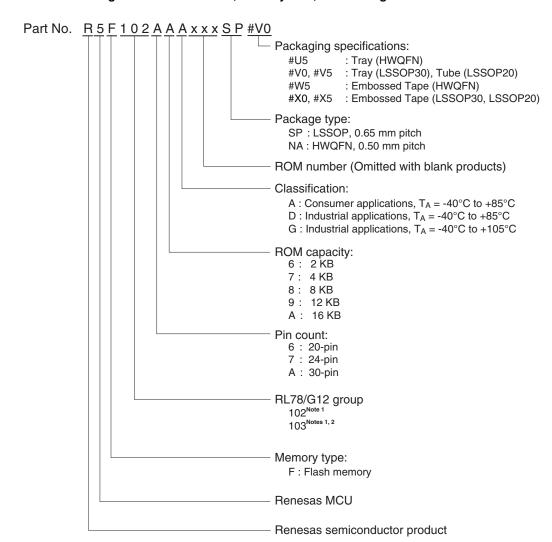


Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	30-LSSOP (0.240", 6.10mm Width)
Supplier Device Package	30-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f103aaasp-x0

1.2 List of Part Numbers

<R>

Figure 1-1. Part Number, Memory Size, and Package of RL78/G12

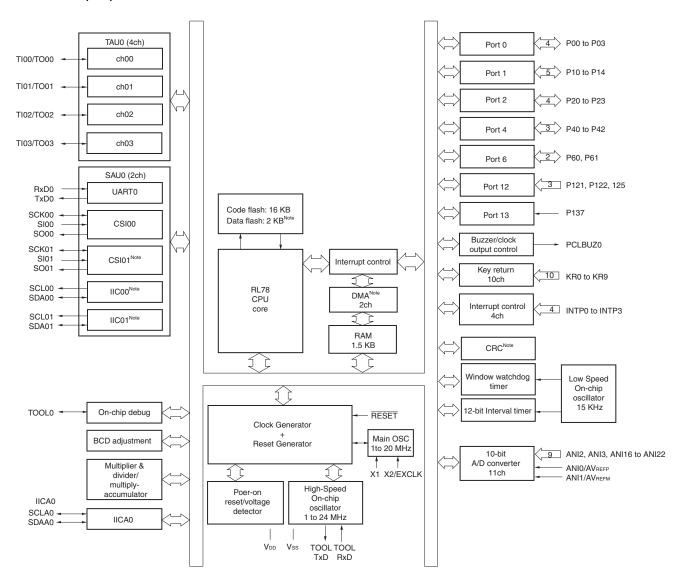
- Notes 1. For details about the differences between the R5F102 products and the R5F103 products of RL78/G12, see 1.1 Differences between the R5F102 Products and the R5F103 Products.
 - 2. Products only for "A: Consumer applications ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)" and "D: Industrial applications ($T_A = -40 \text{ to } +85^{\circ}\text{C}$)"

1.3 Differences between the R5F102 Products and the R5F103 Products

The following are differences between the R5F102 products and the R5F103 products.

- O Whether the data flash memory is mounted or not
- O High-speed on-chip oscillator oscillation frequency accuracy
- O Number of channels in serial interface
- O Whether the DMA function is mounted or not
- O Whether a part of the safety functions are mounted or not

1.3.1 Data Flash


The data flash memory of 2 KB is mounted on the R5F102 products, but not on the R5F103 products.

Product	Data Flash
R5F102 products	2KB
R5F1026A, R5F1027A, R5F102AA,	
R5F10269, R5F10279, R5F102A9,	
R5F10268, R5F10278, R5F102A8,	
R5F10267, R5F10277, R5F102A7,	
R5F10266 Note	
R5F103 products	Not mounted
R5F1036A, R5F1037A, R5F103AA,	
R5F10369, R5F10379, R5F103A9,	
R5F10368, R5F10378 R5F103A8,	
R5F10367, R5F10377, R5F103A7,	
R5F10366	

Note The RAM in the R5F10266 has capacity as small as 256 bytes. Depending on the customer's program specification, the stack area to execute the data flash library may not be kept and data may not be written to or erased from the data flash memory.

Caution When the flash memory is rewritten via a user program, the code flash area and RAM area are used because each library is used. When using the library, refer to RL78 Family Flash Self Programming Library Type01 User's Manual and RL78 Family Data Flash Library Type04 User's Manual.

1.6.2 24-pin products

Note Provided only in the R5F102 products.

