 24-pin products only.


Caution The maximum value of V_{IH} of pins P10 to P12 and P41 for 20-pin products, P01, P10 to P12, and P41 for 24-pin products, and P00, P10 to P15, P17, and P50 for 30-pin products is V_{DD} even in N-ch open-drain mode. High level is not output in the N-ch open-drain mode.

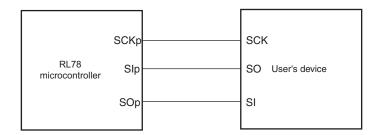
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.


Minimum Instruction Execution Time during Main System Clock Operation

AC Timing Test Point

External Main System Clock Timing

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)


 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-speed	Unit	
				MIN.	MAX.	
SCKp cycle time Note4	tkcy2	$4.0~V \leq V_{DD} \leq 5.5~V$	20 MHz < fмск	16/fмск		ns
			fмcк ≤ 20 MHz	12/fмск		ns
		$2.7~V \leq V_{DD} \leq 5.5~V$	16 MHz < fмск	16/fмск		ns
			fмcк ≤ 16 MHz	12/fмск		ns
		$2.4~V \leq V_{DD} \leq 5.5~V$		12/fмск		ns
				and 1000		
SCKp high-/low-level width	tĸн2,	$4.0~V \leq V_{DD} \leq 5.5~V$	tксү2/2-14		ns	
	t _{KL2}	$2.7~V \leq V_{DD} \leq 5.5~V$		tксү2/2–16		ns
		$2.4~V \leq V_{DD} \leq 5.5~V$		tксү2/2-36		ns
SIp setup time (to SCKp↑)	tsik2	$2.7~V \leq V_{DD} \leq 5.5~V$		1/fмск + 40		ns
Note 1		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	1/fмск + 60		ns	
Slp hold time (from SCKp [↑]) Note 2	t _{KSI2}			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output Note 3	tkso2	C = 30 pF Note4	$2.7~V \leq V_{DD} \leq 5.5~V$		2/fмcк + 66	ns
			$2.4~V \leq V_{DD} \leq 5.5~V$		2/fмcк + 113	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp and SCKp pins and the normal output mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).

CSI mode connection diagram (during communication at same potential)

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

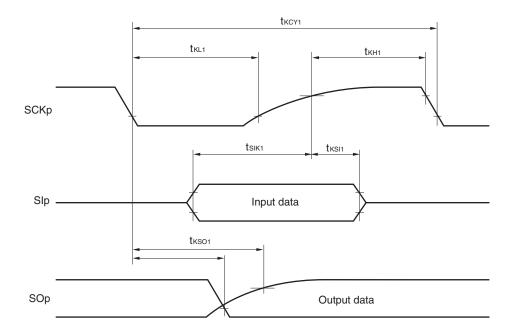
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter Symbol		Conditions		HS (high-speed main) Mode		
			MIN.	MAX.		
Transfer rate Note4		Reception	$4.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V}$		fMCK/12 Note 1	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		2.0	Mbps
			$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$		fMCK/12 Note 1	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note \ 2}$		2.0	Mbps
		$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$		fMCK/12 Note 1	bps	
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note \ 2}$		2.0	Mbps
Transmission	Transmission	$4.0 \text{ V} \le V_{DD} \le 5.5 \text{ V},$ $2.7 \text{ V} \le V_b \le 4.0 \text{ V}$		Note 3	bps	
	Theoretical value of the maximum transfer rate $C_b = 50$ pF, $R_b = 1.4$ k Ω , $V_b = 2.7$ V		2.0 Note 4	Mbps		
			$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$		Note 5	bps
	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$		1.2 Note 6	Mbps		
			$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$		Notes 2, 7	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$		0.43 Note 8	Mbps

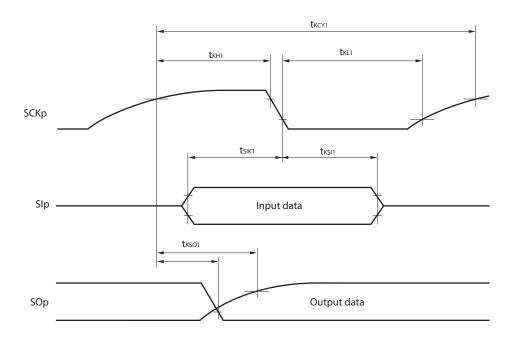
Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 5.5 V)


16 MHz (2.4 V
$$\leq$$
 V_{DD} \leq 5.5 V)

3. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.


