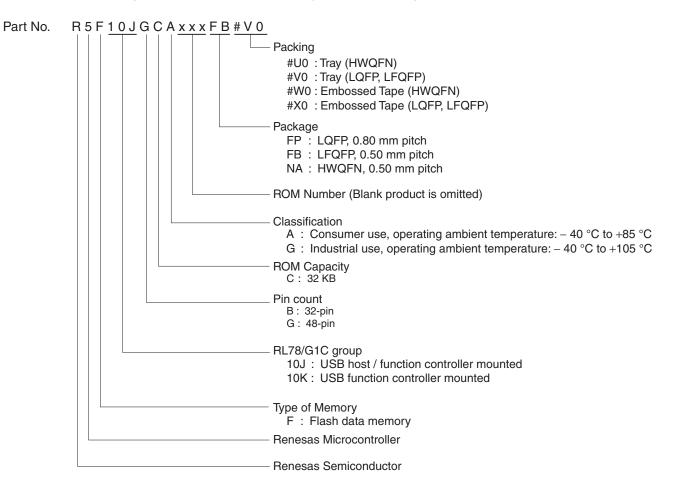


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART, USB
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	5.5K x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10kbcafp-v0

Email: info@E-XFL.COM

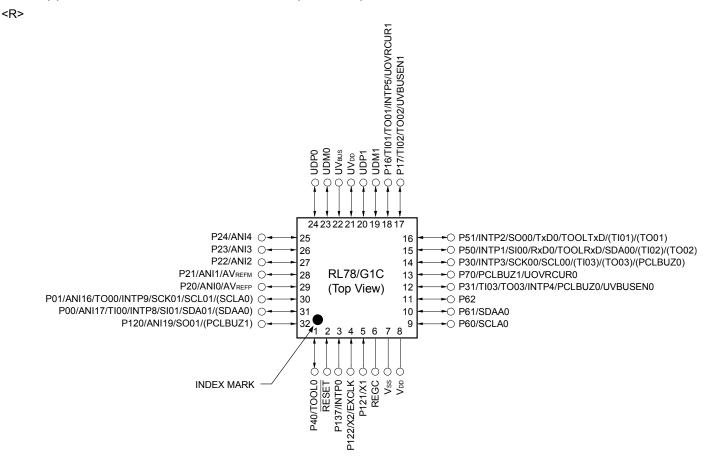
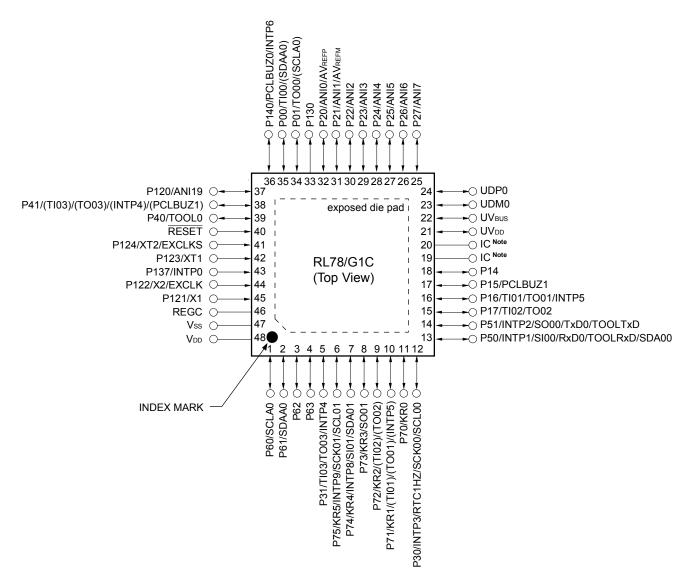

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1-1. Part Number, Memory Size, and Package of RL78/G1C

