

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

XFI

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I²C, UART/USART, USB
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	5.5K x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.5V
Data Converters	A/D 9x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-WFQFN Exposed Pad
Supplier Device Package	48-HWQFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10jgcana-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ROM, RAM capacities

Flash ROM	Data flash	RAM	RL78/G1C		
			32-pin	48-pin	
32 KB	2 KB	5.5 KB ^{Note}	R5F10JBC, R5F10KBC	R5F10JGC, R5F10KGC	

Note This is about 4.5 KB when the self-programming function is used.

Remark The functions mounted depend on the product. See **1.6 Outline of Functions**.

1.2 List of Part Numbers

Pin count	Package	USB Function	Fields of Application ^{Note}	Part Number
32 pins	32-pin plastic HWQFN	Host/Function controller	A	R5F10JBCANA#U0, R5F10JBCANA#W0
	(5 × 5 , 0.5 mm pitch)		G	R5F10JBCGNA#U0, R5F10JBCGNA#W0
		Function controller only	А	R5F10KBCANA#U0, R5F10KBCANA#W0
			G	R5F10KBCGNA#U0, R5F10KBCGNA#W0
	32-pin plastic LQFP	Host/Function controller	А	R5F10JBCAFP#V0, R5F10JBCAFP#X0
	(7 × 7 , 0.8 mm pitch)		G	R5F10JBCGFP#V0, R5F10JBCGFP#X0
		Function controller only	А	R5F10KBCAFP#V0, R5F10KBCAFP#X0
			G	R5F10KBCGFP#V0, R5F10KBCGFP#X0
48 pins	48-pin plastic LFQFP	Host/Function controller	А	R5F10JGCAFB#V0, R5F10JGCAFB#X0
	(7 × 7 , 0.5 mm pitch)		G	R5F10JGCGFB#V0, R5F10JGCGFB#X0
		Function controller only	А	R5F10KGCAFB#V0, R5F10KGCAFB#X0s
			G	R5F10JGCANA#U0, R5F10JGCANA#W0
	48-pin plastic HWQFN	Host/Function controller	А	R5F10JGCANA#U0, R5F10JGCANA#W0
	(7 × 7 , 0.5 mm pitch)		G	R5F10JGCGNA#U0, R5F10JGCGNA#W0
		Function controller only	A	R5F10KGCANA#U0, R5F10KGCANA#W0
			G	R5F10KGCGNA#U0, R5F10KGCGNA#W0

Note For the fields of application, refer to Figure 1-1 Part Number, Memory Size, and Package of RL78/G1C.

Caution The part number above is valid as of when this manual was issued. For the latest part number, see the web page of the target product on the Renesas Electronics website.

1.3.2 48-pin products

• 48-pin plastic LFQFP (fine pitch) (7 × 7, 0.5 mm pitch)

(1) USB function: Host/Function controller (R5F10JGC)

<R>

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

(2) USB function: Function controller only (R5F10KGC)

<R>

Note IC: Internal Connection Pin Leave open.

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - **2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

- 48-pin plastic WHQFN (7 × 7, 0.5 mm pitch)
- (1) USB function: Host/Function controller (R5F10JGC)

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.4 Pin Identification.

- **2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).
- 3. It is recommended to connect an exposed die pad to Vss.

2.2 Oscillator Characteristics

2.2.1 X1, XT1 oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}C, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator/	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal resonator	$2.4~V \leq V_{\text{DD}} < 2.7~V$	1.0		16.0	MHz
XT1 clock oscillation frequency (fxT) ^{Note}	Crystal resonator		32	32.768	35	kHz

- **Note** Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.
- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

2.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fносо		1		48	MHz
High-speed on-chip oscillator		–20 to +85 °C	-1.0		+1.0	%
clock frequency accuracy		−40 to −20 °C	-1.5		+1.5	%
Low-speed on-chip oscillator clock frequency	f∟			15		kHz
Low-speed on-chip oscillator clock frequency accuracy			-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register.

