

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART, USB
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	5.5K x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10jbcgfp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

(2) USB function: Function controller only (R5F10KBC)

Note IC: Internal Connection Pin Leave open.

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - **2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

1.5 Block Diagram

1.5.1 32-pin products

1.6 Outline of Functions

[32-pin, 48-pin products]

						(1/2)			
		Item	32	2-pin	48	3-pin			
			R5F10JBC	R5F10KBC	R5F10JGC	R5F10KGC			
	Code flash r	memory (KB)	32 KB		32 KB				
	Data flash n	nemory (KB)	2 KB		2 KB				
	RAM (KB)		5.5 KB ^{Note 1}		5.5 KB Note 1				
	Memory spa	асе	1 MB						
<r></r>	Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (High-speed main) mode: 1 to 20 MHz (V_{DD} = 2.7 to 5.5 V), HS (High-speed main) mode: 1 to 16 MHz (V_{DD} = 2.4 to 5.5 V)						
		High-speed on-chip oscillator	1 to 24 MHz (V _{DD} = 2.7	to 5.5 V), 1 to 16 MHz (\	/ _{DD} = 2.4 to 5.5 V)				
		PLL clock	6, 12, 24 MHz ^{Note 2} : \	/ _{DD} = 2.4 to 5.5 V					
	Subsystem	clock		_	XT1 (crystal) oscillation 32.768 kHz (TYP.): Vol	n ¤ = 2.4 to 5.5 V			
	Low-speed	on-chip oscillator	On-chip oscillation (Wa	atchdog timer/Real-time o	clock/12-bit interval timer	clock)			
			15 kHz (TYP.): V _{DD} = 2.4 to 5.5 V						
	General-purpose register		8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks)						
	Minimum instruction execution time		0.04167 <i>μ</i> s (High-spee	d on-chip oscillator: fносо	o = 48 MHz /fін = 24 MHz	coperation)			
			0.04167 <i>μ</i> s (PLL clock	: f _{PLL} = 48 MHz /f _{IH} = 24 N	/Hz ^{Note 2} operation)				
			0.05 µs (High-speed s	ystem clock: f _{MX} = 20 MH	z operation)				
				-	30.5 μ s (Subsystem clock: f _{SUB} = 32.768 k operation)				
	Instruction s	et	 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 						
	I/O port	Total	22		38				
		CMOS I/O	16 (N-ch O.D. I/O [VDD	withstand voltage]: 5)	28 (N-ch O.D. I/O [VDD	withstand voltage]: 6)			
		CMOS input	3		5				
		CMOS output		-	1				
		N-ch open-drain I/O (6 V tolerance)	3		4				
	Timer	16-bit timer	4 channel						
		Watchdog timer	1 channel						
		Real-time clock (RTC)	1 channel Note 3						
		12-bit Interval timer (IT)	1 channel						
		Timer output	4 channels (PWM output	ut: 3) Note 4					
		RTC output	_		1				
					• 1 Hz (subsystem cloo	ck: fsuв = 32.768 kHz)			

Notes 1. In the case of the 5.5 KB, this is about 4.5 KB when the self-programming function is used.

2. In the PLL clock 48 MHz operation, the system clock is 2/4/8 dividing ratio.

- **3.** In 32-pin products, this channel can only be used for the constant-period interrupt function based on the low-speed on-chip oscillator clock (fiL).
- 4. The number of PWM outputs varies depending on the setting of channels in use (the number of masters and slaves).

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

2.3 DC Characteristics

2.3.1 Pin characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	Per pin for P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P130, P140	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			-10.0 Note 2	mA
		Total of P00, P01, P40, P41, P120,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-55.0	mA
		P130, P140 (Albert duty $< 70\%$ Note 3)	$2.7~V \leq V_{\text{DD}}~<4.0~V$			-10.0	mA
		(when duty $\leq 70\%$ "300")	$2.4~V \leq V_{\text{DD}} < 2.7~V$			-5.0	mA
		Total of P14 to P17, P30, P31, P50, P51, P70 to P75 (When duty ≤ 70% ^{Note 3})	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-80.0	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			-19.0	mA
			$2.4~V \leq V_{\text{DD}}~<2.7~V$			-10.0	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			-135.0	mA
	Іон2	Per pin for P20 to P27	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			-0.1 ^{Not} e 2	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			-1.5	mA

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin.
 - 2. However, do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty ratio to n%).

- Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$
 - <Example> Where n = 80% and IoH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P01, P30, and P74 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, Iow ^{Note 1}	Iol1	Per pin for P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P130, P140	$2.4V \leq V_{\text{DD}} \leq 5.5 \text{ V}$			20.0 ^{Note} 2	mA
		Per pin for P60 to P63	$2.4V \leq V_{\text{DD}} \leq 5.5 \text{ V}$			20.0 ^{Note} 2	mA
		Total of P00, P01, P40, P41, P120, P130, P140 (When duty $\leq 70\%^{\text{Note 3}}$)	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			70.0	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			15.0	mA
			$2.4~V \leq V_{\text{DD}} < 2.7~V$			9.0	mA
		Total of P14 to P17, P30, P31, P50, P51, P60 to P63, P70 to P75 (When duty $\leq 70\%$ ^{Note 3})	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			80.0	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			35.0	mA
			$2.4~V \leq V_{\text{DD}} < 2.7~V$			20.0	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$2.4V \leq V_{\text{DD}} \leq 5.5 \text{ V}$			150.0	mA
	IOL2	Per pin for P20 to P27	$2.4V \leq V_{\text{DD}} \leq 5.5 \ V$			0.4 Note 2	mA
		Total of all pins (When duty $\leq 70\%^{\text{Note }3}$)	$2.4V \leq V_{\text{DD}} \leq 5.5~V$			5.0	mA

$(T_A = -40 \text{ to } +85^{\circ}C, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.
 - 2. However, do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty ratio to n%).

- Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$
- <Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

(2/2)

Parameter	Symbol			Conditions			TYP.	MAX.	Unit
Supply	DD2	HALT	HS	fносо = 48 MHz	V _{DD} = 5.0 V		0.67	1.25	mA
	Note 2	mode	(High-speed	f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 3.0 V		0.67	1.25	mA
			Main) mode Note 9	fHOCO = 24 MHz ^{Note 7}	V _{DD} = 5.0 V		0.50	0.86	mA
				f _{IH} = 12 MHz ^{Note 4}	V _{DD} = 3.0 V		0.50	0.86	mA
				fHOCO = 12 MHz ^{Note 7}	V _{DD} = 5.0 V		0.41	0.67	mA
				f⊪ = 6 MHz ^{Note 4}	V _{DD} = 3.0 V		0.41	0.67	mA
				fHOCO = 6 MHz ^{Note 7}	V _{DD} = 5.0 V		0.37	0.58	mA
				f⊪ = 3 MHz ^{Note 4}	V _{DD} = 3.0 V		0.37	0.58	mA
			HS	$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.28	1.00	mA
			(High-speed main) mode Note 9	V _{DD} = 5.0 V	Resonator connection		0.45	1.17	mA
				f_{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.00	mA
				V _{DD} = 3.0 V	Resonator connection		0.45	1.17	mA
				f_{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.60	mA
				V _{DD} = 5.0 V	Resonator connection		0.26	0.67	mA
			$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.19	0.60	mA	
				V _{DD} = 3.0 V	Resonator connection		0.26	0.67	mA
			HS (High-speed	fPLL = 48 MHz,	V _{DD} = 5.0 V		0.91	1.52	mA
				fclk = 24 MHz Note 3	V _{DD} = 3.0 V		0.91	1.52	mA
			(PLL	fPLL = 48 MHz,	V _{DD} = 5.0 V		0.85	1.28	mA
			operation)	fclk = 12 MHz Note 3	V _{DD} = 3.0 V		0.85	1.28	mA
			Note 9	fPLL = 48 MHz,	V _{DD} = 5.0 V		0.82	1.15	mA
				fclk = 6 MHz Note 3	V _{DD} = 3.0 V		0.82	1.15	mA
			Subsystem	f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.25	0.57	μA
			clock operation	T _A = -40°C	Resonator connection		0.44	0.76	μA
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.30	0.57	μA
				T _A = +25°C	Resonator connection		0.49	0.76	μΑ
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.33	1.17	μA
				T _A = +50°C	Resonator connection		0.63	1.36	μA
				fsub = 32.768 kHz ^{Note 5}	Square wave input		0.46	1.97	μA
				T _A = +70°C	Resonator connection		0.76	2.16	μΑ
				fsue = 32.768 kHz ^{Note 5}	Square wave input		0.97	3.37	μA
				T _A = +85°C	Resonator connection		1.16	3.56	μA
	DD3 ^{Note 6}	STOP	T _A = −40°C				0.18	0.50	μA
		mode ^{Note 8}	T _A = +25°C				0.23	0.50	μA
			T _A = +50°C				0.26	1.10	μA
			T _A = +70°C				0.29	1.90	μA
			T _A = +85°C				0.90	3.30	μA