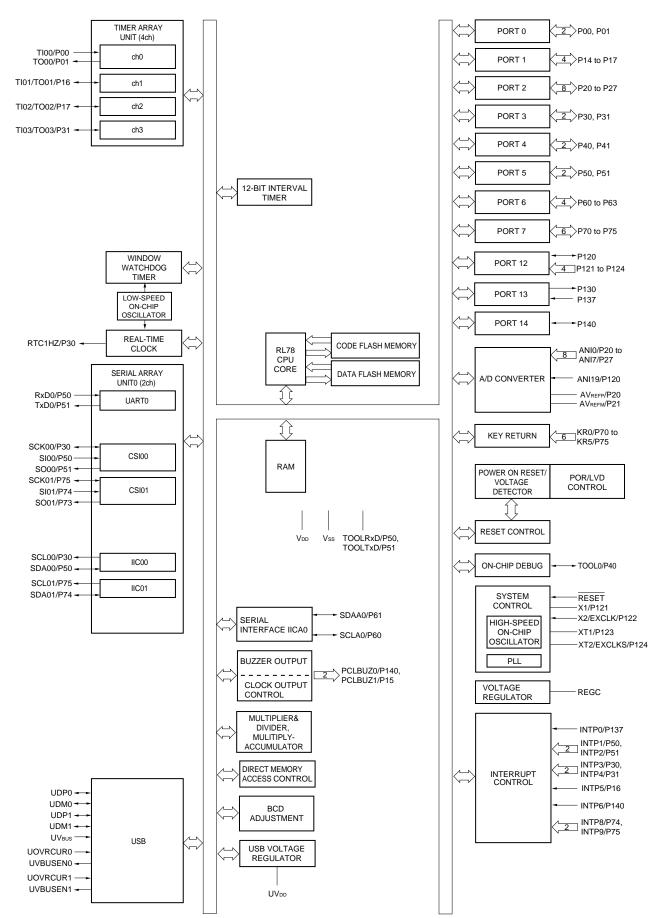
- 32-pin plastic LQFP (7 × 7 mm, 0.8 mm pitch)
- (1) USB function: Host/Function controller (R5F10JBC)


Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - **2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

(2) USB function: Function controller only (R5F10KGC)

<R>


Note IC: Internal Connection Pin Leave open.

Caution Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - **2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).
 - 3. It is recommended to connect an exposed die pad to Vss.

1.5.2 48-pin products

2. ELECTRICAL SPECIFICATIONS (A: $T_A = -40$ to $+85^{\circ}$ C)

This chapter describes the electrical specifications for the products "A: Consumer applications ($T_A = -40$ to +85°C)".

The target productsA: Consumer applications ; TA = -40 to +85°C
R5F10JBCANA, R5F10JBCAFP, R5F10JGCANA, R5F10JGCAFB,
R5F10KBCANA, R5F10KBCAFP, R5F10KGCANA, R5F10KGCAFB
G: Industrial applications ; when using TA = -40 to +105°C specification products
at TA = -40 to +85°C.
R5F10JBCGNA, R5F10JBCGFP, R5F10JGCGNA, R5F10JGCGFB,
R5F10KBCGNA, R5F10KBCGNA, R5F10KGCGNA, R5F10KGCGFB

- Cautions 1. The RL78 microcontrollers has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product.

2.2 Oscillator Characteristics

2.2.1 X1, XT1 oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}C, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator/	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Note}	crystal resonator	$2.4~V \leq V_{\text{DD}} < 2.7~V$	1.0		16.0	MHz
XT1 clock oscillation frequency (fxT) ^{Note}	Crystal resonator		32	32.768	35	kHz

- **Note** Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.
- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

