

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

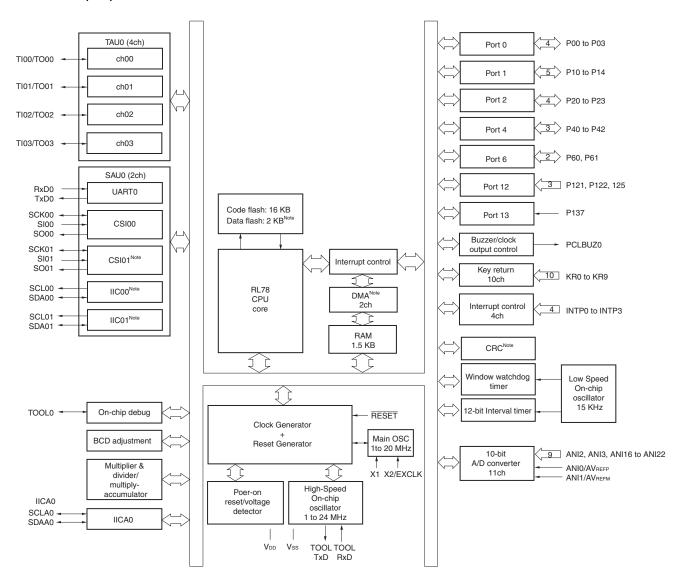
Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	30-LSSOP (0.240", 6.10mm Width)
Supplier Device Package	30-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f103aaasp-v0

RL78/G12 1. OUTLINE

Table 1-1. List of Ordering Part Numbers

Pin Package Data flash Part Number count Application R5F1026AASP#V5, R5F10269ASP#V5, R5F10268ASP#V5, R5F10267ASP#V5, 20 20-pin plastic Mounted < R> pins LSSOP R5F10266ASP#V5 R5F1026AASP#X5, R5F10269ASP#X5, R5F10268ASP#X5, R5F10267ASP#X5, $(4.4 \times 6.5 \text{ mm},$ 0.65 mm pitch) R5F10266ASP#X5 D R5F1026ADSP#V5, R5F10269DSP#V5, R5F10268DSP#V5, R5F10267DSP#V5, R5F10266DSP#V5 R5F1026ADSP#X5, R5F10269DSP#X5, R5F10268DSP#X5, R5F10267DSP#X5, R5F10266DSP#X5 G R5F1026AGSP#V5, R5F10269GSP#V5, R5F10268GSP#V5, R5F10267GSP#V5, R5F10266GSP#V5 R5F1026AGSP#X5, R5F10269GSP#X5, R5F10268GSP#X5, R5F10267GSP#X5, B5F10266GSP#X5 R5F1036AASP#V5, R5F10369ASP#V5, R5F10368ASP#V5, R5F10367ASP#V5, Not mounted R5F10366ASP#V5 R5F1036AASP#X5, R5F10369ASP#X5, R5F10368ASP#X5, R5F10367ASP#X5, R5F10366ASP#X5 D R5F1036ADSP#V5, R5F10369DSP#V5, R5F10368DSP#V5, R5F10367DSP#V5, R5F10366DSP#V5 R5F1036ADSP#X5, R5F10369DSP#X5, R5F10368DSP#X5, R5F10367DSP#X5, R5F10366DSP#X5 24 24-pin plastic Mounted R5F1027AANA#U5, R5F10279ANA#U5, R5F10278ANA#U5, R5F10277ANA#U5 Α <R> **HWQFN** pins R5F1027AANA#W5, R5F10279ANA#W5, R5F10278ANA#W5, $(4 \times 4 \text{ mm}, 0.5)$ R5F10277ANA#W5 mm pitch) D R5F1027ADNA#U5, R5F10279DNA#U5, R5F10278DNA#U5, R5F10277DNA#U5 R5F1027ADNA#W5, R5F10279DNA#W5, R5F10278DNA#W5, R5F10277DNA#W5 G R5F1027AGNA#U5, R5F10279GNA#U5, R5F10278GNA#U5, R5F10277GNA#U5 R5F1027AGNA#W5, R5F10279GNA#W5, R5F10278GNA#W5, R5F10277GNA#W5 Not mounted Α R5F1037AANA#V5, R5F10379ANA#V5, R5F10378ANA#V5, R5F10377ANA#V5 R5F1037AANA#X5, R5F10379ANA#X5, R5F10378ANA#X5, R5F10377ANA#X5 D R5F1037ADNA#V5, R5F10379DNA#V5, R5F10378DNA#V5, R5F10377DNA#V5 R5F1037ADNA#X5, R5F10379DNA#X5, R5F10378DNA#X5, R5F10377DNA#X5 R5F102AAASP#V0, R5F102A9ASP#V0, R5F102A8ASP#V0, R5F102A7ASP#V0 30 30-pin plastic Mounted Α LSSOP R5F102AAASP#X0, R5F102A9ASP#X0, R5F102A8ASP#X0, R5F102A7ASP#X0 pins (7.62 mm D R5F102AADSP#V0, R5F102A9DSP#V0, R5F102A8DSP#V0, R5F102A7DSP#V0 (300), 0.65 mm R5F102AADSP#X0, R5F102A9DSP#X0, R5F102A8DSP#X0, R5F102A7DSP#X0 pitch) G R5F102AAGSP#V0. R5F102A9GSP#V0. R5F102A8GSP#V0. R5F102A7GSP#V0 R5F102AAGSP#X0, R5F102A9GSP#X0, R5F102A8GSP#X0, R5F102A7GSP#X0 R5F103AAASP#V0, R5F103A9ASP#V0, R5F103A8ASP#V0, R5F103A7ASP#V0 Not mounted Α R5F103AAASP#X0, R5F103A9ASP#X0, R5F103A8ASP#X0, R5F103A7ASP#X0 R5F103AADSP#V0. R5F103A9DSP#V0. R5F103A8DSP#V0. R5F103A7DSP#V0 D R5F103AADSP#X0, R5F103A9DSP#X0, R5F103A8DSP#X0, R5F103A7DSP#X0


