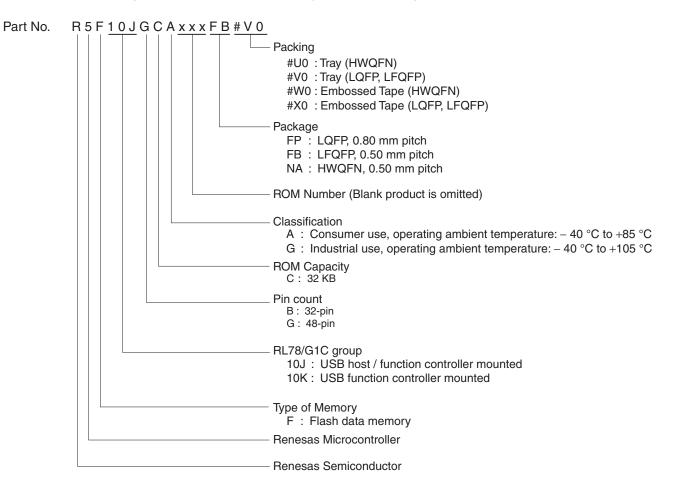


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

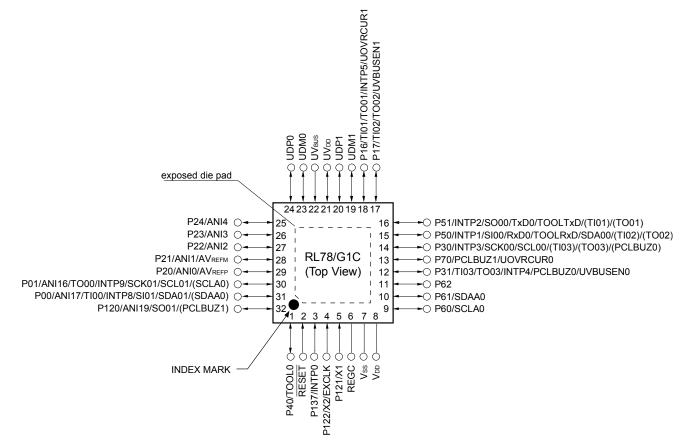
XF

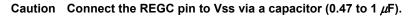
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART, USB
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	5.5K x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-WFQFN Exposed Pad
Supplier Device Package	32-HWQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10jbcana-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1-1. Part Number, Memory Size, and Package of RL78/G1C


1.3 Pin Configuration (Top View)


1.3.1 32-pin products

• 32-pin plastic HWQFN (5 × 5 mm, 0.5 mm pitch)

(1) USB function: Host/Function controller (R5F10JBC)

<R>

Remarks 1. For pin identification, see 1.4 Pin Identification.

- 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).
- 3. It is recommended to connect an exposed die pad to Vss.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Vdd	V				
	VIH2	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Vdd	V			
				2.0		Vdd	V
				1.5		Vdd	V
	Vінз	P20 to P27		0.7VDD		VDD	V
	VIH4	P60 to P63		0.7Vdd		6.0	V
	VIH5	P121 to P124, P137, EXCLK, EXCL	(S, RESET	0.8Vdd		Vdd	V
Input voltage, low	VIL1	P40, P41, P50, P51, P70 to P75,	Normal input buffer	0		0.2Vdd	V
	VIL2	P00, P01, P30, P50		0		0.8	V
				0		0.5	V
				0		0.32	V
	VIL3	P20 to P27		0		0.3VDD	V
	VIL4	P60 to P63		0		0.3VDD	V
	VIL5	P121 to P124, P137, EXCLK, EXCL	(S, RESET	0		0.2VDD	V

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- Caution The maximum value of V_H of pins P00, P01, P30, and P74 is V_{DD}, even in the N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.3.2 Supply current characteristics