(Notes and Remarks are listed on the next page.)

Minimum Instruction Execution Time during Main System Clock Operation

AC Timing Test Points

External System Clock Timing

2.5 Peripheral Functions Characteristics

HS (high-speed main) mode:

2.5.1 Serial array unit

(1) During communication at same potential (UART mode) (dedicated baud rate generator output) ($T_A = -40$ to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					fмск/6	bps
		Theoretical value of the maximum transfer rate f_{MCK} = f_{CLK} ^{Note}			4.0	Mbps

Note The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:

24 MHz (2.7 V \leq V_{DD} \leq 5.5 V)

16 MHz (2.4 V \leq V_DD \leq 5.5 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0), g: PIM and POM number (g = 5)

fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 n: Channel number (mn = 00))

(7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

 $(T_A = -40 \text{ to } +85^{\circ}C, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
SCKp cycle time	tkcy1	$t_{\text{KCY1}} \ge 2/f_{\text{CLK}}$	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	200			ns
			$2.7 V \le V_b \le 4.0 V$, C _b = 20 pF R _b = 1.4 kO				
			$2.7 \text{ V} \le \text{V}_{DD} < 4.0 \text{ V}.$	300			ns
			$2.3 V \le V_b \le 2.7 V$,				
			C_b = 20 pF, R_b = 2.7 k Ω				
SCKp high-level width	tĸн1	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V, 2.7 V \leq V _b \leq 4.0 V,	tксү1/2 – 50			ns
		C _b = 20 pF, R	_b = 1.4 kΩ				
		$2.7 \text{ V} \leq V_{\text{DD}} <$	4.0 V, 2.3 V \leq V _b \leq 2.7 V,	t ксү1/2 –			ns
		C _b = 20 pF, R	$C_b = 20 \text{ pF}, R_b = 2.7 \text{ k}\Omega$				
SCKp low-level width	t ĸ∟1	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V, 2.7 V \leq V _b \leq 4.0 V,	tkcy1/2 – 7			ns
		C _b = 20 pF, R	$\label{eq:product} \begin{array}{l} _{b} = 20 \ p\text{F}, \ \text{R}_{b} = 1.4 \ \text{k}\Omega \\ \\ .7 \ \text{V} \leq \text{V}_{\text{DD}} < 4.0 \ \text{V}, \ 2.3 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.7 \ \text{V}, \\ \\ .6 \ \text{b} = 20 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array} \end{array} \begin{array}{l} \text{txc} \\ \end{array}$				
		$2.7~V \leq V_{\text{DD}} <$					ns
		C _b = 20 pF, R					
SIp setup time	tsik1	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V, 2.7 V \leq V _b \leq 4.0 V,	58			ns
(to SCKp↑) ^{Note 1}		C _b = 20 pF, R	_b = 1.4 kΩ				
		$2.7~V \leq V_{\text{DD}} <$	4.0 V, 2.3 V \leq V _b \leq 2.7 V,	121			ns
		C _b = 20 pF, R	b = 2.7 kΩ				
SIp hold time	tksi1	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V, 2.7 V \leq V _b \leq 4.0 V,	10			ns
(from SCKp↑) Note 1		C _b = 20 pF, R	_b = 1.4 kΩ				
		$2.7~V \leq V_{\text{DD}} <$	4.0 V, 2.3 V \leq V _b \leq 2.7 V,	10			ns
		C _b = 20 pF, R	b = 2.7 kΩ				
Delay time from SCKp \downarrow to	tkso1	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V, 2.7 V \leq V _b \leq 4.0 V,			60	ns
SOp output Note 1		C_b = 20 pF, R_b = 1.4 k Ω					
		$2.7~V \leq V_{\text{DD}} <$	4.0 V, 2.3 V \leq V _b \leq 2.7 V,			130	ns
		C _b = 20 pF, R	b = 2.7 kΩ				
SIp setup time	tsik1	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V, 2.7 V \leq V _b \leq 4.0 V,	23			ns
(to SCKp↓) ^{Note 2}		C _b = 20 pF, R	_b = 1.4 kΩ				
		$2.7~V \leq V_{\text{DD}} <$	4.0 V, 2.3 V \leq V _b \leq 2.7 V,	33			ns
		C _b = 20 pF, R	b = 2.7 kΩ				
SIp hold time	tksi1	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V, 2.7 V \leq V _b \leq 4.0 V,	10			ns
(from SCKp↓) ^{Note 2}		C _b = 20 pF, R	_b = 1.4 kΩ				
		$2.7~V \leq V_{\text{DD}} <$	4.0 V, 2.3 V \leq V _b \leq 2.7 V,	10			ns
		$C_b = 20 \text{ pF}, R_b = 2.7 \text{ k}\Omega$					
Delay time from SCKp↑ to	tkso1	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V, 2.7 V \leq V _b \leq 4.0 V,			10	ns
SOp output Note 2		C _b = 20 pF, R	b = 1.4 kΩ				
		$2.7 \text{ V} \leq V_{\text{DD}}$ <	4.0 V, 2.3 V \leq V _b \leq 2.7 V,			10	ns
		C _b = 20 pF, R	_b = 2.7 kΩ				