Note For fields of application, see Figure 1-1 Part Number, Memory Size, and Package of RL78/G12.

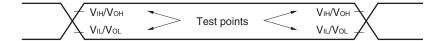
Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

RL78/G12 1. OUTLINE

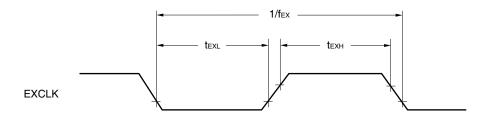
1.6.2 24-pin products

Note Provided only in the R5F102 products.

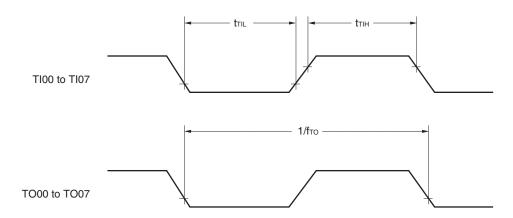
RL78/G12 1. OUTLINE

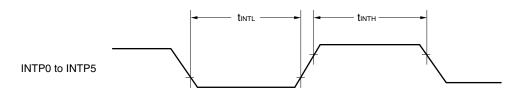

(2/2)

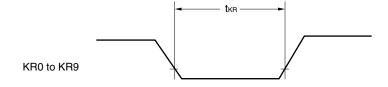
Item		20-	-pin	24-	-pin	30-	-pin				
		R5F1026x	R5F1036x	R5F1027x	R5F1037x	R5F102Ax	R5F103Ax				
Clock output/buzzer ou	ıtput			1		- 1	2				
		2.44 kHz to 10	MHz: (Peripher	al hardware cloc	ck: fmain = 20 MH	z operation)					
8/10-bit resolution A/D	converter		11 ch	annels		8 cha	ınnels				
Serial interface		[R5F1026x (20)-pin), R5F1027	x (24-pin)]							
		CSI: 2 chann	nels/Simplified I ²	C: 2 channels/U	ART: 1 channel						
		[R5F102Ax (30-pin)]									
		CSI: 1 channel/Simplified I ² C: 1 channel/UART: 1 channel									
		CSI: 1 chann	nel/Simplified I ² C	C: 1 channel/UAF	RT: 1 channel						
		CSI: 1 chann	nel/Simplified I ² C	C: 1 channel/UAF	RT: 1 channel						
		[R5F1036x (20	[R5F1036x (20-pin), R5F1037x (24-pin)]								
		CSI: 1 chann	CSI: 1 channel/Simplified I ² C: 0 channel/UART: 1 channel								
		[R5F103Ax (30-pin)]									
		CSI: 1 channel/Simplified I ² C: 0 channel/UART: 1 channel									
	I ² C bus			1 cha	annel						
Multiplier and divider/m	nultiply-	• 16 bits × 16 bits = 32 bits (unsigned or signed)									
accumulator		• 32 bits × 32 l	• 32 bits × 32 bits = 32 bits (unsigned)								
		• 16 bits × 16 l	• 16 bits × 16 bits + 32 bits = 32 bits (unsigned or signed)								
DMA controller	1	2 channels	_	2 channels	_	2 channels	_				
Vectored interrupt	Internal	18	16	18	16	26	19				
sources	External			5		(6				
Key interrupt		(6	1	0	_					
Reset		 Internal rese Internal rese Internal rese Internal rese Internal rese 	 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution Note Internal reset by RAM parity error Internal reset by illegal-memory access 								
Power-on-reset circuit			Power-on-reset: 1.51 V (TYP) Power-down-reset: 1.50 V (TYP)								