(1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS	fносо = 48 MHz	Basic	V _{DD} = 5.0 V		1.7		mA
Current Note 1		mode	(High-speed main) mode	f _{IH} = 24 MHz ^{Note 3}	operation	V _{DD} = 3.0 V		1.7		mA
			Note 6		Normal	V _{DD} = 5.0 V		3.7	5.5	mA
					operation	V _{DD} = 3.0 V		3.7	5.5	mA
				f _{HOCO} = 24 MHz ^{Note 5}	Normal	V _{DD} = 5.0 V		2.3	3.2	mA
			f⊪ = 12 MHz ^{Note 3}	operation	V _{DD} = 3.0 V		2.3	3.2	mA	
				fHOCO = 12 MHz ^{Note 5}	Normal	V _{DD} = 5.0 V		1.6	2.0	mA
				f⊪ = 6 MHz ^{Note 3}	operation Normal	V _{DD} = 3.0 V		1.6	2.0	mA
				fHOCO = 6 MHz Note		V _{DD} = 5.0 V		1.2	1.5	mA
			₅ f _{IH} = 3 MHz ^{Note 3}	operation	V _{DD} = 3.0 V		1.2	1.5	mA	
		HS	f _{MX} = 20 MHz ^{Note 2} ,	Normal operation	Square wave input		3.0	4.6	mA	
		(High-speed	V _{DD} = 5.0 V		Resonator connection		3.2	4.8	mA	
		main) mode Note 6	f _{MX} = 20 MHz ^{Note 2} ,	Normal operation	Square wave input		3.0	4.6	mA	
			V _{DD} = 3.0 V		Resonator connection		3.2	4.8	mA	
			f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		1.9	2.7	mA	
			V _{DD} = 5.0 V	operation	Resonator connection		1.9	2.7	mA	
			f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		1.9	2.7	mA	
			HS (High-speed	V _{DD} = 3.0 V	operation	Resonator connection		1.9	2.7	mA
				fpll = 48 MHz,	Normal	V _{DD} = 5.0 V		4.0	5.9	mA
				fclk = 24 MHz Note 2	operation	V _{DD} = 3.0 V		4.0	5.9	mA
			main) mode (PLL	fpll = 48 MHz, fclk = 12 MHz ^{Note 2}	Normal	V _{DD} = 5.0 V		2.6	3.6	mA
			(PLL operation) Note 6		operation	V _{DD} = 3.0 V		2.6	3.6	mA
				f _{PLL} = 48 MHz,	Normal	V _{DD} = 5.0 V		1.9	2.4	mA
				fclk = 6 MHz ^{Note 2}	operation	V _{DD} = 3.0 V		1.9	2.4	mA
			Subsystem	fsuв = 32.768 kHz	Normal	Resonator connection		4.1	4.9	μA
			clock operation	ClOCK Note 4	operation	Square wave input		4.2	5.0	μA
				f _{SUB} = 32.768 kHz Note 4	Normal	Square wave input		4.1	4.9	μA
				$T_A = +25^{\circ}C$	operation	Resonator connection		4.2	5.0	μA
				fsuв = 32.768 kHz	Normal	Square wave input		4.2	5.5	μA
			Note 4 T _A = +50°C	operation	Resonator connection		4.3	5.6	μA	
				fsuв = 32.768 kHz	Normal	Square wave input		4.2	6.3	μA
				Note 4 T _A = +70°C	operation	Resonator connection		4.3	6.4	μA
				fsuв = 32.768 kHz	Normal	Square wave input		4.8	7.7	μA
				Note 4	operation	Resonator connection		4.0	7.8	μA μA
				T _A = +85°C						μα (

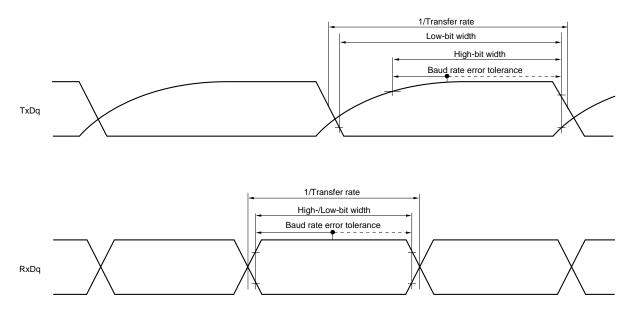
(Notes and Remarks are listed on the next page.)