(2/2)

Item		20-	-pin	24-	-pin	30-	-pin		
		R5F1026x	R5F1036x	R5F1027x	R5F1037x	R5F102Ax	R5F103Ax		
Clock output/buzzer ou	ıtput		1 2						
		2.44 kHz to 10	2.44 kHz to 10 MHz: (Peripheral hardware clock: fmain = 20 MHz operation)						
8/10-bit resolution A/D	converter		11 ch	annels		8 cha	ınnels		
Serial interface		[R5F1026x (20)-pin), R5F1027	x (24-pin)]					
		CSI: 2 chann	nels/Simplified I ²	C: 2 channels/U	ART: 1 channel				
		[R5F102Ax (30	O-pin)]						
		CSI: 1 chann	nel/Simplified I ² C	C: 1 channel/UAF	RT: 1 channel				
		CSI: 1 chann	nel/Simplified I ² C	C: 1 channel/UAF	RT: 1 channel				
		CSI: 1 chann	nel/Simplified I ² C	C: 1 channel/UAF	RT: 1 channel				
		[R5F1036x (20)-pin), R5F1037	x (24-pin)]					
		CSI: 1 chann	nel/Simplified I ² C	C: 0 channel/UAF	RT: 1 channel				
		[R5F103Ax (30-pin)]							
		CSI: 1 channel/Simplified I ² C: 0 channel/UART: 1 channel							
	I ² C bus			1 cha	annel				
Multiplier and divider/m	nultiply-	• 16 bits × 16 bits = 32 bits (unsigned or signed)							
accumulator		• 32 bits × 32 bits = 32 bits (unsigned)							
		• 16 bits × 16 bits + 32 bits = 32 bits (unsigned or signed)							
DMA controller	1	2 channels	_	2 channels	_	2 channels	_		
Vectored interrupt	Internal	18	16	18	16	26	19		
sources	External			5		(6		
Key interrupt		(6	1	0	_			
Reset		Internal reseInternal reseInternal reseInternal rese	t by watchdog til t by power-on-re t by voltage dete	eset ector ction execution ^l error	Note				
Power-on-reset circuit			Power-on-reset: 1.51 V (TYP) Power-down-reset: 1.50 V (TYP)						
Voltage detector		Rising edge	: 1.88 to 4.06 V	(12 stages)					
		Falling edge	: 1.84 to 3.98 V	(12 stages)					
On-chip debug function	n	Provided							
Power supply voltage		$V_{DD} = 1.8 \text{ to } 5.$	5 V						
Operating ambient tem	perature	$T_A = -40 \text{ to } +80$ (G: Industrial a	,	er applications,	D: Industrial app	olications), T _A = -	-40 to +105°C		

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings (T_A = 25°C)

Parameter	Symbols		Conditions	Ratings	Unit
Supply Voltage	V _{DD}			-0.5 to + 6.5	V
REGC terminal input voltage ^{Note1}	VIREGC	REGC	REGC		V
Input Voltage	VII	Other than P60, F	P61	-0.3 to V _{DD} + 0.3 ^{Note 3}	V
	Vı2	P60, P61 (N-ch o	pen drain)	-0.3 to 6.5	V
Output Voltage	Vo			-0.3 to V _{DD} + 0.3 ^{Note 3}	V
Analog input voltage	Val	20-, 24-pin produc	cts: ANI0 to ANI3, ANI16 to ANI22	-0.3 to V _{DD} + 0.3	V
		30-pin products: A	ANIO to ANI3, ANI16 to ANI19	and -0.3 to AVREF(+)+0.3 Notes 3, 4	
Output current, high	І он1	Per pin	Other than P20 to P23	-40	mA
		Total of all pins	All the terminals other than P20 to P23	-170	mA
			20-, 24-pin products: P40 to P42	-70	mA
			30-pin products: P00, P01, P40, P120		
			20-, 24-pin products: P00 to P03 ^{Note 5} , P10 to P14 30-pin products: P10 to P17, P30, P31, P50, P51, P147	-100	mA
	І он2	Per pin	P20 to P23	-0.5	mA
		Total of all pins		-2	mA
Output current, low	lo _{L1}	Per pin	Other than P20 to P23	40	mA
		Total of all pins	All the terminals other than P20 to P23	170	mA
			20-, 24-pin products: P40 to P42 30-pin products: P00, P01, P40, P120	70	mA
			20-, 24-pin products: P00 to P03 ^{Note 5} , P10 to P14, P60, P61 30-pin products: P10 to P17, P30, P31, P50, P51, P60, P61, P147	100	mA
	lo _{L2}	Per pin	P20 to P23	1	mA
		Total of all pins		5	mA
Operating ambient temperature	Та			-40 to +85	°C
Storage temperature	T _{stg}			-65 to +150	°C

Notes 1. 30-pin product only.