2. This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time.

- **Notes 1.** Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 5. When Operating frequency setting of option byte = 48 MHz. When fHOCO is divided by HOCODIV. When RDIV[1:0] = 00 (divided by 2: default).
 - **6.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \ V \le V_{DD} \le 5.5 \ V@1 \ MHz \ to \ 24 \ MHz \\ 2.4 \ V \le V_{DD} \le 5.5 \ V@1 \ MHz \ to \ 16 \ MHz$

- Remarks 1. fHOCO: High-speed on-chip oscillator clock frequency (Max. 48 MHz)
 - 2. fi⊢: Main system clock source frequency obtained by dividing the high-speed on-chip oscillator clock by 2, 4, or 8 (Max. 24 MHz)
 - **3.** fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 4. fPLL: PLL oscillation frequency
 - 5. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 6. fclk: CPU/peripheral hardware clock frequency
 - 7. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$.

- Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, USB 2.0 host/function module, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - **3.** When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. When Operating frequency setting of option byte = 48 MHz. When fHOCO is divided by HOCODIV. When RDIV[1:0] = 00 (divided by 2: default).
 - **8.** Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
 - **9.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @1 \text{ MHz to } 24 \text{ MHz}$ $2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @1 \text{ MHz to } 16 \text{ MHz}$

- Remarks 1. fHOCO: High-speed on-chip oscillator clock frequency (Max. 48 MHz)
 - 2. fiH: Main system clock source frequency obtained by dividing the high-speed on-chip oscillator clock by 2, 4, or 8 (Max. 24 MHz)
 - **3.** fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 4. fPLL: PLL oscillation frequency
 - 5. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 6. fclk: CPU/peripheral hardware clock frequency
 - 7. Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$.

Parameter	Symbol		Condition	ns	MIN.	TYP.	MAX.	Unit
Transfer rate		reception	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	$1.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$			fмск/6 ^{Note 1}	bps
	$2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V}$		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 2			4.0	Mbps	
			$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V},$				fмск/6 ^{Note 1}	bps
			$2.3~V \leq V_b \leq 2.7~V$	Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$			4.0	Mbps
			$2.4~V \leq V_{\text{DD}} < 3.3~V,$				fмск/6 ^{Note 1}	bps
			$1.6 V \le V_b \le 2.0 V$	Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 2			4.0	Mbps

(6) Communication at different potential (2.5 V, 3 V) (UART mode) (1/2) (T_A = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Notes 1. Use it with $V_{DD} \ge V_b$.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:

24 MHz (2.7 V
$$\leq$$
 VDD \leq 5.5 V)

16 MHz (2.4 V \leq VDD \leq 5.5 V)

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vbb tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remarks 1. Vb[V]: Communication line voltage

HS (high-speed main) mode:

- **2.** q: UART number (q = 0), g: PIM and POM number (g = 5)
- 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00)

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3 Use it with $V_{DD} \ge V_b$.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00), m: Unit number, n: Channel number (mn = 00), g: PIM and POM number (g = 0, 3, 5, 7)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 m: Unit number, n: Channel number (mn = 00))
 - **4.** CSI01 cannot communicate at different potential. Use other CSI for communication at different potential.

(3) Reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), Reference voltage (-) = V_{ss} (ADREFM = 0), target ANI pin : ANI0 to ANI7, ANI16, ANI17, ANI19, internal reference voltage, and temperature sensor output voltage