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT	HS	fносо = 48 MHz	V _{DD} = 5.0 V		0.67	1.25	mA
Current Note 1	Note 2	mode		fı⊢ = 24 MHz ^{Note 4}	V _{DD} = 3.0 V		0.67	1.25	mA
			main) mode Note 9	fHOCO = 24 MHz ^{Note 7}	V _{DD} = 5.0 V		0.50	0.86	mA
				fi⊢ = 12 MHz ^{Note 4}	V _{DD} = 3.0 V		0.50	0.86	mA
				fHOCO = 12 MHz ^{Note 7}	V _{DD} = 5.0 V		0.41	0.67	mA
				f _{IH} = 6 MHz ^{Note 4}	V _{DD} = 3.0 V		0.41	0.67	mA
				fHOCO = 6 MHz ^{Note 7}	V _{DD} = 5.0 V		0.37	0.58	mA
				f _{IH} = 3 MHz ^{Note 4}	V _{DD} = 3.0 V		0.37	0.58	mA
			HS	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.00	mA
			(High-speed	V _{DD} = 5.0 V	Resonator connection		0.45	1.17	mA
			main) mode Note 9	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.00	mA
				V _{DD} = 3.0 V	Resonator connection		0.45	1.17	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.60	mA
				V _{DD} = 5.0 V	Resonator connection		0.26	0.67	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.60	mA
				V _{DD} = 3.0 V	Resonator connection				
			HS	f _{PLL} = 48 MHz,			0.26	0.67	mA
				$f_{CLK} = 24 \text{ MHz}^{\text{Note 3}}$	$V_{DD} = 5.0 V$		0.91	1.52	mA
		main) mode	fpll = 48 MHz,	V _{DD} = 3.0 V		0.91	1.52	mA	
		(PLL	fclκ = 12 MHz ^{Note 3}	V _{DD} = 5.0 V		0.85	1.28	mA	
			operation) Note 9		V _{DD} = 3.0 V		0.85	1.28	mA
				f _{PLL} = 48 MHz, f _{CLK} = 6 MHz ^{Note 3}	V _{DD} = 5.0 V		0.82	1.15	mA
			Subsystem clock operation		V _{DD} = 3.0 V		0.82	1.15	mA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.25	0.57	μA
				T _A = -40°C	Resonator connection		0.44	0.76	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.30	0.57	μA
				T _A = +25°C	Resonator connection		0.49	0.76	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.33	1.17	μA
				T _A = +50°C	Resonator connection		0.63	1.36	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.46	1.97	μA
				T _A = +70°C	Resonator		0.76	2.16	μA
					connection				•
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.97	3.37	μA
Ing Note 6 S			T _A = +85°C	Resonator connection		1.16	3.56	μA	
	DD3 ^{Note 6}	STOP	T _A = −40°C				0.18	0.50	μA
		mode Note 8	T _A = +25°C				0.23	0.50	μA
			T _A = +50°C				0.26	1.10	μA
				$A = +50 \circ C$ $A = +70 \circ C$			0.29	1.90	μA
								1.00	μη

(Notes and Remarks are listed on the next page.)


Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	FIL Note 1				0.20		μA
RTC operating current	IRTC Notes 1, 2, 3				0.02		μA
12-bit interval timer operating current	IIT Notes 1, 2, 4				0.02		μA
Watchdog timer operating current	IWDT Notes 1, 2, 5	f⊩ = 15 kHz			0.22		μA
A/D converter	IADC Notes 1,	When conversion	Normal mode, $AV_{REFP} = V_{DD} = 5.0 V$		1.3	1.7	mA
operating current	6	at maximum speed	Low voltage mode, AV _{REFP} = V _{DD} = 3.0 V		0.5	0.7	mA
A/D converter reference voltage current	IADREF ^{Note} 1				75.0		μA
Temperature sensor operating current	ITMPS Note 1				75.0		μA
LVD operating current	ILVD Notes 1, 7				0.08		μA
Self-programming operating current	_{FSP} Notes 1, 9				2.00	12.20	mA
BGO operating current	I _{BGO} Notes 1, 8				2.00	12.20	mA
SNOOZE operating	ISNOZ Note 1	ADC operation	The mode is performed Note 10		0.50	1.06	mA
current			The A/D conversion operations are performed, Low voltage mode, $AV_{REFP} = V_{DD} = 3.0 \text{ V}$		1.20	1.62	mA
		CSI operation			0.70	0.84	mA

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V) (1/2)

(Notes and Remarks are listed on the next page.)

- **Remarks 1.** R_b[Ω]:Communication line (TxDq) pull-up resistance, C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage
 - 2. q: UART number (q = 0), g: PIM and POM number (g = 5)
 - 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00))

(7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
SCKp cycle time	t ксү1	tксү1 ≥ 2 /fc∟к		200			ns
			$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 20 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	300			ns
SCKp high-level width	t кн1	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V, 2.7 V \leq V _b \leq 4.0 V,	tксү1/2 – 50			ns
		C _b = 20 pF, R	_b = 1.4 kΩ				
		$2.7 \text{ V} \leq V_{\text{DD}}$ <	$4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$	tксү1/2 –			ns
		C _b = 20 pF, R	b = 2.7 kΩ	120			
SCKp low-level width	t KL1	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V, 2.7 V \leq V _b \leq 4.0 V,	t ксү1/2 – 7			ns
		C _b = 20 pF, R	_b = 1.4 kΩ				
		$2.7 \text{ V} \leq V_{\text{DD}}$ <	$4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$	tксү1/2 – 10			ns
		C _b = 20 pF, R	_b = 2.7 kΩ				
SIp setup time	tsik1	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V, 2.7 V \leq V _b \leq 4.0 V,	58			ns
(to SCKp↑) ^{Note 1}		C _b = 20 pF, R	_b = 1.4 kΩ				
		$2.7 \text{ V} \leq V_{\text{DD}}$ <	$4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$	121			ns
		C _b = 20 pF, R	_b = 2.7 kΩ				
SIp hold time	tksi1	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V, 2.7 V \leq V _b \leq 4.0 V,	10			ns
(from SCKp↑) ^{Note 1}		C _b = 20 pF, R	_b = 1.4 kΩ				
		$2.7 \text{ V} \leq V_{DD}$ <	4.0 V, 2.3 V \leq V _b \leq 2.7 V,	10			ns
		C _b = 20 pF, R	_b = 2.7 kΩ				
Delay time from SCKp \downarrow to	tkso1	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V, 2.7 V \leq V _b \leq 4.0 V,			60	ns
SOp output Note 1		C _b = 20 pF, R	_b = 1.4 kΩ				
		$2.7 \text{ V} \leq V_{\text{DD}}$ <	4.0 V, 2.3 V \leq V _b \leq 2.7 V,			130	ns
		C _b = 20 pF, R	b = 2.7 kΩ				
SIp setup time	tsik1	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V, 2.7 V \leq V _b \leq 4.0 V,	23			ns
(to SCKp↓) ^{Note 2}		C _b = 20 pF, R	_b = 1.4 kΩ				
		$2.7 \text{ V} \leq V_{\text{DD}}$ <	$4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$	33			ns
		C _b = 20 pF, R	b = 2.7 kΩ				
Slp hold time	tksi1	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V, 2.7 V \leq V _b \leq 4.0 V,	10			ns
(from SCKp↓) ^{Note 2}		C _b = 20 pF, R	_b = 1.4 kΩ				
		$2.7 \text{ V} \leq V_{\text{DD}}$ <	$4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$	10		ns	
		C _b = 20 pF, R	b = 2.7 kΩ				
Delay time from SCKp↑ to	tkso1	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V, 2.7 V \leq V _b \leq 4.0 V,			10	ns
SOp output Note 2		C _b = 20 pF, R	_b = 1.4 kΩ				
		$2.7 \text{ V} \leq V_{\text{DD}}$ <	$4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$			10	ns
		C _b = 20 pF, R	_b = 2.7 kΩ				

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.