- 2. Connect the REGC pin to V_{SS} via a capacitor (0.47 to 1 μ F). This value determines the absolute maximum rating of the REGC pin. Do not use it with voltage applied.
- 3. Must be 6.5 V or lower.
- 4. Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.
- 5. 24-pin products only.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remarks 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port

- **2.** AVREF(+): + side reference voltage of the A/D converter.
- 3. Vss: Reference voltage

(2) 30-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2 Note 2	HALT	HS (High-speed	fin = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		440	1280	μА
current Note 1		mode	main) mode Note 6		V _{DD} = 3.0 V		440	1280	
				fin = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		400	1000	μА
					V _{DD} = 3.0 V		400	1000	
			LS (Low-speed	fin = 8 MHz ^{Note 4}	V _{DD} = 3.0 V		260	530	μA
			main) mode Note 6		V _{DD} = 2.0 V		260	530	
			HS (High-speed	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		280	1000	μА
			main) mode Note 6	V _{DD} = 5.0 V	Resonator connection		450	1170	
				$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		280	1000	μA
				V _{DD} = 3.0 V	Resonator connection		450	1170	
			$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		190	600	μА	
			$V_{DD} = 5.0 \text{ V}$	Resonator connection		260	670		
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		190	600	μΑ
				V _{DD} = 3.0 V	Resonator connection		260	670	
			LS (Low-speed	fmx = 8 MHz ^{Note 3} ,	Square wave input		95	330	μΑ
			main) mode Note 6	V _{DD} = 3.0 V	Resonator connection		145	380	
				fmx = 8 MHz ^{Note 3}	Square wave input		95	330	μΑ
				V _{DD} = 2.0 V	Resonator connection		145	380	
IDD3 ^{Note 5}	D3 ^{Note 5} STOP	$T_A = -40^{\circ}C$	T _A = -40°C			0.18	0.50	μА	
			T _A = +25°C	T _A = +25°C			0.23	0.50	
			T _A = +50°C				0.30	1.10	
			T _A = +70°C				0.46	1.90	
			T _A = +85°C				0.75	3.30	

- Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator clock is stopped.
 - 4. When high-speed system clock is stopped.
 - 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.
 - **6.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as follows.

HS (High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz

 $V_{DD} = 2.4 \text{ V to } 5.5 \text{ V } @ 1 \text{ MHz to } 16 \text{ MHz}$

LS (Low speed main) mode: VDD = 1.8 V to 5.5 V @1 MHz to 8 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except STOP mode, temperature condition of the TYP. value is $T_A = 25$ °C.

2.5 Peripheral Functions Characteristics

AC Timing Test Point

2.5.1 Serial array unit

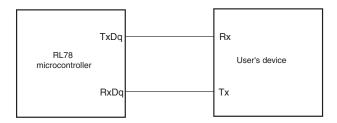
(1) During communication at same potential (UART mode)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

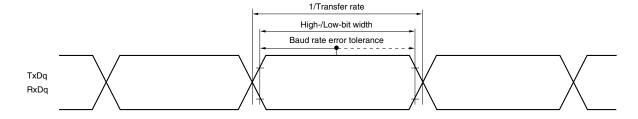
	,	1 = 122 = 616 1, 168 = 6 1,					
Parameter	Symbol	Conditions		h-speed Mode	,	/-speed Mode	Unit
			MIN.	MAX.	MIN.	MAX.	
Transfer rate				fмск/6		fмск/6	bps
Note 1		Theoretical value of the maximum transfer rate $f_{\text{CLK}} = f_{\text{MCK}}^{\text{Note2}}$		4.0		1.3	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:


HS (high-speed main) mode: 24 MHz (2.7 V \leq VDD \leq 5.5 V)

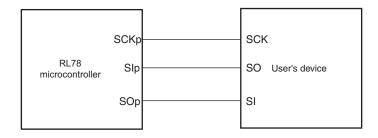
16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)


LS (low-speed main) mode: $8 \text{ MHz} (1.8 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V})$

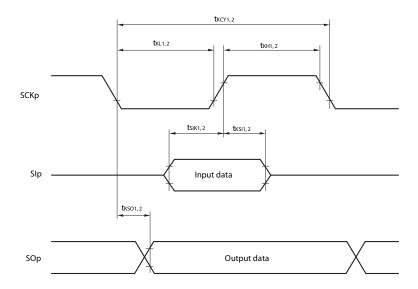
Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

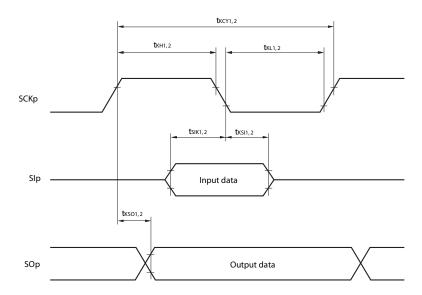
UART mode bit width (during communication at same potential) (reference)



Remarks 1. q: UART number (q = 0 to 2), g: PIM, POM number (g = 0, 1)


2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))


CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

(Remarks are listed on the next page.)