Voltage detector		Rising edge	: 1.88 to 4.06 V	(12 stages)							
		Falling edge	• Falling edge : 1.84 to 3.98 V (12 stages)								
On-chip debug function	n	Provided									
Power supply voltage		$V_{DD} = 1.8 \text{ to } 5.$	$V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$								
Operating ambient tem	perature	$T_A = -40 \text{ to } +80$ (G: Industrial a	,	er applications,	D: Industrial app	olications), T _A = -	-40 to +105°C				


Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.


AC Timing Test Point


External Main System Clock Timing


TI/TO Timing


Interrupt Request Input Timing

Key Interrupt Input Timing

RESET Input Timing

(2) During communication at same potential (CSI mode) (master mode, SCK00... internal clock output, corresponding CSI00 only)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-spo	,	LS (low-sp	,	Unit
			MIN.	MAX.	MIN.	MAX.	
SCK00 cycle time	tkCY1	tkcy1 ≥ 2/fclk	83.3		250		ns
SCK00 high-/low-	t кн1,	$4.0~V \leq V_{DD} \leq 5.5~V$	tkcy1/2-7		tkcy1/2-50		ns
level width t _{KL1}	$2.7~V \leq V_{DD} \leq 5.5~V$	tkcy1/2-10		tkcy1/2-50		ns	
SI00 setup time	tsıĸı	$4.0~V \leq V_{DD} \leq 5.5~V$	23		110		ns
(to SCK00↑) Note 1		$2.7~V \leq V_{DD} \leq 5.5~V$	33		110		ns
SI00 hold time (from SCK00↑) Note2	tksi1		10		10		ns
Delay time from SCK00↓ to SO00 output Note 3	tkso1	C = 20 pF Note 4		10		10	ns

- **Notes 1.** When DAP00 = 0 and CKP00 = 0, or DAP00 = 1 and CKP00 = 1. The SI00 setup time becomes "to $SCK00\downarrow$ " when DAP00 = 0 and CKP00 = 1, or DAP00 = 1 and CKP00 = 0.
 - 2. When DAP00 = 0 and CKP00 = 0, or DAP00 = 1 and CKP00 = 1. The SI00 hold time becomes "from SCK00 \downarrow " when DAP00 = 0 and CKP00 = 1, or DAP00 = 1 and CKP00 = 0.
 - 3. When DAP00 = 0 and CKP00 = 0, or DAP00 = 1 and CKP00 = 1. The delay time to SO00 output becomes "from SCK00 \uparrow " when DAP00 = 0 and CKP00 = 1, or DAP00 = 1 and CKP00 = 0.
 - 4. C is the load capacitance of the SCK00 and SO00 output lines.

Caution Select the normal input buffer for the SI00 pin and the normal output mode for the SO00 and SCK00 pins by using port input mode register 1 (PIM1) and port output mode register 1 (POM1).