2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

(Caution and Remark are listed on the next page.)

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3 Use it with $V_{DD} \ge V_b$.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00), m: Unit number, n: Channel number (mn = 00), g: PIM and POM number (g = 0, 3, 5, 7)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00))
 - **4.** CSI01 cannot communicate at different potential. Use other CSI for communication at different potential.

(2) I²C fast mode

Parameter	Symbol	Condit	tions	HS (high-spee	ed main) Mode	Unit
					MAX.	
SCLA0 clock frequency	fsc∟	Fast mode: fcLk ≥ 3.5	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0	400	kHz
		MHz	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	0	400	kHz
Setup time of restart condition	tsu:sta	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		0.6		μs
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		0.6		μs
Hold time ^{Note 1}	t hd:sta	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		0.6		μs
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		0.6		μs
Hold time when SCLA0 = "L"	t LOW	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		1.3		μs
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	$2.4~V \le V_{\text{DD}} \le 5.5~V$			μs
Hold time when SCLA0 = "H"	t HIGH	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		0.6		μs
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		0.6		μs
Data setup time (reception)	tsu:dat	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		100		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		100		ns
Data hold time	thd:dat	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		0	0.9	μs
(transmission) ^{Note 2}		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		0	0.9	μs
Setup time of stop condition	tsu:sto	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		0.6		μs
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		0.6		μs
Bus-free time	t BUF	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		1.3		μs
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		1.3		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of tHD:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 1 (PIOR1) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00, P01, P14 to P17, P30, P31,	-40	mA
			P40, P41, P50, P51, P70 to P75,		
			P120, P130, P140		
		Total of all pins	P00, P01, P40, P41, P120,	-70	mA
		–170 mA	P130, P140		
			P14 to P17, P30, P31,	-100	mA
			P50, P51, P70 to P75		
	Іон2	Per pin	P20 to P27	-0.5	mA
		Total of all pins]	-2	mA
Output current, low	IOL1	Per pin	P00, P01, P14 to P17, P30, P31,	40	mA
		Total of all pins	P40, P41, P50, P51, P60 to P63,		
			P70 to P75, P120, P130, P140		
			P00, P01, P40, P41, P120,	70	mA
		170 mA	P130, P140		
			P14 to P17, P30, P31,	100	mA
			P50, P51, P60 to P63, P70 to P75		
	IOL2	Per pin	P20 to P27	1	mA
		Total of all pins		5	mA
Operating ambient	TA	In normal operati	on mode	-40 to +105	°C
temperature		In flash memory	programming mode		
Storage temperature	Tstg			-65 to +150	°C

Absolute Maximum Ratings (TA = 25°C) (2/2)

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	Vih1	P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P140	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V			
	ge, ViH P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P140 Normal input buffer 0.8Vbb 0.8Vbb VH2 P00, P01, P30, P50 TTL input buffer 4.0 V ≤ Vob ≤ 5.5 V 2.2 0 VH2 P00, P01, P30, P50 TTL input buffer 3.3 V ≤ Vob < 4.0 V	Vdd	V				
				2.0		Vdd	V
				1.5		Vdd	V
	VIH3	P20 to P27		0.7V _{DD}		VDD	V
V	VIH4	P60 to P63	0.7V _{DD}		6.0	V	
	VIH5	P121 to P124, P137, EXCLK, EXCLK	KS, RESET	0.8VDD		Vdd	V
Input voltage, low	VIL1	P40, P41, P50, P51, P70 to P75,	Normal input buffer	0		0.2V _{DD}	V
	VIL2	P00, P01, P30, P50	•	0		0.8	V
				0		0.5	V
				0		0.32	V
	VIL3	P20 to P27		0		0.3V _{DD}	V
	VIL4	P60 to P63		0		0.3VDD	V
	VIL5	P121 to P124, P137, EXCLK, EXCLK	(S, RESET	0		0.2VDD	V