- Remarks 1. p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products.)
 - 2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is only for the R5F102 products.))

(5) During communication at same potential (simplified I²C mode)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-speed	main) Mode	Unit
			LS (low-speed	main) Mode	
			MIN.	MAX.	
SCLr clock frequency	fscL	$1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V},$		400 Note 1	kHz
		$C_b=100~pF,~R_b=3~k\Omega$			
		$1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V},$		300 Note 1	kHz
		$C_b=100~pF,~R_b=5~k\Omega$			
Hold time when SCLr = "L"	tLOW	$1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V},$	1150		ns
		$C_b=100~pF,~R_b=3~k\Omega$			
		$1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V},$	1550		ns
		$C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$			
Hold time when SCLr = "H"	tніgн	$1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$	1150		ns
		$C_b=100~pF,~R_b=3~k\Omega$			
		$1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V},$	1550		ns
		$C_b=100~pF,~R_b=5~k\Omega$			
Data setup time (reception)	tsu:dat	$1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V},$	1/fмск + 145 Note 2		ns
		$C_b=100~pF,~R_b=3~k\Omega$			
		$1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V},$	1/fмск + 230 Note 2		ns
		$C_b=100~pF,~R_b=5~k\Omega$			
Data hold time (transmission)	thd:dat	$1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V},$	0	355	ns
		$C_b=100~pF,~R_b=3~k\Omega$			
		$1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V},$	0	405	ns
		$C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$			

- Notes 1. The value must also be equal to or less than fmck/4.
 - 2. Set tsu:DAT so that it will not exceed the hold time when SCLr = "L" or SCLr = "H".

Caution Select the N-ch open drain output (V_{DD} tolerance) mode for SDAr by using port output mode register h (POMh).

(Remarks are listed on the next page.)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol		Conditions	HS (high-spe Mode		LS (low-spee Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	$4.0~V \leq V_{DD} \leq 5.5~V,$	300		1150		ns
			$2.7~V \leq V_b \leq 4.0~V,$					
			$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$					
			$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$	500		1150		ns
			$2.3 \ V \leq V_b \leq 2.7 \ V,$					
			$C_b = 30$ pF, $R_b = 2.7$ k Ω					
			$1.8 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$	1150		1150		ns
			$1.6~V \leq V_b \leq 2.0~V^{\text{ Note}},$					
			$C_b = 30$ pF, $R_b = 5.5$ k Ω					
SCKp high-level width	t _{KH1}	4.0 V ≤ V _{DD} ≤	$5.5~V,~2.7~V \leq V_b \leq 4.0~V,$	tkcy1/2 -75		tkcy1/2-75		ns
		C _b = 30 pF, R	$k_b = 1.4 \text{ k}\Omega$					
		$2.7 \text{ V} \leq \text{V}_{DD} <$	$4.0~V,~2.3~V \leq V_b \leq 2.7~V,$	tксү1/2 -170		tkcy1/2-170		ns
		C _b = 30 pF, R	$k_b = 2.7 \text{ k}\Omega$					
		1.8 V ≤ V _{DD} <	$3.3~V,~1.6~V \leq V_b \leq 2.0~V$ $^{\text{Note}},$	tkcy1/2 -458		tkcy1/2-458		ns
		C _b = 30 pF, R	$k_b = 5.5 \text{ k}\Omega$					
SCKp low-level width	t _{KL1}	4.0 V ≤ V _{DD} ≤	$5.5~V,~2.7~V \leq V_b \leq 4.0~V,$	tkcy1/2 -12		tkcy1/2-50		ns
		C _b = 30 pF, R	$d_b = 1.4 \text{ k}\Omega$					
		2.7 V ≤ V _{DD} <	$4.0~V,~2.3~V \leq V_b \leq 2.7~V,$	tkcy1/2 -18		tkcy1/2-50		ns
		C _b = 30 pF, R	$k_b = 2.7 \text{ k}\Omega$					
		1.8 V ≤ V _{DD} <	$3.3~V,~1.6~V \leq V_b \leq 2.0~V^{~\text{Note}},$	tксү1/2 -50		tkcy1/2-50		ns
		C _b = 30 pF, R	$h_b = 5.5 \text{ k}\Omega$					

Note Use it with $V_{DD} \ge V_b$.