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

(Caution and Remark are listed on the next page.)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_H and V_{IL}, see the DC characteristics with TTL input buffer selected.

- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),
 g: PIM and POM number (g = 3, 5)
 - fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 n: Channel number (mn = 00)
 - 4. This value is valid only when CSI00's peripheral I/O redirect function is not used.
- (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/2)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
SCKp cycle time	t ксү1	$\label{eq:tkcy1} \begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$		300			ns
			$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	500			ns
			$\label{eq:2.4} \begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \\ 2.4 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	1150			ns
SCKp high-level width	t кн1	$4.0 V \le V_{DD} \le$	$.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V,$				ns
		C _b = 30 pF, I	R _b = 1.4 kΩ				
		2.7 V ≤ V _{DD} < C _b = 30 pF	$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$				ns
		$2.4 \text{ V} \le \text{V}_{\text{DD}} <$ $C_{\text{b}} = 30 \text{ pF}, \text{ I}$	< 3.3 V, 1.6 V \leq V _b \leq 2.0 V, R _b = 5.5 kΩ	tксү1/2 – 458			ns
SCKp low-level width	t ĸ∟1	$4.0 V \le V_{DD} \le$	$\leq 5.5 \text{ V}, 2.7 \text{ V} \leq V_b \leq 4.0 \text{ V},$	tксү1/2 – 12			ns
		C₀ = 30 pF, I	R _b = 1.4 kΩ				
		$2.7 \text{ V} \leq \text{V}_{\text{DD}}$	$2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V,$				ns
		C _b = 30 pF, I	R _b = 2.7 kΩ				
		$2.4 \text{ V} \leq \text{V}_{\text{DD}}$	< 3.3 V, 1.6 V \leq V _b \leq 2.0 V,	tксү1/2 – 50			ns
		C _b = 30 pF, I	R _b = 5.5 kΩ				

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
 - 2. Use it with $V_{DD} \ge V_b$.

(Remarks are listed two pages after the next page.)