Parameter	Symbol	Conditio	ons	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error ^{Notes 1, 2}	AINL	10-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$		1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \le V \text{DD} \le 5.5~V$	2.125		39	μs
		Target ANI pin :	$2.7~V \le V \text{DD} \le 5.5~V$	3.1875		39	μs
	ANIO (ANI17	ANI0 to ANI7, ANI16, ANI17, ANI19	$2.4~\text{V} \leq \text{VDD} \leq 5.5~\text{V}$	17		39	μs
		10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.375		39	μs
		Target ANI pin : Internal	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
	reference voltage, and temperature sensor output voltage (HS		$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
		(high-speed main) mode)					
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±0.60	%FSR
Full-scale error ^{Notes 1, 2}	EFS	10-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	$2.4~V \le V_{DD} \le 5.5~V$			±4.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±2.0	LSB
Analog input voltage	VAIN	ANI0 to ANI7, ANI16, ANI	17, ANI19	0		VDD	V
		Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)			VBGR Note 3		V
	Temperature sensor output (2.4 V \leq VDD \leq 5.5 V, HS (I mode)	ut voltage high-speed main)	١	/ _{TMPS25} Note	3	V	

$(T_A = -40 \text{ to } +85^{\circ}C, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V}$	Reference voltage (+) = VDD, Reference voltage (-) = Vss)
--	---

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 2.6.2 Temperature sensor/internal reference voltage characteristics.

2.6.2 Temperature sensor/internal reference voltage characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = $+25^{\circ}$ C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvtmps	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V}, \text{HS (high-speed main) mode)}$

2.6.3 POR circuit characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time		1.51	1.55	V
	VPDR	Power supply fall time	1.46	1.50	1.54	V
Minimum pulse width ^{Note}	Tpw		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock (f_{MAIN}) is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

Items	Symbol	Conditio	ns		MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00, P01, P14 to P17, P20 to P27, P30, P31, P40, P41, P50, P51, P60 to P63, P70 to P75, P120, P137, P140, RESET	VI = VDD				1	μA
	Ilih2	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low	ILIL1	P00, P01, P14 to P17, P20 to P27, P30, P31, P40, P41, P50, P51, P60 to P63, P70 to P75, P120, P137, P140, RESET	VI = VSS				-1	μA
	Ilil2	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VSS	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
On-chip pll-up resistance	Ru	P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P140	Vı = Vss, Ir	n input port	10	20	100	kΩ

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$ (2/2)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
USB operating current	IUSBH Note 11	 During USB communication operation under the following settings and conditions (V_{DD} = 5.0 V, T_A = +25°C): The internal power supply for the USB is used. X1 oscillation frequency (fx) = 12 MHz, PLL oscillation frequency (f_{PLL}) = 48 MHz The host controller (via two ports) is set to operate in full-speed mode with four pipes (end points) used simultaneously. (PIPE4: Bulk OUT transfer (64 bytes), PIPE5: Bulk IN transfer (64 bytes), PIPE6: Interrupt OUT transfer, PIPE7: Interrupt IN transfer). The USB ports (two ports) are individually connected to a peripheral function via a 0.5 m USB cable. 		9.0		mA
	IUSBF Note 11	 During USB communication operation under the following settings and conditions (V_{DD} = 5.0 V, T_A = +25°C): The internal power supply for the USB is used. X1 oscillation frequency (fx) = 12 MHz, PLL oscillation frequency (f_{PLL}) = 48 MHz The function controller is set to operate in full-speed mode with four pipes (end points) used simultaneously. (PIPE4: Bulk OUT transfer (64 bytes), PIPE5: Bulk IN transfer (64 bytes), PIPE6: Interrupt OUT transfer, PIPE7: Interrupt IN transfer). The USB port (one port) is connected to the host device via a 0.5 m USB cable. 		2.5		mA
	ISUSP Note 12	 During suspended state under the following settings and conditions (V_{DD} = 5.0 V, T_A = +25°C): The function controller is set to full-speed mode (the UDP0 pin is pulled up). The internal power supply for the USB is used. The system is set to STOP mode (When the high-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped. When the watchdog timer is stopped.). The USB port (one port) is connected to the host device via a 0.5 m USB cable. 		240		μΑ

(Notes and Remarks are listed on the next page.)