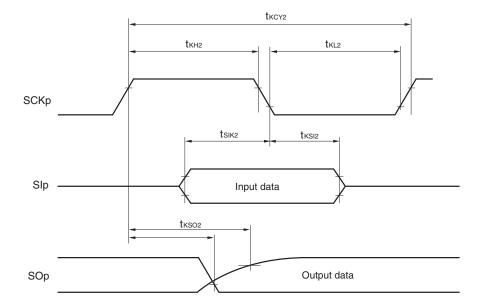
- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.
- **Remarks 1.** R_b $[\Omega]$: Communication line (SCKp, SOp) pull-up resistance, C_b [F]: Communication line (SCKp, SOp) load capacitance, V_b [V]: Communication line voltage
 - **2.** p: CSI number (p = 00, 20)

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Co	onditions	HS (high-spe		LS (low-spe	•	Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	tkcy2	$4.0~V \leq V_{DD} \leq 5.5~V,$	20 MHz < fмcк ≤ 24 MHz	12/fмск		-		ns
		$2.7~V \leq V_b \leq 4.0~V$	8 MHz < fмcк ≤ 20 MHz	10/fмск		=		ns
			4 MHz < fмcк ≤ 8 MHz	8/fмск		16/fмск		ns
			fмcк ≤ 4 MHz	6/fмск		10/fмск		ns n
		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$	20 MHz < fмcк ≤ 24 MHz	16/fмск		_		ns
		$2.3~V \leq V_b \leq 2.7~V$	16 MHz < fмcк ≤ 20 MHz	14/fмск		=		ns
			8 MHz < fмск ≤ 16 MHz	12/fмск		_		ns
			4 MHz < fмcк ≤ 8 MHz	8/fмск		16/fмск		ns
			fмcк ≤ 4 MHz	6/fмск		10/fмск		ns
		$1.8 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$	20 MHz < fмcк ≤ 24 MHz	36/fмск		_		ns
		$1.6~V \leq V_b \leq 2.0~V$	16 MHz < fмcк ≤ 20 MHz	32/fмск		=		ns
		Note 2	8 MHz < fмск ≤ 16 MHz	26/fмск		_		ns
			4 MHz < fмcк ≤ 8 MHz	16/fмск		16/fмск		ns
			fмcк ≤ 4 MHz	10/fмск		10/fмск		ns
SCKp high-/low-level	t _{KH2} ,	$4.0~V \leq V_{DD} \leq 5.5~V,$	$2.7~V \leq V_b \leq 4.0~V$	tkcy2/2 - 12		tkcy2/2 - 50		ns
width	t _{KL2}	$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$	$2.3~V \leq V_b \leq 2.7~V$	tkcy2/2 - 18		tkcy2/2 - 50		ns
		$1.8 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$	$1.6~V \leq V_b \leq 2.0~V^{\text{Note 2}}$	tkcy2/2 - 50		tkcy2/2 - 50		ns
SIp setup time	tsik2	$4.0~V \leq V_{DD} \leq 5.5~V,$	$2.7~V \leq V_{DD} \leq 4.0~V$	1/fmck + 20		1/fмск + 30		ns
(to SCKp↑) Note 3		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$	$2.3~V \leq V_b \leq 2.7~V$	1/fmck + 20		1/fмск + 30		ns
		$1.8 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$	$1.6~V \leq V_{DD} \leq 2.0~V^{\text{ Note 2}}$	1/fmck + 30		1/fмск + 30		ns
SIp hold time (from SCKp [↑]) Note 4	tksi2			1/fмск + 31		1/fмск + 31		ns
Delay time from	tkso2	$4.0~V \leq V_{DD} \leq 5.5~V,$	$2.7 \text{ V} \le V_b \le 4.0 \text{ V},$		2/fмск +		2/fмск +	ns
SCKp↓ to SOp		C _b = 30 pF, R _b = 1.4	kΩ		120		573	
output Note 5		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V},$	$2.3 \text{ V} \le V_b \le 2.7 \text{ V},$		2/fмск +		2/fмск +	ns
		C _b = 30 pF, R _b = 2.7	kΩ		214		573	
		$1.8 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V},$	$1.6 \text{ V} \le V_b \le 2.0 \text{ V}^{\text{Note 2}},$		2/fмск +		2/fмск +	ns
	1	C _b = 30 pF, R _b = 5.5	kΩ		573		573	

Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps


- 2. Use it with $V_{DD} \ge V_b$.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **5.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Cautions 1. Select the TTL input buffer for the SIp and SCKp pins and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1).