(4) When Reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), Reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI0 to ANI7, ANI16, ANI17, ANI19

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{\text{BGR}}^{\text{Note 3}}, \text{ Reference voltage (-)} = \text{AV}_{\text{REFM}}^{\text{Note 4}} = 0 \text{ V}, \text{ HS (high-speed main) mode)}$

Parameter	Symbol	Cond	MIN.	TYP.	MAX.	Unit	
Resolution	Res				8		Bit
Conversion time	t CONV	8-bit resolution	$2.4~V \leq V\text{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V\text{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN			0		VBGR Note 3	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

4. When reference voltage (-) = Vss, the MAX. values are as follows.

Zero-scale error: Add $\pm 0.35\%$ FSR to the MAX. value when reference voltage (–) = AV_{REFM}. Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (–) = AV_{REFM}. Differential linearity error: Add ± 0.2 LSB to the MAX. value when reference voltage (–) = AV_{REFM}.

2.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode (TA = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD0	Power supply rise time	3.98	4.06	4.14	V
voltage			Power supply fall time	3.90	3.98	4.06	V
		VLVD1	Power supply rise time	3.68	3.75	3.82	V
			Power supply fall time	3.60	3.67	3.74	V
		VLVD2	Power supply rise time	3.07	3.13	3.19	V
			Power supply fall time	3.00	3.06	3.12	V
		VLVD3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		VLVD4	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		VLVD5	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		VLVD6	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	V
		VLVD7	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.50	2.55	2.60	V
		VLVD8	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
Minimum pul	se width	t∟w		300			μs
Detection de	lay time	tld				300	μs

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, Iow ^{Note 1}	Iol1	Per pin for P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P130, P140	$2.4V \leq V_{DD} \leq 5.5~V$			8.5 Note 2	mA
		Per pin for P60 to P63	$2.4V \leq V_{\text{DD}} \leq 5.5~V$			15.0 Note 2	mA
		Total of P00, P01, P40, P41, P120,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			40.0	mA
		P130, P140	$2.7~V \leq V_{\text{DD}} < 4.0~V$			15.0	mA
		(when duly > 70%)	$2.4~V \leq V_{\text{DD}} < 2.7~V$			9.0	mA
		Total of P14 to P17, P30, P31, P50, P51, P60 to P63, P70 to P75 (When duty $\leq 70\%$ ^{Note 3})	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			40.0	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			35.0	mA
			$2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$			20.0	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$2.4V \leq V_{\text{DD}} \leq 5.5 \; V$			80.0	mA
	IOL2	Per pin for P20 to P27	$2.4V \le V_{\text{DD}} \le 5.5 \ V$			0.4 Note 2	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$2.4V \leq V_{\text{DD}} \leq 5.5~V$			5.0	mA

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- **Notes 1**. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.
 - 2. However, do not exceed the total current value.
 - **3.** Specification under conditions where the duty factor \leq 70%.
 - The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty ratio to n%).
 - Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$
 - <Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditio	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00, P01, P14 to P17, P20 to P27, P30, P31, P40, P41, P50, P51, P60 to P63, P70 to P75, P120, P137, P140, RESET	VI = VDD				1	μA
	Іцн2	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low	ILIL1	P00, P01, P14 to P17, P20 to P27, P30, P31, P40, P41, P50, P51, P60 to P63, P70 to P75, P120, P137, P140, RESET	V _I = V _{SS}				-1	μA
	Ilil2	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VSS	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
On-chip pll-up resistance	Ru	P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P140	Vı = Vss, In input port		10	20	100	kΩ