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

- Caution The maximum value of V_H of pins P00, P01, P30, and P74 is V_{DD}, even in the N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- **Notes 1.** Current flowing to VDD.
 - 2. When high speed on-chip oscillator and high-speed system clock are stopped.
 - 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip ocsillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
 - 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip ocsillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
 - 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
 - **6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
 - **7.** Current flowing only to the LVD circuit. The current value of the RL78/G1C is the sum of IDD1, IDD2 or IDD3 and ILVI when the LVD circuit operates in the Operating, HALT or STOP mode.
 - 8. Current flowing only during data flash rewrite.
 - **9.** Current flowing only during self programming.
 - 10. For shift time to the SNOOZE mode.
 - 11. Current consumed only by the USB module and the internal power supply for the USB.
 - **12.** Includes the current supplied from the pull-up resistor of the UDP0 pin to the pull-down resistor of the host device, in addition to the current consumed by this MCU during the suspended state.

Remarks 1. fi∟: Low-speed on-chip oscillator clock frequency

- 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 3. fclk: CPU/peripheral hardware clock frequency
- 4. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

3.4 AC Characteristics

3.4.1 Basic operation

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Items	Symbol		Condition	8	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Тсү	Main system	HS (High-speed	2.7 V ≤ V _{DD} ≤ 5.5 V	0.04167		1	μs
		clock (fmain) operation	main) mode	2.4 V ≤ V _{DD} < 2.7 V	0.0625		1	μs
		Subsystem of operation	lock (fsub)	$\begin{array}{l} 2.4 \ V \leq V_{DD} \leq \\ 5.5 \ V \end{array}$	28.5	30.5	31.3	μs
		In the self programmin	HS (High-speed	$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq \\ 5.5 \ V \end{array}$	0.04167		1	μs
		g mode	main) mode	2.4 V ≤ V _{DD} < 2.7 V	0.0625		1	μs
External system clock frequency	fex	$2.7 V \le V_{DD} \le 5.5 V$ 2.4 V $\le V_{DD} < 2.7 V$		1.0		20.0	MHz	
					1.0		16.0	MHz
	fexs				32		35	kHz
External system clock input	texh, texl	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			24			ns
high-level width, low-level width		$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			30			ns
	texns, texls				13.7			μs
TI00 to TI03 input high-level width, low-level width	tт⊪, tт⊫				1/fмск+10			ns
TO00 to TO03 output frequency	fто	High-speed r	main 4.0 V	\leq Vdd \leq 5.5 V			12	MHz
		mode	2.7 V	\leq V _{DD} < 4.0 V			8	MHz
			2.4 V	≤ V _{DD} < 2.7 V			4	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	High-speed r	main 4.0 V	\leq Vdd \leq 5.5 V			16	MHz
frequency		mode	2.7 V	\leq V _{DD} < 4.0 V			8	MHz
			2.4 V	≤ V _{DD} < 2.7 V			4	MHz
Interrupt input high-level width, low-level width	tinth, tintl	INTP0 to INT INTP8, INTP	- ,	$\leq V_{\text{DD}} \leq 5.5 \text{ V}$	1			μs
Key interrupt input low-level width	t kr	KR0 to KR5	2.4 V	\leq Vdd \leq 5.5 V	250			ns
RESET low-level width	trsl				10			μs

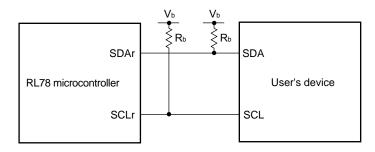
Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 3))