2.2.2 On-chip oscillator characteristics

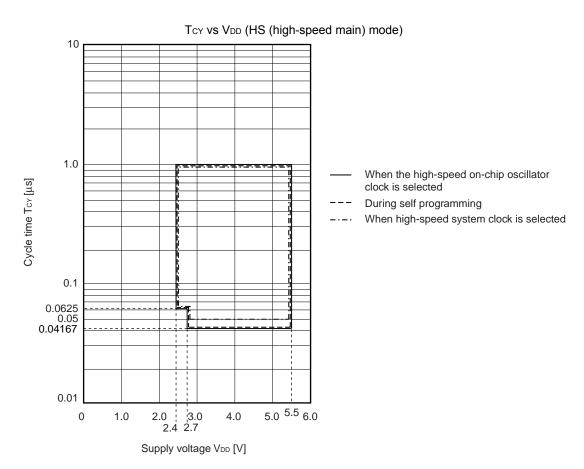
$(T_A = -40 \text{ to } +85^{\circ}C, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

r						
Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fносо		1		48	MHz
High-speed on-chip oscillator		–20 to +85 °C	-1.0		+1.0	%
clock frequency accuracy		–40 to –20 °C	-1.5		+1.5	%
Low-speed on-chip oscillator clock frequency	fı∟			15		kHz
Low-speed on-chip oscillator clock frequency accuracy			-15		+15	%

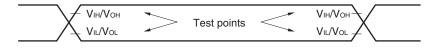
Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register.

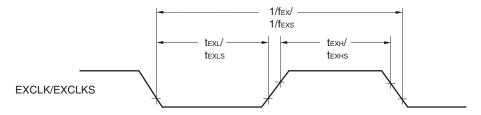
2. This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time.

2.2.3 PLL oscillator characteristics


$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Oscillators	Parameters	Conditions	MIN.	TYP.	MAX.	Unit
PLL input frequency Note	fpllin	High-speed system clock	6.00		16.00	MHz
PLL output frequency Note	fpll			48.00		MHz
Lock up time		From PLL output enable to stabilization of the output frequency	40.00			μs
Interval time		From PLL stop to PLL re-operation setteing Wait time	4.00			μs
Setting wait time		From after PLL input clock stabilization and PLL setting is fixed to start setting Wait time required	1.00			μs


Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.


Minimum Instruction Execution Time during Main System Clock Operation

AC Timing Test Points



External System Clock Timing

Timing of UDPi and UDMi

(2) BC standard

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 3.0 \text{ V} \le U\text{V}_{DD} \le 3.6 \text{ V}, 3.0 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
USB	UDPi sink current	Idp_sink		25		175	μA
standard BC1.2	UDMi sink current	Idm_sink		25		175	μA
DO1.2	DCD source current	IDP_SRC		7		13	μA
	Dedicated charging port resistor	Rdcp_dat	0 V < UDP/UDM voltage < 1.0 V			200	Ω
	Data detection voltage	VDAT_REF		0.25		0.4	V
	UDPi source voltage	Vdp_src	Output current 250 μ A	0.5		0.7	V
	UDMi source voltage	Vdm_src	Output current 250 µA	0.5		0.7	V