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT	HS	fносо = 48 MHz	V _{DD} = 5.0 V		0.67	2.25	mA
current	Note 2	mode	(High-speed	f⊪ = 24 MHz ^{Note 4}	V _{DD} = 3.0 V		0.67	2.25	mA
NOTE 1			main) mode Note 9	fHOCO = 24 MHz ^{Note 7}	V _{DD} = 5.0 V		0.50	1.55	mA
				fı⊢ = 12 MHz ^{Note 4}	V _{DD} = 3.0 V		0.50	1.55	mA
				f _{HOCO} = 12 MHz ^{Note 7}	V _{DD} = 5.0 V		0.41	1.21	mA
				f _{IH} = 6 MHz ^{Note 4}	V _{DD} = 3.0 V		0.41	1.21	mA
				fHOCO = 6 MHz ^{Note 7}	V _{DD} = 5.0 V		0.37	1.05	mA
				fin = 3 MHz Note 4	V _{DD} = 3.0 V		0.37	1.05	mA
			HS	$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.28	1.90	mA
			(High-speed	V _{DD} = 5.0 V	Resonator connection		0.45	2.00	mA
			Main) mode Note 9	$f_{MX} = 20 \text{ MHz}^{Note 3}$,	Square wave input		0.28	1.90	mA
				V _{DD} = 3.0 V	Resonator connection		0.45	2.00	mA
				$f_{MX} = 10 \text{ MHz}^{\text{Note 3}},$	Square wave input		0.19	1.02	mA
				V _{DD} = 5.0 V	Resonator connection		0.26	1.10	mA
				$f_{MX} = 10 \text{ MHz}^{Note 3}$,	Square wave input		0.19	1.02	mA
				V _{DD} = 3.0 V	Resonator connection		0.26	1.10	mA
			HS	f _{PLL} = 48 MHz,	V _{DD} = 5.0 V		0.91	2.74	mA
		(High-speed	fclk = 24 MHz Note 3	V _{DD} = 3.0 V		0.91	2.74	mA	
			(PLL operation) Note 9	f _{PLL} = 48 MHz,	V _{DD} = 5.0 V		0.85	2.31	mA
				fclk = 12 MHz ^{Note 3}	V _{DD} = 3.0 V		0.85	2.31	mA
				f _{PLL} = 48 MHz, f _{CLK} = 6 MHz ^{Note 3}	V _{DD} = 5.0 V		0.82	2.07	mA
					V _{DD} = 3.0 V		0.82	2.07	mA
			Subsystem	fsub = 32.768 kHz ^{Note 5}	Square wave input		0.25	0.57	μA
			clock	T _A = -40°C	Resonator connection		0.44	0.76	μA
			operation	fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.30	0.57	μA
				T _A = +25°C	Resonator connection		0.49	0.76	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.33	1.17	μA
				T _A = +50°C	Resonator connection		0.63	1.36	μA
				fsuв = 32.768 kHz ^{Note 5}	Square wave input		0.46	1.97	μA
				T _A = +70°C	Resonator connection		0.76	2.16	μA
				f _{S∪B} = 32.768 kHz ^{Note 5}	Square wave input		0.97	3.37	μA
				T _A = +85°C	Resonator connection		1.16	3.56	μA
				f _{S∪B} = 32.768 kHz ^{Note 5}	Square wave input		3.01	15.37	μA
				T _A = +105°C	Resonator connection		3.20	15.56	μA
	DD3 ^{Note 6}	STOP	T_A = -40°C				0.18	0.50	μA
		mode Note 8	T _A = +25°C				0.23	0.50	μA
			T _A = +50°C				0.26	1.10	μA
			T _A = +70°C				0.29	1.90	μA
			T _A = +85°C				0.90	3.30	μA
			T _A = +105°C				2.94	15.30	μA

(Notes and Remarks are listed on the next page.)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$ (2/2)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
USB operating current	IUSBH Note 11	 During USB communication operation under the following settings and conditions (V_{DD} = 5.0 V, T_A = +25°C): The internal power supply for the USB is used. X1 oscillation frequency (fx) = 12 MHz, PLL oscillation frequency (f_{PLL}) = 48 MHz The host controller (via two ports) is set to operate in full-speed mode with four pipes (end points) used simultaneously. (PIPE4: Bulk OUT transfer (64 bytes), PIPE5: Bulk IN transfer (64 bytes), PIPE6: Interrupt OUT transfer, PIPE7: Interrupt IN transfer). The USB ports (two ports) are individually connected to a peripheral function via a 0.5 m USB cable. 		9.0		mA
	IUSBF Note 11	 During USB communication operation under the following settings and conditions (V_{DD} = 5.0 V, T_A = +25°C): The internal power supply for the USB is used. X1 oscillation frequency (fx) = 12 MHz, PLL oscillation frequency (f_{PLL}) = 48 MHz The function controller is set to operate in full-speed mode with four pipes (end points) used simultaneously. (PIPE4: Bulk OUT transfer (64 bytes), PIPE5: Bulk IN transfer (64 bytes), PIPE6: Interrupt OUT transfer, PIPE7: Interrupt IN transfer). The USB port (one port) is connected to the host device via a 0.5 m USB cable. 		2.5		mA
	ISUSP Note 12	 During suspended state under the following settings and conditions (V_{DD} = 5.0 V, T_A = +25°C): The function controller is set to full-speed mode (the UDP0 pin is pulled up). The internal power supply for the USB is used. The system is set to STOP mode (When the high-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped. When the watchdog timer is stopped.). The USB port (one port) is connected to the host device via a 0.5 m USB cable. 		240		μΑ