- **Notes 1.** Current flowing to VDD.
 - 2. When high speed on-chip oscillator and high-speed system clock are stopped.
 - 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip ocsillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
 - 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip ocsillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.
 - 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
 - **6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
 - **7.** Current flowing only to the LVD circuit. The current value of the RL78/G1C is the sum of IDD1, IDD2 or IDD3 and ILVI when the LVD circuit operates in the Operating, HALT or STOP mode.
 - 8. Current flowing only during data flash rewrite.
 - **9.** Current flowing only during self programming.
 - 10. For shift time to the SNOOZE mode.
 - 11. Current consumed only by the USB module and the internal power supply for the USB.
 - **12.** Includes the current supplied from the pull-up resistor of the UDP0 pin to the pull-down resistor of the host device, in addition to the current consumed by this MCU during the suspended state.

Remarks 1. fi∟: Low-speed on-chip oscillator clock frequency

- 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 3. fclk: CPU/peripheral hardware clock frequency
- 4. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

(5) Communication at different potential (2.5 V, 3 V) (UART mode) (2/2) $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol		Condit	ions	MIN.	TYP.	MAX.	Unit
Transfer rate		transmission	$4.0 V \le V_{DD} \le 5.5 V$,				Note 1	bps
			$2.7 \text{ V} \leq V_b \leq 4.0 \text{ V}$	Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 1.4 kΩ, V_b = 2.7 V			2.6 ^{Note 2}	Mbps
			$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V},$				Note 3	bps
			$2.3~V \leq V_b \leq 2.7~V$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$			1.2 ^{Note 4}	Mbps
			$2.4 V \le V_{DD} < 3.3 V,$				Notes 5, 6	bps
				Theoretical value of the maximum transfer rate $C_{b} = 50 \text{ pE} \text{ B}_{b} = 5.5 \text{ kQ} \text{ V}_{b} = 1.6 \text{ V}$			0.43 Note 7	Mbps

Notes 1. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq V_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

$$\frac{1}{|\text{Transfer rate} \times 2|} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}$$
Baud rate error (theoretical value) =
$$\frac{\frac{2.2}{V_b}}{|(\frac{1}{|\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **3.** The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq V_{DD} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

$$Baud rate error (theoretical value) = \frac{1}{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\}} \times 100 \,[\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
- **5.** Use it with $V_{DD} \ge V_b$.

3.5.2 Serial interface IICA

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit		
			Standard Mode		Fast	Mode	
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscl	Fast mode: $f_{CLK} \ge 3.5 \text{ MHz}$	-	-	0	400	kHz
		Standard mode: fc⊥ĸ ≥ 1 MHz	0	100	-	_	kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μs
Hold time ^{Note 1}	thd:sta		4.0		0.6		μs
Hold time when SCLA0 = "L"	t LOW		4.7		1.3		μs
Hold time when SCLA0 = "H"	t high		4.0		0.6		μs
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission) ^{Note 2}	thd:dat		0	3.45	0	0.9	μs
Setup time of stop condition	tsu:sto		4.0		0.6		μs
Bus-free time	t BUF		4.7		1.3		μs

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 1 (PIOR1) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

 $\begin{array}{ll} \mbox{Standard mode:} & C_b = 400 \mbox{ pF}, \mbox{ } R_b = 2.7 \mbox{ } k\Omega \\ \mbox{Fast mode:} & C_b = 320 \mbox{ pF}, \mbox{ } R_b = 1.1 \mbox{ } k\Omega \\ \end{array}$