Expression for calculating the transfer rate when 4.0 V \leq VDD \leq 5.5 V and 2.7 V \leq Vb \leq 4.0 V

$$\label{eq:maximum transfer rate} \text{Maximum transfer rate} = \frac{1}{\{-C_b \times R_b \times \text{ln } (1-\frac{2.2}{V_b})\} \times 3} \text{ [bps]}$$

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-spe	Unit	
				MIN.	MAX.	
SCKp cycle time Note 1	tkcy2	$4.0~V \leq V_{DD} \leq 5.5~V,$	20 MHz < fмcк ≤ 24 MHz	24/fмск		ns
		$2.7~V \leq V_b \leq 4.0~V$	8 MHz < fмск ≤ 20 MHz	20/fмск		ns
			4 MHz < fмcк ≤ 8 MHz	16/fмск		ns
			fmck ≤ 4 MHz	12/fмск		ns
		$2.7 \text{ V} \le V_{DD} < 4.0 \text{ V},$	20 MHz < fмcк ≤ 24 MHz	32/fмск		ns
		$2.3~V \leq V_b \leq 2.7~V$	16 MHz < fмcк ≤ 20 MHz	28/fмск		ns
			8 MHz < fмск ≤ 16 MHz	24/fмск		ns
			4 MHz < fмcк ≤ 8 MHz	16/fмск		ns
			fmck ≤ 4 MHz	12/fмск		ns
		$2.4 \text{ V} \le V_{DD} < 3.3 \text{ V},$	20 MHz < fмcк ≤ 24 MHz	72/fмск		ns
		$1.6~V \leq V_b \leq 2.0~V$	16 MHz < fмcк ≤ 20 MHz	64/fмск		ns
			8 MHz < fмск ≤ 16 MHz	52/fмск		ns
			4 MHz < fмcк ≤ 8 MHz	32/fмск		ns
			fmck ≤ 4 MHz	20/fмск		ns
SCKp high-/low-level	tкн2, tкL2	$4.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, 2.0$	$7~V \leq V_b \leq 4.0~V$	tkcy2/2 - 24		ns
width		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}, 2.0 \text{ V}$	$3~V \leq V_b \leq 2.7~V$	tkcy2/2 - 36		ns
		$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V}, 1.0 $	$6~V \leq V_b \leq 2.0~V$	tkcy2/2 - 100		ns
SIp setup time	tsık2	$4.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, 2.00 \le 5.5 \text{ V}$	$7 \text{ V} \leq V_{DD} \leq 4.0 \text{ V}$	1/fmck + 40		ns
(to SCKp↑) Note 2		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}, 2.0 \text{ V}$	$3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}$	1/fmck + 40		ns
		$2.4~V \le V_{DD} < 3.3~V,~1.6~V \le V_{DD} \le 2.0~V$		1/fmck + 60		ns
SIp hold time (from SCKp↑) Note 3	tksi2			1/fmck + 62		ns
Delay time from SCKp↓ to	tkso2	$4.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, 2.$	$7 \text{ V} \leq V_b \leq 4.0 \text{ V},$		2/fмск +	ns
SOp output Note 4		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}$	Ω		240	
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}, 2.0 \text{ V}$	$3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$		2/fмск +	ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}$	Ω		428	
		2.4 V ≤ V _{DD} < 3.3 V, 1.	$6 \text{ V} \leq \overline{\text{V}_b \leq 2.0 \text{ V}},$		2/fмск +	ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}$	Ω		1146	

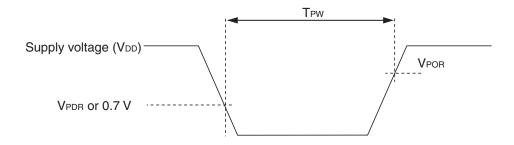
Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

- 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow^n$ when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp1" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- Cautions 1. Select the TTL input buffer for the SIp and SCKp pins and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.

3.6.2 Temperature sensor/internal reference voltage characteristics

(T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, HS (high-speed main) mode


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	V _{TMPS25}	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	V _{BGR}	Setting ADS register = 81H	1.38	1.45	1.50	V
Temperature coefficient	Fvтмps	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μS

3.6.3 POR circuit characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.45	1.51	1.57	V
	V _{PDR}	Power supply fall time	1.44	1.50	1.56	V
Minimum pulse width Note	T _{PW}		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{PDR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

3.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(Ta = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection supply voltage	V _{LVD0}	Power supply rise time	3.90	4.06	4.22	٧
		Power supply fall time	3.83	3.98	4.13	٧
	V _{LVD1}	Power supply rise time	3.60	3.75	3.90	٧
		Power supply fall time	3.53	3.67	3.81	٧
	V _{LVD2}	Power supply rise time	3.01	3.13	3.25	٧
		Power supply fall time	2.94	3.06	3.18	٧
	V LVD3	Power supply rise time	2.90	3.02	3.14	٧
		Power supply fall time	2.85	2.96	3.07	٧
	V _{LVD4}	Power supply rise time	2.81	2.92	3.03	٧
		Power supply fall time	2.75	2.86	2.97	٧
	V _{LVD5}	Power supply rise time	2.70	2.81	2.92	٧
		Power supply fall time	2.64	2.75	2.86	٧
	V _{LVD6}	Power supply rise time	2.61	2.71	2.81	٧
		Power supply fall time	2.55	2.65	2.75	٧
	V _{LVD7}	Power supply rise time	2.51	2.61	2.71	٧
		Power supply fall time	2.45	2.55	2.65	٧
Minimum pulse width	tıw		300			μs
Detection delay time					300	μS