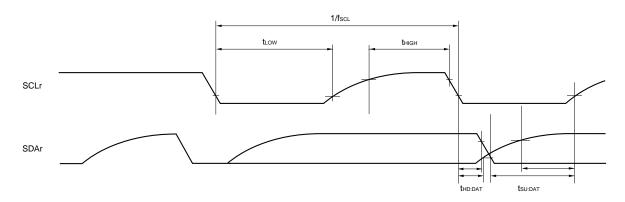
Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Data setup time (reception)	tsu:dat		1/f _{MCK} + 340 Note 3		ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b < 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/f _{МСК} + 340 ^{Note 3}		ns
			1/f _{MCK} + 760 Note 3		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b < 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/f _{MCK} + 760 Note 3		ns
		$ \begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Notes 2}}, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array} $	1/f _{MCK} + 570 Note 3		ns
Data hold time (transmission)	ţнр:рат		0	770	ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b < 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	770	ns
			0	1420	ns
		$\begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b < 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	1420	ns
		$ \begin{split} & 2.4 \ V \leq V_{\text{DD}} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V^{\text{Note 2}}, \\ & C_b = 100 \ \text{pF}, \ R_b = 5.5 \ \text{k}\Omega \end{split} $	0	1215	ns

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode) (2/2) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.


2. Use it with $V_{DD} \ge V_b$.

- 3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".
- Caution Select the TTL input buffer and the N-ch open drain output (V_{DD} tolerance) mode for the SDAr pin and the N-ch open drain output (V_{DD} tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.


(**Remarks** are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage
 - 2. r: IIC number (r = 00), g: PIM, POM number (g = 0, 3, 5, 7)
 - 3. fMCK: Serial array unit operation clock frequency

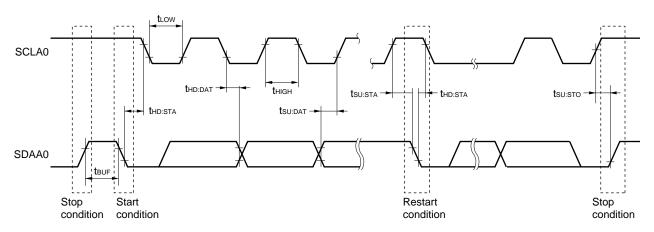
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00)

3.5.2 Serial interface IICA

Parameter	Symbol	Conditions	HS (h	HS (high-speed main) Mode			
				Standard Mode		Fast Mode	
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode: fc∟ĸ ≥ 3.5 MHz	-	_	0	400	kHz
		Standard mode: fcLK ≥ 1 MHz	0	100	_	_	kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μs
Hold time ^{Note 1}	thd:sta		4.0		0.6		μs
Hold time when SCLA0 = "L"	t∟ow		4.7		1.3		μs
Hold time when SCLA0 = "H"	t high		4.0		0.6		μs
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission)Note 2	thd:dat		0	3.45	0	0.9	μs
Setup time of stop condition	tsu:sto		4.0		0.6		μs
Bus-free time	t BUF		4.7		1.3		μs

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$


Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 1 (PIOR1) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

 $\begin{array}{ll} \mbox{Standard mode:} & C_b = 400 \mbox{ pF}, \mbox{ } R_b = 2.7 \mbox{ } k\Omega \\ \mbox{Fast mode:} & C_b = 320 \mbox{ pF}, \mbox{ } R_b = 1.1 \mbox{ } k\Omega \\ \end{array}$

IICA serial transfer timing

3.5.3 USB

(1) Electrical specifications

$(T_A = -40 \text{ to } +105^{\circ}C, 3.0 \text{ V} \le UV_{DD} \le 3.6 \text{ V}, 3.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
UVDD	UV _{DD} input voltage characteristic	UVdd	$ V_{\text{DD}} = 3.0 \text{ to } 5.5 \text{ V}, \text{PXXCON} = 1, \\ VDDUSEB = 0 (UV_{\text{DD}} \leq V_{\text{DD}}) $	3.0	3.3	3.6	V
	UV _{DD} output voltage characteristic	UVdd	V _{DD} = 4.0 to 5.5 V, PXXCON = VDDUSEB = 1	3.0	3.3	3.6	V
UVBUS	UV _{BUS} input voltage characteristic	0	Function	4.35 (4.02 ^{Note})	5.00	5.25	V
			Host	4.75	5.00	5.25	V