IICA serial transfer timing

Timing of UDPi and UDMi

(2) BC standard

$(T_{A} = -40 \text{ to } +105^{\circ}\text{C}, 3.0 \text{ V} \le U\text{V}_{\text{DD}} \le 3.6 \text{ V}, 3.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
USB	UDPi sink current	IDP_SINK		25		175	μA
standard	UDMi sink current	Idm_sink		25		175	μA
BC1.2	DCD source current	IDP_SRC		7		13	μA
	Dedicated charging port resistor	Rdcp_dat	0 V < UDP/UDM voltage < 1.0 V			200	Ω
	Data detection voltage	VDAT_REF		0.25		0.4	V
	UDPi source voltage VDP_SRC		Output current 250 µA	0.5		0.7	V
	UDMi source voltage	Vdm_src	Output current 250 µA	0.5		0.7	V

Remark i = 0, 1

<R> 3.7 RAM Data Retention Characteristics

(T _A = _4	0 to	+105°C.	Vss =	0	V)
	IA	0.0	· · · · · · · · · · · · · · · · · · ·	• 33 -	•	•,

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 ^{Note}		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is effected, but data is not retained when a POR reset is effected.

3.8 Flash Memory Programming Characteristics

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	CPU/peripheral hardware clock frequency	fclк	$2.4 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	1		24	MHz
<r></r>	Number of code flash rewrites	Cerwr	Retaining years: 20 years $T_A = +85^{\circ}C^{Note 4}$	1,000			Times
<r></r>	Number of data flash rewrites Notes 1, 2, 3		Retaining years: 1 year $T_A = +25^{\circ}C^{Note 4}$		1,000,000		
<r></r>			Retaining years: 5 years $T_A = +85^{\circ}C^{Note 4}$	100,000			
<r></r>			Retaining years: 20 years $T_A = +85^{\circ}C^{Note 4}$	10,000			

$(T_A = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

2. When using flash memory programmer and Renesas Electronics self programming library.

3. These specifications show the characteristics of the flash memory and the results obtained from Renesas Electronics reliability testing.

4. This temperature is the average value at which data are retained.

3.9 Dedicated Flash Memory Programmer Communication (UART)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

<R>

3.10 Timing Specs for Switching Flash Memory Programming Modes

Parameter	Parameter Symbol Conditions		MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	tsu	POR and LVD reset must end before the external reset ends.	10			μs
How long the TOOL0 pin must be kept at the low level after an external reset ends (excluding the processing time of the firmware to control the flash memory)	tнd	POR and LVD reset must end before the external reset ends.	1			ms

(T_A = -40 to +105°C, 2.4 V \leq V_DD \leq 5.5 V, Vss = 0 V)

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset ends (POR and LVD reset must end before the external reset ends.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** t_{SUINIT}: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.
 - t_{SU} : How long from when the TOOL0 pin is placed at the low level until an external reset ends
 - thd: How long to keep the TOOL0 pin at the low level from when the external and internal resets end (excluding the processing time of the firmware to control the flash memory)

C₂

DETAIL OF (\widehat{A}) PART

R5F10JBCANA, R5F10KBCANA R5F10JBCGNA, R5F10KBCGNA

<	R>
_	~

JEITA Package code	RENESAS code	Previous code	MASS (TYP.)[g]
P-HWQFN32-5x5-0.50	PWQN0032KB-A	P32K8-50-3B4-5	0.06

 \angle INDEX AREA

		р		A		EXPOSED DIE PAD
			טטטנ	טטטו	8	
	3					
				 		 E ₂
ZE					DD	
	2					<u>Y</u>
	Z _D -	•	-		е	
				⊷b⊕x	M S A	В

Referance	Dimens	ion in Mil	limeters
Symbol	Min	Nom	Max
D	4.95	5.00	5.05
E	4.95	5.00	5.05
А			0.80
A ₁	0.00		
b	0.18	0.25	0.30
е		0.50	
Lp	0.30	0.40	0.50
х		_	0.05
У			0.05
ZD		0.75	
Z _E		0.75	
C2	0.15	0.20	0.25
D ₂		3.50	
E ₂		3.50	

©2013 Renesas Electronics Corporation. All rights reserved.

-D - -			е		
	→ → b	⊕x	(M)	S	A