Remarks 1. This specification is valid only when CSI00's peripheral I/O redirect function is not used.

 fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register 0 (SPS0) and the CKS00 bit of serial mode register 00 (SMR00).)

- This value as an example is calculated when the conditions described in the "Conditions" column are met.
 Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
- **6.** The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq VDD < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

$$\text{Baud rate error (theoretical value)} = \frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\}}{\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 6** above to calculate the maximum transfer rate under conditions of the customer.
- 8. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq V_{DD} < 3.3 V, 1.6 V \leq V_b \leq 2.0 V

$$\label{eq:maximum transfer rate} \text{Maximum transfer rate} = \frac{1}{\{-C_b \times R_b \times \text{In } (1-\frac{1.5}{V_b})\} \times 3} \quad \text{[bps]}$$

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{\frac{1}{(\text{Transfer rate}) \times \text{Number of transferred bits}}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **9.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 8** above to calculate the maximum transfer rate under conditions of the customer.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM (ADREFM = 1), target pin: ANI0, ANI2, ANI3, and ANI16 to ANI22

(Ta = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = VBGR Note 3, Reference voltage (-) = AVREFM Note 4 = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		bit
Conversion time	tconv	8-bit resolution	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	8-bit resolution			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution			±1.0	LSB
Analog input voltage	VAIN		0		VBGR Note 3	V

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - 3. Refer to 28.6.2 Temperature sensor/internal reference voltage characteristics.
 - **4.** When reference voltage (–) = Vss, the MAX. values are as follows.

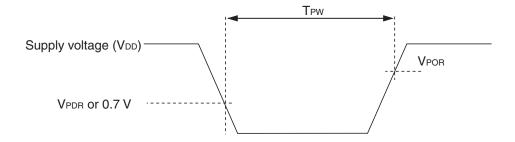
Zero-scale error: Add ±0.35%FSR to the MAX. value when reference voltage (-) = AVREFM.

Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (–) = AVREFM.

Differential linearity error: Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

2.6.2 Temperature sensor/internal reference voltage characteristics

(T_A = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, HS (high-speed main) mode


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	V _{TMPS25}	Setting ADS register = 80H, TA = +25°C		1.05		٧
Internal reference voltage	V _{BGR}	Setting ADS register = 81H	1.38	1.45	1.50	V
Temperature coefficient	FVTMPS	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tамр		5			μS

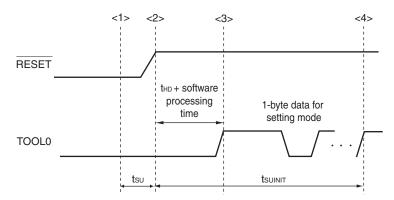
2.6.3 POR circuit characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

<u>, </u>						
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	Vpor	V _{POR} Power supply rise time		1.51	1.55	٧
	V _{PDR}	Power supply fall time	1.46	1.50	1.54	٧
Minimum pulse width Note	T _{PW}		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{PDR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

2.9 Dedicated Flash Memory Programmer Communication (UART)


 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

2.10 Timing of Entry to Flash Memory Programming Modes

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset are released before external reset release			100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	tsu	POR and LVD reset are released before external reset release	10			μS
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tнo	POR and LVD reset are released before external reset release	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.

 t_{SU} : Time to release the external reset after the TOOL0 pin is set to the low level

thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

3.3.2 Supply current characteristics

(1) 20-, 24-pin products

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit						
Supply	I _{DD1}	Operating	HS (High-speed	f⊪ = 24 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		1.5		mA						
current ^{Note 1}		mode	main) mode Note 4		operation	V _{DD} = 3.0 V		1.5								
					Normal	V _{DD} = 5.0 V		3.3	5.3	mA						
					operation	V _{DD} = 3.0 V		3.3	5.3							
				f⊩ = 16 MHz ^{Note 3}		V _{DD} = 5.0 V		2.5	3.9	mA						
						V _{DD} = 3.0 V		2.5	3.9							
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$		Square wave input		2.8	4.7	mA						
				V _{DD} = 5.0 V	$V_{DD} = 5.0 \text{ V}$	$V_{DD} = 5.0 \text{ V}$	$V_{DD} = 5.0 \text{ V}$	$V_{DD} = 5.0 \text{ V}$	$V_{DD} = 5.0 \text{ V}$	$V_{DD} = 5.0 \text{ V}$		Resonator connection		3.0	4.8	
					1		$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$		Square wave input		2.8	4.7	mA			
								$V_{DD} = 3.0 \text{ V}$		Resonator connection		3.0	4.8			
				fmx = 10 MHz ^{Note 2} ,		Square wave input		1.8	2.8	mA						
				$V_{DD} = 5.0 \text{ V}$		Resonator connection		1.8	2.8							
				fmx = 10 MHz ^{Note 2} ,		Square wave input		1.8	2.8	mA						
				$V_{DD} = 3.0 \text{ V}$		Resonator connection		1.8	2.8							

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator clock is stopped.
 - 3. When high-speed system clock is stopped
 - **4.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

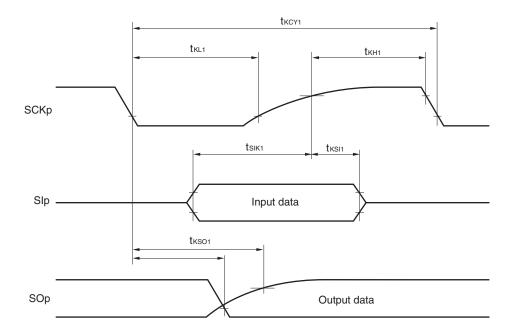
HS(High speed main) mode: $V_{DD} = 2.7 \text{ V to } 5.5 \text{ V } @ 1 \text{ MHz to } 24 \text{ MHz}$ $V_{DD} = 2.4 \text{ V to } 5.5 \text{ V } @ 1 \text{ MHz to } 16 \text{ MHz}$

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$.

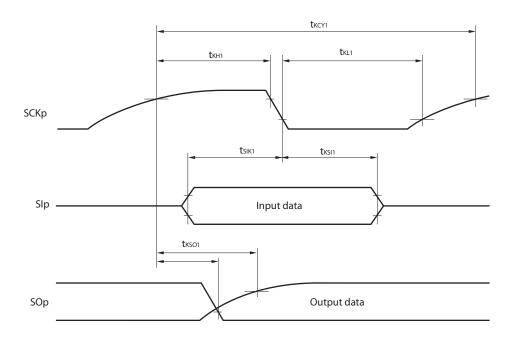
(2) 30-pin products

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

(1/2)

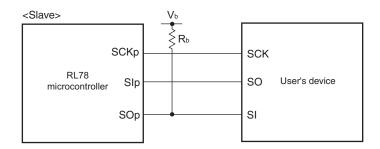

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit		
Supply	I _{DD1}	Operating	HS (High-speed	f _{IH} = 24 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		1.5		mA		
current ^{Note 1}		mode	main) mode ^{№1}		operation	V _{DD} = 3.0 V		1.5				
					Normal	V _{DD} = 5.0 V		3.7	5.8	mA		
					operation	V _{DD} = 3.0 V		3.7	5.8			
				fin = 16 MHz ^{Note 3}		V _{DD} = 5.0 V		2.7	4.2	mA		
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$	V _{DD} = 3.0 V		2.7	4.2				
						Square wave input		3.0	4.9	mA		
						Resonator connection		3.2	5.0			
				$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$		Square wave input		3.0	4.9	mA		
						$V_{DD} = 3.0 \text{ V}$		Resonator connection		3.2	5.0	
				$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		1.9	2.9	mA		
				$V_{DD} = 5.0 \text{ V}$		Resonator connection		1.9	2.9			
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$		Square wave input		1.9	2.9	mA		
				$V_{DD} = 3.0 \text{ V}$		Resonator connection		1.9	2.9			

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed on-chip oscillator clock is stopped.
 - 3. When high-speed system clock is stopped
 - **4.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