Note Value of instantaneous voltage

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 3.0 \text{ V} \le UV_{DD} \le 3.6 \text{ V}, 3.0 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
UDPi/UDMi pins input characteristic (FS/LS receiver)	Input voltage		VIH		2.0			V
			VIL				0.8	V
	Difference input sensitivity		Vdi	UDP voltage – UDM voltage	0.2			V
	Difference common mode range		Vсм		0.8		2.5	V
UDPi/UDMi	Output voltage		Vон	Іон = -200 μА	2.8		3.6	V
pins output characteristic			Vol	IoL = 2.4 mA	0		0.3	V
(FS driver)	Transi-ti	Rising	t _{FR}	Rising: From 10% to 90 % of	4		20	ns
. ,	on time	Falling	tff	amplitude, Falling: From 90% to 10 % of	4		20	ns
	Matching (TFR/TFF)		VFRFM	amplitude, CL = 50 pF	90		111.1	%
	Crossover voltage		VFCRS		1.3		2.0	V
	Output Impedance		Zdrv	UV _{DD} voltage = 3.3 V, Pin voltage = 1.65 V	28		44	Ω
UDPi/UDMi pins output characteristic (LS driver)	Output voltage		Vон		2.8		3.6	V
			Vol		0		0.3	V
	Transi-ti on time	Rising	tlr	Rising: From 10% to 90 % of	75		300	ns
		Falling	tlf	amplitude, Falling: From 90% to 10 % of	75		300	ns
	Matching (TFR/TFF) Note		VLTFM	amplitude, CL = 200 to 600 pF	80		125	%
	Crossover voltage		VLCRS	When the host controller function is selected: The UDMi pin (i = 0, 1) is pulled up via $1.5 \text{ k}\Omega$. When the function controller function is selected: The UDP0 and UDM0 pins are individually pulled down via $15 \text{ k}\Omega$	1.3		2.0	V
UDPi/UDMi	Pull-down resistor		Rpd		14.25		24.80	kΩ
oins pull-up, oull-down	Pull-up resistor (i = 0 only)	Idle	Rpui		0.9		1.575	kΩ
		Recep-t ion	Rpua		1.425		3.09	kΩ
UVBUS	UV _{BUS} pull-down resistor		Rvbus	UV _{BUS} voltage = 5.5 V		1000		kΩ
	UV _{BUS} input voltage		VIH		3.20			V
			VIL				0.8	V

Note Excludes the first signal transition from the idle state.

Remark i = 0, 1

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
 - 3. When AV_{REFP} < V_{DD}, the MAX. values are as follows. Overall error: Add ±1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.05%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.
 - 4. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.

(2) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI16, ANI17, ANI19

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V_{DD} ^{Note 3}	$2.4~V \leq AV_{REFP} \leq 5.5~V$		1.2	±5.0	LSB
Conversion time	t CONV	10-bit resolution Target ANI pin :	$3.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	2.125		39	μs
			$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
	ANI16, ANI17, ANI19	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μs	
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.35	%FSR
Full-scale error ^{Notes 1, 2}	EFS	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.35	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4~V \leq AV_{\text{REFP}} \leq 5.5~V$			±3.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4~V \leq AV_{\text{REFP}} \leq 5.5~V$			±2.0	LSB
Analog input voltage	Vain	ANI16, ANI17, ANI19		0		AVREFP and VDD	V

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{\text{REFP}}, \text{Reference voltage (-)} = \text{AV}_{\text{REFM}} = 0 \text{ V}$

Notes 1. Excludes quantization error (±1/2 LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- **3.** When $AV_{REFP} < V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 4.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.20\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ± 2.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