For VIH and VIL, see the DC characteristics with TTL input buffer selected.

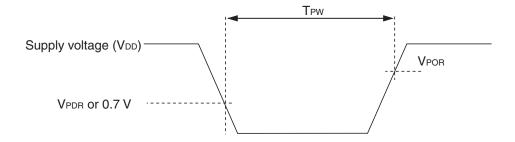
2. CSI01 and CSI11 cannot communicate at different potential.

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

2.6.2 Temperature sensor/internal reference voltage characteristics

(T_A = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, HS (high-speed main) mode


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	V _{TMPS25}	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	V _{BGR}	Setting ADS register = 81H	1.38	1.45	1.50	V
Temperature coefficient	FVTMPS	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tамр		5			μS

2.6.3 POR circuit characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

<u>, </u>						
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	Vpor	Power supply rise time	1.47	1.51	1.55	٧
	V _{PDR}	Power supply fall time	1.46	1.50	1.54	٧
Minimum pulse width Note	T _{PW}		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{PDR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

<R>

<R>

<R> 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS $T_A = -40$ to +105°C)

- <R> This chapter describes the following electrical specifications.
 - Target products G: Industrial applications $T_A = -40 \text{ to } +105^{\circ}\text{C}$ R5F102xxGxx
 - **Cautions 1.** The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product.
 - 3. Please contact Renesas Electronics sales office for derating of operation under $T_A = +85^{\circ}C$ to $+105^{\circ}C$. Derating is the systematic reduction of load for the sake of improved reliability.

Remark When the RL78 microcontroller is used in the range of $T_A = -40$ to +85 °C, see CHAPTER 28 ELECTRICAL SPECIFICATIONS (A: $T_A = -40$ to +85 °C).

There are following differences between the products "G: Industrial applications ($T_A = -40 \text{ to } +105^{\circ}\text{C}$)" and the products "A: Consumer applications, and D: Industrial applications".

Parameter	Appli	cation
	A: Consumer applications, D: Industrial applications	G: Industrial applications
Operating ambient temperature	T _A = -40 to +85°C	T _A = -40 to +105°C
Operating mode	HS (high-speed main) mode:	HS (high-speed main) mode only:
Operating voltage range	$2.7 \text{ V} \le V_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz to } 24 \text{ MHz}$	$2.7~V \le V_{DD} \le 5.5~V @ 1~MHz$ to $24~MHz$
	$2.4~V \le V_{DD} \le 5.5~V@1~MHz$ to $16~MHz$	$2.4~V \le V_{DD} \le 5.5~V @ 1~MHz$ to $16~MHz$
	LS (low-speed main) mode:	
	1.8 V ≤ V _{DD} ≤ 5.5 V@1 MHz to 8 MHz	
High-speed on-chip oscillator clock	R5F102 products, 1.8 V ≤ V _{DD} ≤ 5.5 V:	R5F102 products, 2.4 V \leq V _{DD} \leq 5.5 V:
accuracy	±1.0%@ T _A = -20 to +85°C	±2.0%@ T _A = +85 to +105°C
	±1.5%@ T _A = -40 to -20°C	±1.0%@ T _A = -20 to +85°C
	R5F103 products, 1.8 V ≤ V _{DD} ≤ 5.5 V:	±1.5%@ T _A = -40 to -20°C
	±5.0%@ T _A = -40 to +85°C	
Serial array unit	UART	UART
	CSI: fcLk/2 (supporting 12 Mbps), fcLk/4	CSI: fclk/4
	Simplified I ² C communication	Simplified I ² C communication
Voltage detector	Rise detection voltage: 1.88 V to 4.06 V	Rise detection voltage: 2.61 V to 4.06 V
	(12 levels)	(8 levels)
	Fall detection voltage: 1.84 V to 3.98 V	Fall detection voltage: 2.55 V to 3.98 V
	(12 levels)	(8 levels)

Remark The electrical characteristics of the products G: Industrial applications (T_A = -40 to +105°C) are different from those of the products "A: Consumer applications, and D: Industrial applications". For details, refer to **29.1** to **29.10**.