(Notes and Remarks are listed on the next page.)

Parameter		Symbol	Conditions	MIN.	TYP.	, MAX.	Unit	
UDPi output	VDSELi	1000	VP20		38	40	42	% UV _{BUS}
voltage	[3:0]	1001	Vp27		51.6	53.6	55.6	% UV _{BUS}
(UV _{BUS} divider	(i = 0, 1)	1010	V P20		38	40	42	% UV _{BUS}
•VDOUEi = 1		1100	V _{P33}		60	66	72	% UV _{BUS}
UDMi output	VDSELi	1000	V _{M20}		38	40	42	% UV _{BUS}
voltage	[3:0]	1001	V _{M20}		38	40	42	% UV _{BUS}
(UV _{BUS} divider	(i = 0, 1)	1010	Vm27		51.6	53.6	55.6	% UV _{BUS}
•VDOUEi = 1		1100	Vмзз		60	66	72	% UV _{BUS}
UDPi	VDSELi	1000	VHDETP_UP0	The rise of pin voltage detection voltage	56.2			% UV _{BUS}
comparing Note 1	[3:0]		VHDETP_DWN0	The fall of pin voltage detection voltage			29.4	% UV _{BUS}
Voltage (UV _{BUS} divider	(1 = 0, 1)	1001	VHDETP_UP1	The rise of pin voltage detection voltage	60.5			% UV _{BUS}
ratio)			VHDETP_DWN1	The fall of pin voltage detection voltage			45.0	% UV _{BUS}
• VDOUEi = 1		1010	VHDETP_UP2	The rise of pin voltage detection voltage	56.2			% UV _{BUS}
• CUSDETEi = 1			VHDETP_DWN2	The fall of pin voltage detection voltage			29.4	% UV _{BUS}
UDMi	VDSELi [3:0] (i = 0, 1)	SELi 1000	VHDETM_UP0	The rise of pin voltage detection voltage	56.2			% UV _{BUS}
comparing Note 1			VHDETM_DWN0	The fall of pin voltage detection voltage			29.4	% UV _{BUS}
UVBUS divider		1001	VHDETM_UP1	The rise of pin voltage detection voltage	56.2			% UV _{BUS}
ratio)			VHDETM_DWN1	The fall of pin voltage detection voltage			29.4	% UV _{BUS}
• VDOUEi = 1		1010	VHDETM_UP2	The rise of pin voltage detection voltage	60.5			% UV _{BUS}
• CUSDETEi = 1			VHDETM_DWN2	The fall of pin voltage detection voltage			45.0	% UV _{BUS}
UDPi pull-up de	etection	1000	RHDET_PULL	In full-speed mode, the power supply			1.575	kΩ
Connoct datas	tion with	1001		voltage range of pull-up resistors				
the full speed f	unction	1010		module is between 3.0 V and 3.6 V.				
(pull-up resisto	r)							
UDMi pull-up d	etection	1000	RHDET_PULL	In low-speed mode, the power supply			1.575	kΩ
		1001		voltage range of pull-up resistors				
Connect detection with the low-speed (pull-up resistor)		1010		connected to the USB function module is between 3.0 V and 3.6 V				
UDMi sink curr	ent	1000	HDET_SINK		25			μA
detection Note 2	<u>د</u> 	1001]					
Connect detect	tion with able	1010						
device (sink re	sistor)							

(3) BC option standard (Host)

Notes 1. If the voltage output from UDPi or UDMi (i = 0, 1) exceeds the range of the MAX and MIN values prescribed in this specification, DPCUSDETi (bit 8) and DMCUSDETi (bit 9) of the USBBCOPTi register are set to 1.