Remark i = 0, 1

Par	ameter	-	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
UDPi output	VDSELi	1000	VP20		38	40	42	% UV _{BUS}
voltage	[3:0]	1001	V _{P27}		51.6	53.6	55.6	% UV _{BUS}
(UV _{BUS} divider ratio)	(i = 0, 1)	1010	V P20		38	40	42	% UV _{BUS}
•VDOUEi = 1		1100	Vp33		60	66	72	% UV _{BUS}
UDMi output	VDSELi	1000	V _{M20}		38	40	42	% UV _{BUS}
voltage	[3:0]	1001	V _{M20}		38	40	42	% UV _{BUS}
(UV _{BUS} divider ratio)	(i = 0, 1)	1010	V _{M27}		51.6	53.6	55.6	% UV _{BUS}
•VDOUEi = 1		1100	Vмзз		60	66	72	% UV _{BUS}
UDPi	VDSELi	1000	VHDETP_UP0	The rise of pin voltage detection voltage	56.2			% UV _{BUS}
comparing voltage	[3:0]		VHDETP_DWN0	The fall of pin voltage detection voltage			29.4	% UV _{BUS}
(UV _{BUS} divider	(i = 0, 1)	1001	VHDETP_UP1	The rise of pin voltage detection voltage	60.5			% UV _{BUS}
ratio)			VHDETP_DWN1	The fall of pin voltage detection voltage			45.0	% UV _{BUS}
• VDOUEi = 1		1010	VHDETP_UP2	The rise of pin voltage detection voltage	56.2			% UV _{BUS}
• CUSDETEi = 1			VHDETP_DWN2	The fall of pin voltage detection voltage			29.4	% UV _{BUS}
UDMi	VDSELi	1000	VHDETM_UP0	The rise of pin voltage detection voltage	56.2			% UV _{BUS}
comparing voltage	[3:0]		VHDETM_DWN0	The fall of pin voltage detection voltage			29.4	% UV _{BUS}
Voltage (UV _{BUS} divider	(i = 0, 1)	1001	VHDETM_UP1	The rise of pin voltage detection voltage	56.2			% UV _{BUS}
ratio)			VHDETM_DWN1	The fall of pin voltage detection voltage			29.4	% UV _{BUS}
• VDOUEi = 1		1010	VHDETM_UP2	The rise of pin voltage detection voltage	60.5			% UV _{BUS}
• CUSDETEi = 1			VHDETM_DWN2	The fall of pin voltage detection voltage			45.0	% UV _{BUS}
UDPi pull-up de Note 2	etection	1000	RHDET_PULL	In full-speed mode, the power supply			1.575	kΩ
		1001		voltage range of pull-up resistors				
Connect detect the full speed f		1010		connected to the USB function module is between 3.0 V and 3.6 V.				
(pull-up resisto								
UDMi pull-up d Note 2	etection	1000	RHDET_PULL	In low-speed mode, the power supply			1.575	kΩ
		1001		voltage range of pull-up resistors				
Connect detect the low-speed		1010		connected to the USB function module is between 3.0 V and 3.6 V.				
resistor)	(pui-up							
UDMi sink curr	ent	1000	HDET_SINK		25			μA
detection Note 2	2	1001						,
Connect detect	tion with	1010	1					
the BC1.2 porta device (sink res		-						

(3) BC option standard (Host)

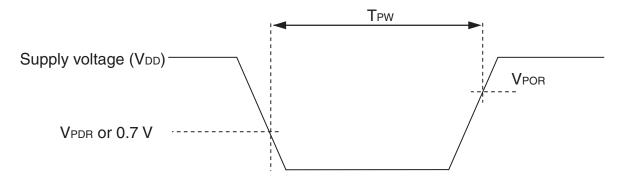
Notes 1. If the voltage output from UDPi or UDMi (i = 0, 1) exceeds the range of the MAX and MIN values prescribed in this specification, DPCUSDETi (bit 8) and DMCUSDETi (bit 9) of the USBBCOPTi register are set to 1.

If the pull-up resistance or sink current prescribed in this specification is applied to UDPi or UDMi (i = 0, 1), DPCUSDETi (bit 8) and DMCUSDETi (bit 9) of the USBBCOPTi register are set to 1.

Remark i = 0, 1

2.6.2 Temperature sensor/internal reference voltage characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvtmps	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs


$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V}, \text{HS (high-speed main) mode)}$

2.6.3 POR circuit characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.47	1.51	1.55	V
	VPDR	Power supply fall time	1.46	1.50	1.54	V
Minimum pulse width ^{Note}	Tpw		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock (f_{MAIN}) is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

2.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode (TA = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