(2/4)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	lo _{L1}	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42 30-pin products:				8.5 Note 2	mA
		Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147					
		Per pin for P60, P61				15.0 Note 2	mA
		20-, 24-pin products:	$4.0~V \leq V_{DD} \leq 5.5~V$			25.5	mA
		Total of P40 to P42	$2.7~V \leq V_{DD} < 4.0~V$			9.0	mA
		30-pin products: Total of P00, P01, P40, P120 (When duty \leq 70% Note 3) 20-, 24-pin products:	2.4 V ≤ V _{DD} < 2.7 V			1.8	mA
			$4.0~V \leq V_{DD} \leq 5.5~V$			40.0	mA
		Total of P00 to P03 ^{Note 4} ,	$2.7~V \leq V_{DD} < 4.0~V$			27.0	mA
		P10 to P14, P60, P61 30-pin products: Total of P10 to P17, P30, P31, P50, P51, P60, P61, P147 (When duty ≤ 70% Note 3)	2.4 V ≤ V _{DD} < 2.7 V			5.4	mA
		Total of all pins (When duty ≤ 70% Note 3)				65.5	mA
	lol2	Per pin for P20 to P23				0.4	mA
		Total of all pins				1.6	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.
 - 2. However, do not exceed the total current value.
 - 3. The output current value under conditions where the duty factor \leq 70%.

If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).

- Total output current of pins = $(lol \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and IoL = 10.0 mA

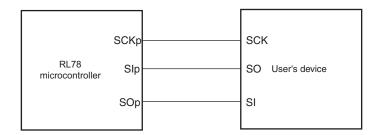
Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

4. 24-pin products only.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)


 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Con	HS (high-speed	main) Mode	Unit	
				MIN.	MAX.	
SCKp cycle time Note4	tkcy2	$4.0~V \leq V_{DD} \leq 5.5~V$	20 MHz < fмск	16/fмск		ns
			fмcк ≤ 20 MHz	12/fмск		ns
		$2.7~V \leq V_{DD} \leq 5.5~V$	16 MHz < fмск	16/fмск		ns
			fмcк ≤ 16 MHz	12/fмск		ns
		$2.4~V \leq V_{DD} \leq 5.5~V$	12/fмск		ns	
				and 1000		
SCKp high-/low-level width tkн2,		$4.0~V \leq V_{DD} \leq 5.5~V$	tксү2/2-14		ns	
	t _{KL2}	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	tксү2/2–16		ns	
		$2.4~V \leq V_{DD} \leq 5.5~V$		tксү2/2-36		ns
SIp setup time (to SCKp↑)	tsik2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск + 40		ns
Note 1		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	1/fмск + 60		ns	
Slp hold time (from SCKp [↑]) Note 2	t _{KSI2}			1/fмск + 62		ns
Delay time from SCKp↓ to	tkso2	C = 30 pF Note4	$2.7~V \leq V_{DD} \leq 5.5~V$		2/fмcк + 66	ns
SOp output Note 3			$2.4~V \leq V_{DD} \leq 5.5~V$		2/fмcк + 113	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from $SCKp\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

Caution Select the normal input buffer for the SIp and SCKp pins and the normal output mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).

CSI mode connection diagram (during communication at same potential)