If the pull-up resistance or sink current prescribed in this specification is applied to UDPi or UDMi (i = 0, 1), DPCUSDETi (bit 8) and DMCUSDETi (bit 9) of the USBBCOPTi register are set to 1.

Remark i = 0, 1

(3) Reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), Reference voltage (-) = V_{ss} (ADREFM = 0), target ANI pin : ANI0 to ANI7, ANI16, ANI17, ANI19, internal reference voltage, and temperature sensor output voltage

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error ^{Notes 1, 2}	AINL	10-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$		1.2	±7.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μs
		Target ANI pin :	$2.7~\text{V} \leq \text{V}\text{DD} \leq 5.5~\text{V}$	3.1875		39	μs
		ANI0 to ANI7, ANI16, ANI17, ANI19	$2.4~\text{V} \leq \text{V}\text{DD} \leq 5.5~\text{V}$	17		39	μs
		10-bit resolution	$3.6~V \leq V\text{DD} \leq 5.5~V$	2.375		39	μs
		Target ANI pin : Internal	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.5625		39	μs
		temperature sensor output voltage (HS	$2.4~V \le V \text{DD} \le 5.5~V$	17		39	μs
		(high-speed main) mode)					
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±0.60	%FSR
Full-scale error ^{Notes 1, 2}	EFS	10-bit resolution	$2.4~V \leq V\text{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$2.4~V \leq V\text{DD} \leq 5.5~V$			±4.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$2.4~V \leq V\text{DD} \leq 5.5~V$			±2.0	LSB
Analog input voltage	VAIN	ANI0 to ANI7, ANI16, ANI	17, ANI19	0		Vdd	V
		Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)		V _{BGR} Note 3			V
		Temperature sensor output voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)		V _{TMPS25} Note 3			V

(T _A = -40 to +105°C	$3, 2.4 V \le V DD \le 5.5 V_{\odot}$	Vss = 0 V, Reference	voltage (+) = VDD,	Reference voltage (-) = Vss)
---------------------------------	---------------------------------------	----------------------	--------------------	------------------------------

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.

(4) When Reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), Reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target pin : ANI0 to ANI7, ANI16, ANI17, ANI19

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{V}_{BGR}^{Note 3}, \text{ Reference voltage (-)} = \text{AV}_{REFM}^{Note 4} = 0 \text{ V}, \text{ HS (high-speed main) mode)}$

Parameter Sy		Cond	MIN.	TYP.	MAX.	Unit	
Resolution	Res				8		Bit
Conversion time	t CONV	8-bit resolution	$2.4~V \le V \text{DD} \le 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	8-bit resolution	$2.4~V \le V_{DD} \le 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~V \le V \text{DD} \le 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \le V \text{DD} \le 5.5~V$			±1.0	LSB
Analog input voltage	VAIN			0		VBGR Note 3	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. Refer to 3.6.2 Temperature sensor/internal reference voltage characteristics.

4. When reference voltage (-) = Vss, the MAX. values are as follows.

Zero-scale error: Add $\pm 0.35\%$ FSR to the MAX. value when reference voltage (–) = AV_{REFM}. Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (–) = AV_{REFM}. Differential linearity error: Add ± 0.2 LSB to the MAX. value when reference voltage (–) = AV_{REFM}.

3.6.2 Temperature sensor/internal reference voltage characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = $+25^{\circ}$ C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvtmps	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

(T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, HS (high-speed main) mode)

3.6.3 POR circuit characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	VPOR Power supply rise time		1.51	1.57	V
	VPDR	Power supply fall time	1.44	1.50	1.56	V
Minimum pulse width ^{Note}	Tpw		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock (f_{MAIN}) is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