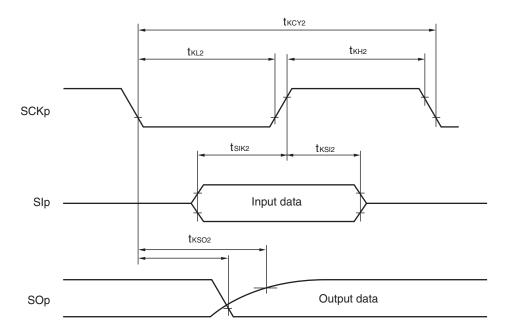

HS(High speed main) mode: $V_{DD} = 2.7 \text{ V to } 5.5 \text{ V} @ 1 \text{ MHz to } 24 \text{ MHz}$ $V_{DD} = 2.4 \text{ V to } 5.5 \text{ V} @ 1 \text{ MHz to } 16 \text{ MHz}$

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$.

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1)

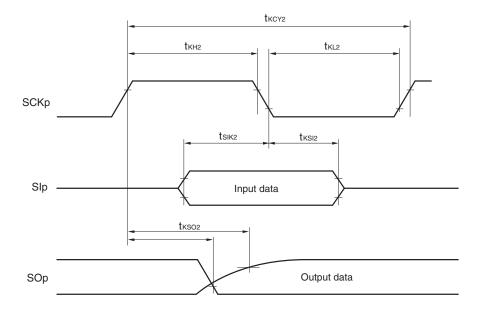


CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

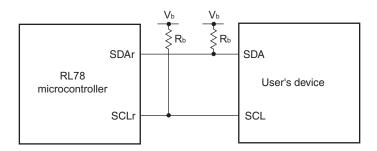


Remark p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

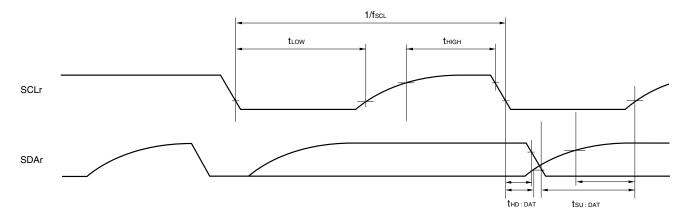
CSI mode connection diagram (during communication at different potential)


CSI mode serial transfer timing (slave mode) (during communication at different potential)
(When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remarks 1. R_b [Ω]: Communication line (SOp) pull-up resistance, C_b [F]: Communication line (SOp) load capacitance, V_b [V]: Communication line voltage


- 2. p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)
- fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn))

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)



Remark p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

Simplified I²C mode connection diagram (during communication at different potential)

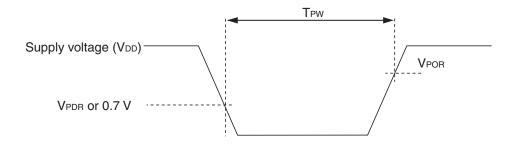
Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** Rb $[\Omega]$: Communication line (SDAr, SCLr) pull-up resistance, Cb [F]: Communication line (SDAr, SCLr) load capacitance, Vb [V]: Communication line voltage
 - **2.** r: IIC Number (r = 00, 20)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number (m = 0,1), n: Channel number (n = 0)

3.6.2 Temperature sensor/internal reference voltage characteristics

(T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, HS (high-speed main) mode


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	V _{TMPS25}	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	V _{BGR}	Setting ADS register = 81H	1.38	1.45	1.50	V
Temperature coefficient	Fvтмps	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μS

3.6.3 POR circuit characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

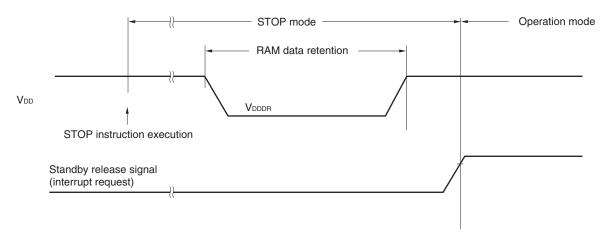
Parameter	Symbol	Symbol Conditions		TYP.	MAX.	Unit
Detection voltage	VPOR	POR Power supply rise time		1.51	1.57	V
	V _{PDR}	Power supply fall time	1.44	1.50	1.56	V
Minimum pulse width Note	T _{PW}		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{PDR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