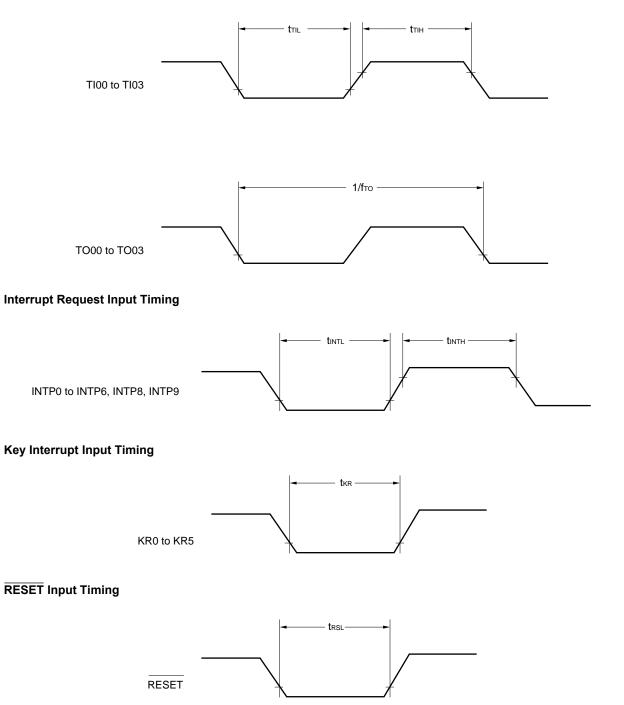
	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD0	Power supply rise time	3.98	4.06	4.14	V
voltage			Power supply fall time	3.90	3.98	4.06	V
		VLVD1	Power supply rise time	3.68	3.75	3.82	V
			Power supply fall time	3.60	3.67	3.74	V
		VLVD2	Power supply rise time	3.07	3.13	3.19	V
			Power supply fall time	3.00	3.06	3.12	V
		VLVD3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		VLVD4	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		VLVD5	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		VLVD6	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	V
		VLVD7	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.50	2.55	2.60	V
		VLVD8	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
Minimum pu	ulse width	t∟w		300			μs
Detection de	elay time	tld				300	μs

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	Vон1	P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75,	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -3.0 \ \text{mA} \end{array}$	$V_{\text{DD}} - 0.7$			V
	P120, P130, P140	P120, P130, P140	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ I_OH1 = -2.0 mA	V _{DD} - 0.6			V
			$\begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -1.5 \ \text{mA} \end{array}$	V _{DD} - 0.5		MAX. Image: Constraint of the second secon	V
	V _{OH2}	P20 to P27	2.4 V \leq V _{DD} \leq 5.5 V, Іон2 = -100 μ А	$V_{\text{DD}} - 0.5$			V
Output voltage, low	V _{OL1}	VoL1 P00, P01, P14 to P17, P30, P31, P40, P41, P50, P51, P70 to P75, P120, P130, P140	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.5 \ mA \end{array} \end{array} \label{eq:VDD}$			0.7	V
		P120, P130, P140	$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 3.0 \ mA \end{array} \end{array} \label{eq:VDD}$			0.6	V
			$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 1.5 \ mA \end{array} \end{array} \label{eq:eq:electropy}$			0.4	V
			$\begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 0.6 \ mA \end{array} \end{array} \label{eq:VDD}$			0.4	V
	V _{OL2}	P20 to P27	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ $\text{I}_{\text{OL2}} = 400 \ \mu \text{ A}$			0.4	V
	Vol3	P60 to P63	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 15.0 \ mA \end{array} \end{array} \label{eq:VDD}$			2.0	V
			$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 5.0 \ mA \end{array} \end{array} \label{eq:VDD}$			0.4	V
			$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 3.0 \ mA \end{array} \end{array} \label{eq:eq:electropy}$			0.4	V
			$\begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 2.0 \ \text{mA} \end{array} \end{array} \label{eq:VD}$			0.4	V

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Caution P00, P01, P30, and P74 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.


Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	FIL Note 1				0.20		μA
RTC operating current	IRTC Notes 1, 2, 3				0.02		μA
12-bit interval timer operating current	_{I⊤} Notes 1, 2, 4				0.02		μA
Watchdog timer operating current	IWDT Notes 1, 2, 5	fı∟ = 15 kHz			0.22		μA
A/D converter	IADC Notes 1,	When conversion	Normal mode, AV _{REFP} = V _{DD} = 5.0 V		1.3	1.8	mA
operating current	6	at maximum speed	Low voltage mode, AV _{REFP} = V _{DD} = 3.0 V		0.5	0.8	mA
A/D converter reference voltage current	I _{ADREF} Note				75.0		μA
Temperature sensor operating current	ITMPS Note 1				75.0		μA
LVD operating current	ILVD Notes 1, 7				0.08		μA
Self-programming operating current	_{FSP} ^{Notes 1,} 9				2.00	12.30	mA
BGO operating current	I _{BGO} Notes 1, 8				2.00	12.30	mA
SNOOZE operating	ISNOZ Note 1	ADC operation	The mode is performed Note 10		0.80	1.97	mA
current			The A/D conversion operations are performed, Low voltage mode, $AV_{REFP} = V_{DD} = 3.0 \text{ V}$		1.20	3.00	mA
		CSI operation			0.70	1.56	mA

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V) (1/2)

(Notes and Remarks are listed on the next page.)

TI/TO Timing

(5) Communication at different potential (2.5 V, 3 V) (UART mode) (2/2) (T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Transfer rate		transmission	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$				Note 1	bps
			$2.7~V \leq V_b \leq 4.0~V$	Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 1.4 kΩ, V_b = 2.7 V			2.6 ^{Note 2}	Mbps
			$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V},$				Note 3	bps
			$2.3~V \leq V_b \leq 2.7~V$	Theoretical value of the maximum transfer rate			1.2 ^{Note 4}	Mbps
				C_b = 50 pF, R_b = 2.7 k Ω , V_b = 2.3 V				
			$2.4 V \le V_{DD} < 3.3 V,$ $1.6 V \le V_b \le 2.0 V$				Notes 5, 6	bps
				Theoretical value of the maximum transfer rate			0.43 Note 7	Mbps
1				C_b = 50 pF, R_b = 5.5 k Ω , V_b = 1.6 V				

Notes 1. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq V_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

$$\frac{1}{|\text{Transfer rate} \times 2|} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}$$
Baud rate error (theoretical value) =
$$\frac{\frac{2.2}{V_b}}{|(\frac{1}{|\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **3.** The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq V_{DD} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

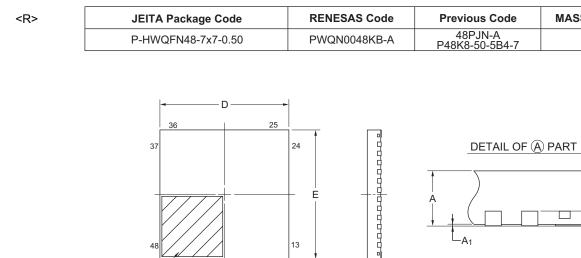
$$Baud rate error (theoretical value) = \frac{1}{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\}} \times 100 \,[\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
- **5.** Use it with $V_{DD} \ge V_b$.

3.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode (TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

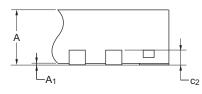
Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD0	Power supply rise time	3.90	4.06	4.22	V
voltage			Power supply fall time	3.83	3.98	4.13	V
		VLVD1	Power supply rise time	3.60	3.75	3.90	V
			Power supply fall time	3.53	3.67	3.81	V
		VLVD2	Power supply rise time	3.01	3.13	3.25	V
			Power supply fall time	2.94	3.06	3.18	V
		VLVD3	Power supply rise time	2.90	3.02	3.14	V
			Power supply fall time	2.85	2.96	3.07	V
		VLVD4	Power supply rise time	2.81	2.92	3.03	V
			Power supply fall time	2.75	2.86	2.97	V
		VLVD5	Power supply rise time	2.70	2.81	2.92	V
			Power supply fall time	2.64	2.75	2.86	V
		VLVD6	Power supply rise time	2.61	2.71	2.81	V
			Power supply fall time	2.55	2.65	2.75	V
		VLVD7	Power supply rise time	2.51	2.61	2.71	V
			Power supply fall time	2.45	2.55	2.65	V
Minimum pulse width		t∟w		300			μs
Detection delay time		tLD				300	μs