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-spe	•	Unit
			MIN.	MAX.		
SCKp cycle time Note 1	tkcy2	$4.0~V \leq V_{DD} \leq 5.5~V,$	20 MHz < fмcк ≤ 24 MHz	24/fмск		ns
		$2.7~V \leq V_b \leq 4.0~V$	8 MHz < fмск ≤ 20 MHz	20/fмск		ns
			4 MHz < fмcк ≤ 8 MHz	16/fмск		ns
			fmck ≤ 4 MHz	12/fмск		ns
		$2.7 \text{ V} \le V_{DD} < 4.0 \text{ V},$	20 MHz < fмcк ≤ 24 MHz	32/fмск		ns
		$2.3~V \leq V_b \leq 2.7~V$	16 MHz < fмcк ≤ 20 MHz	28/fмск		ns
			8 MHz < fмск ≤ 16 MHz	24/fмск		ns
			4 MHz < fмcк ≤ 8 MHz	16/fмск		ns
			fmck ≤ 4 MHz	12/fмск		ns
		$2.4 \text{ V} \le V_{DD} < 3.3 \text{ V},$	20 MHz < fмcк ≤ 24 MHz	72/fмск		ns
		$1.6~V \leq V_b \leq 2.0~V$	16 MHz < fмcк ≤ 20 MHz	64/fмск		ns
			8 MHz < fмск ≤ 16 MHz	52/fмск		ns
			4 MHz < fмcк ≤ 8 MHz	32/fмск		ns
			fmck ≤ 4 MHz	20/fмск		ns
SCKp high-/low-level	tкн2, tкL2	$4.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, 2.0$	$7~V \leq V_b \leq 4.0~V$	tkcy2/2 - 24		ns
width		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}, 2.0 \text{ V}$	$3~V \leq V_b \leq 2.7~V$	tkcy2/2 - 36		ns
		$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V}, 1.0 $	$6~V \leq V_b \leq 2.0~V$	tkcy2/2 - 100		ns
SIp setup time	tsik2	$4.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, 2.00 \le 5.5 \text{ V}$	$7 \text{ V} \leq V_{DD} \leq 4.0 \text{ V}$	1/fmck + 40		ns
(to SCKp↑) Note 2		$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}, 2.0 \text{ V}$	$3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}$	1/fmck + 40		ns
		$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V}, 1.0 $	$6~V \leq V_{DD} \leq 2.0~V$	1/fmck + 60		ns
SIp hold time (from SCKp↑) Note 3	tksi2			1/fmck + 62		ns
Delay time from SCKp↓ to	tkso2	$4.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, 2.$	$7 \text{ V} \leq V_b \leq 4.0 \text{ V},$		2/fмск +	ns
SOp output Note 4		$C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}$	Ω		240	
		$2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \;$			2/fмск +	ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}$	Ω		428	
		2.4 V ≤ V _{DD} < 3.3 V, 1.	$6 \text{ V} \leq \overline{\text{V}_b \leq 2.0 \text{ V}},$		2/fмск +	ns
		$C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$			1146	

Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

- 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $SCKp\downarrow^{n}$ when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp1" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- Cautions 1. Select the TTL input buffer for the SIp and SCKp pins and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
 - 2. CSI01 and CSI11 cannot communicate at different potential.

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM (ADREFM = 1), target pin: ANI0, ANI2, ANI3, and ANI16 to ANI22

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = VBGR Note 3, Reference voltage (-) = AVREFM Note 4 = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		bit
Conversion time	tconv	8-bit resolution	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	8-bit resolution			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution			±1.0	LSB
Analog input voltage	VAIN		0		VBGR Note 3	V

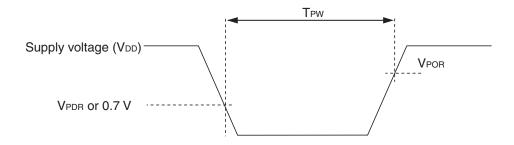
- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - 3. Refer to 29.6.2 Temperature sensor/internal reference voltage characteristics.
 - **4.** When reference voltage (–) = Vss, the MAX. values are as follows. Zero-scale error: Add ±0.35%FSR to the MAX. value when reference voltage (–) = AV_{REFM}.

Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (–) = AVREFM.

Differential linearity error: Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

3.6.2 Temperature sensor/internal reference voltage characteristics

(T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, HS (high-speed main) mode

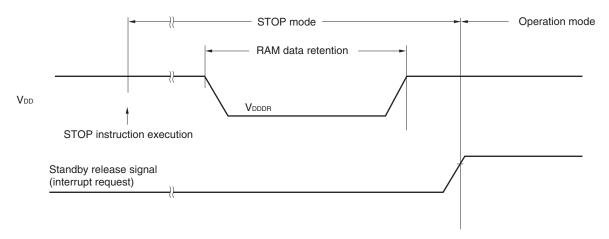

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	V _{TMPS25}	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	V _{BGR}	Setting ADS register = 81H	1.38	1.45	1.50	V
Temperature coefficient	Fvтмps	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μS

3.6.3 POR circuit characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.45	1.51	1.57	V
	V _{PDR}	Power supply fall time	1.44	1.50	1.56	V
Minimum pulse width Note	T _{PW}		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{PDR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).



<R> 3.7 RAM Data Retention Characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	V _{DDDR}		1.44 Note		5.5	V

<R> Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

3.8 Flash Memory Programming Characteristics

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}. 2.4 \text{ V} < V_{DD} < 5.5 \text{ V}. \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclk		1		24	MHz
Code flash memory rewritable times	Cerwr	Retained for 20 years TA = 85°C Notes 4	1,000			Times
Data flash memory rewritable times		Retained for 1 year TA = 25°C Notes 4		1,000,000		
		Retained for 5 years TA = 85°C Notes 4	100,000			
		Retained for 20 years TA = 85°C Notes 4	10,000			

- **Notes 1.** 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
 - 2. When using flash memory programmer and Renesas Electronics self programming library
 - **3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.
 - 4. This temperature is the average value at which data are retained.