3.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(Ta = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection supply voltage	V _{LVD0}	Power supply rise time	3.90	4.06	4.22	٧
		Power supply fall time	3.83	3.98	4.13	٧
	V _{LVD1}	Power supply rise time	3.60	3.75	3.90	٧
		Power supply fall time	3.53	3.67	3.81	٧
	V _{LVD2}	Power supply rise time	3.01	3.13	3.25	٧
		Power supply fall time	2.94	3.06	3.18	٧
	V LVD3	Power supply rise time	2.90	3.02	3.14	٧
		Power supply fall time	2.85	2.96	3.07	٧
	V _{LVD4}	Power supply rise time	2.81	2.92	3.03	٧
		Power supply fall time	2.75	2.86	2.97	٧
	V LVD5	Power supply rise time	2.70	2.81	2.92	٧
		Power supply fall time	2.64	2.75	2.86	٧
	V _{LVD6}	Power supply rise time	2.61	2.71	2.81	٧
		Power supply fall time	2.55	2.65	2.75	٧
	V LVD7	Power supply rise time	2.51	2.61	2.71	٧
		Power supply fall time	2.45	2.55	2.65	٧
Minimum pulse width	tuw		300			μs
Detection delay time					300	μS

<R> 3.7 RAM Data Retention Characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	V _{DDDR}		1.44 Note		5.5	V

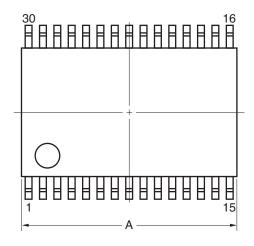
<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

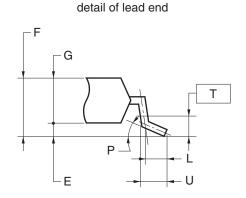
3.8 Flash Memory Programming Characteristics

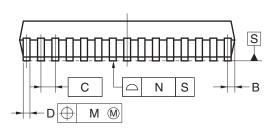
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}. 2.4 \text{ V} < V_{DD} < 5.5 \text{ V}. \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclk		1		24	MHz
Code flash memory rewritable times	Cerwr	Retained for 20 years TA = 85°C Notes 4	1,000			Times
Data flash memory rewritable times		Retained for 1 year TA = 25°C Notes 4		1,000,000		
		Retained for 5 years TA = 85°C Notes 4	100,000			
		Retained for 20 years TA = 85°C Notes 4	10,000			

- **Notes 1.** 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
 - 2. When using flash memory programmer and Renesas Electronics self programming library
 - **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.
 - 4. This temperature is the average value at which data are retained.

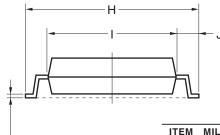



<R>


4.3 30-pin products

R5F102AAASP, R5F102A9ASP, R5F102A8ASP, R5F102A7ASP R5F103AAASP, R5F103A9ASP, R5F103A8ASP, R5F103A7ASP R5F102AADSP, R5F102A9DSP, R5F102A8DSP, R5F102A7DSP R5F103AADSP, R5F103A9DSP, R5F103A8DSP, R5F103A7DSP R5F102AAGSP, R5F102A9GSP, R5F102A8GSP, R5F102A7GSP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP30-0300-0.65	PLSP0030JB-B	S30MC-65-5A4-3	0.18



NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

Κ

ITEM	MILLIMETERS
Α	9.85±0.15
В	0.45 MAX.
С	0.65 (T.P.)
D	$0.24^{+0.08}_{-0.07}$
Е	0.1±0.05
F	1.3±0.1
G	1.2
Н	8.1±0.2
I	6.1±0.2
J	1.0±0.2
K	0.17±0.03
L	0.5
М	0.13
N	0.10
Р	3°+5°
Т	0.25
U	0.6±0.15

©2012 Renesas Electronics Corporation. All rights reserved.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below

"Standard": Computers: office equipment: communications equipment: test and measurement equipment: audio and visual equipment: home electronic appliances: machine tools: personal electronic equipment: and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics
- nt may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information

California Eastern Laboratories, Inc.

4590 Patrick Henry Drive, Santa Clara, California 95054-1817, U.S.A Tel: +1-408-919-2500, Fax: +1-408-988-0279

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141