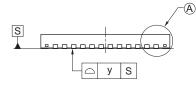


MASS (Typ) [g]

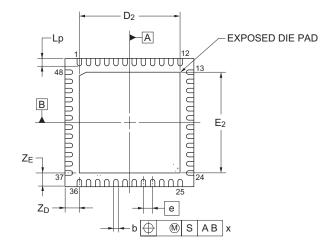
0.13

Unit: mm


R5F10JGCANA, R5F10KGCANA R5F10JGCGNA, R5F10KGCGNA



F


13

12

 \angle INDEX AREA

Reference	Dimensions in millimeters					
Symbol	Min	Nom	Max			
D	6.95	7.00	7.05			
Е	6.95 7.00		7.05			
А		—	0.80			
A ₁	0.00	—	_			
b	0.18	0.25	0.30			
е	_	0.50	_			
Lp	0.30	0.40	0.50			
х	—	—	0.05			
У	—	—	0.05			
ZD		0.75	—			
ZE		0.75	_			
C2	0.15	0.20	0.25			
D ₂	—	5.50	—			
E ₂	_	5.50	_			

© 2015 Renesas Electronics Corporation. All rights reserved.

Revision History

RL78/G1A Data Sheet

			Description		
Rev.	Date	Page	Summary		
0.01	Sep 20, 2012	-	First Edition issued		
1.00	Aug 08, 2013 Throughou		Deletion of the bar over SCK and SCKxx		
			Renaming of fEXT to fEXS		
			Renaming of interval timer (unit) to 12-bit interval timer		
			Addition of products for G: Industrial applications (T_A = -40 to +105 °C)		
		1	Change of 1.1 Features		
		2	Change of 1.2 List of Part Numbers		
		3	Modification of Figure 1-1. Part Number, Memory Size, and Package of RL78/G1C		
		4, 5	Addition of remark to 1.3 Pin Configuration (Top View)		
		15, 16	Change of 1.6 Outline of Functions		
		17 to 76	Addition of a whole chapter		
		77 to 131	Addition of a whole chapter		
		132	Addition of products for G: Industrial applications (T _A = -40 to +105 $^{\circ}$ C)		
1.10	Nov 15, 2013	77	Caution 3 added.		
		79	Note for operating ambient temperature in 3.1 Absolute Maximum Ratings deleted.		
1.20	Sep 30, 2016	4 to 7	Modification of pin configuration in 1.3.1 32-pin products		
		8 to 11	Modification of pin configuration in 1.3.2 48-pin products		
		15	Modification of description of main system clock in 1.6 Outline of Functions		
		74	Modification of title of 2.7 RAM Data Retention Characteristics and figure		
		74	Modification of table of 2.8 Flash Memory Programming Characteristics		
		129	Modification of title of 3.7 RAM Data Retention Characteristics and figure		
		129	Modification of table of 3.8 Flash Memory Programming Characteristics and addition		
			of Note 4		
		132	Change of figure in 4.1 32-pin Products		
		134	Change of figure in 4.2 48-pin Products		

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

Notice 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits software or information 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product. 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc. Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics. 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, lease evaluate the safety of the final products or systems manufactured by you 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information.

RENESAS

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 **Renesas Electronics Europe Limited** Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +88-10-8235-1155, Fax: +88-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tei: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Non-sease Lectronics nong round Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +55-631-30200, Fax: +65-6213-0300 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207. Block B. Menara Amcorp. Amco Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777 Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141